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ABSTRACT

For performance and economic reasons, ATM networks must efficiently
support the Internet family of protocols. We calculate the transmission efficiency
achieved by a range of ATM-related protocols when transporting TCP and UDP
wide-area traffic. We also compare the efficiency effects of several non-standard
compression techniques. To assure an accurate workload characterization, we
drive these calculations with millions of wide-area packet lengths measured on
the current Internet.

We find that networks using standard ATM procedures are dismally
inefficient in carrying traditional data traffic — depending on the protocols used,
efficiency as seen by an application program ranges between 40 and 53%. More-
over, due to interaction between TCP-IP datagram lengths and ATM cell pad-
ding, efficiency responds abruptly to changes in certain protocol parameters — for
example, a 4-byte increase in ATM cell payload size can yield a 10% increase in
efficiency. Using one compression technique in isolation can improve efficiency
by 12%, and simultaneously using three techniques can improve it by 34%.
These issues should be considered when designing future ATM networks.

1. Introduction

This paper presents the transmission efficiency achieved by Asynchronous Transfer Mode
(ATM) networks when transporting traditional wide-area data traffic, in particular traffic sent by
the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) of the Internet
family of protocols. ATM is the recommended multiplexing technique for future broadband
integrated services networks [13] [22] [25] and the Intemnet family of protocols [4] will continue
to dominate wide-area data transport, an important application of these networks. Network proto-
col designers avoid transmission overhead to give users better access to available bandwidth.
Transmission efficiency, or the ratio of useful bytes to total bytes carried by a network, measures
how well protocols achieve this goal. Inefficient protocols waste network bandwidth. Protocols
and techniques that improve efficiency should be considered when designing a network.

Transmission efficiency will remain an important issue as networks evolve. Granted, the
performance effects of protocol overhead decrease as communication lines become faster. How-
ever, there remains a significant economic cost to wasted bandwidth. Historically, high-speed
communication outside the local area has carried a high price. This situation may continue due to
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the non-decreasing cost of upgrading land lines. Even if long-haul prices fall due to sharing of
lines among many users, not everyone will benefit from the economies of scale. Consider an
integrated services network that reaches to the home. Installing a high-speed access line between
a home and the nearest network point of presence will continue to be costly. This cost will not be
shared among many users. In some cases the old, slower line will not be upgraded because of
economic considerations. Whether an access line is upgraded to high speeds or is kept at slower
speeds, both the user and provider of the line will remain conscious of the quality of service pro-
vided for a certain price. It will always be necessary for networks to operate efficiently.

There are three major sources of transmission inefficiency. First, as data flows through the
network, protocols add header and trailer overhead to the data generated by an application pro-
gram. Second, some protocols add overhead to satisfy byte-alignment requirements for their
headers and trailers. Finally, in ATM networks, another source of inefficiency is the fragmenta-
tion of variable-size packets into fixed-size cells. When a packet is presented to an ATM net-
work, it is separated into a sequence of cells. In general, the last cell in the sequence will be only
partially filled with packet data. Any unused space in the last cell is padded with dummy bytes
that add to the overall inefficiency. For a given stack of protocols, the extent of these three prob-
lems is highly dependent on the workload presented to the network, particularly on the size distri-
bution of application data units,

The success of the Internet family of protocols suggests they will continue to be a
significant portion of the traditional data traffic carried by wide-area networks. The NSFnet back-
bone links over 2,300 university, industry, and government networks [21], and is growing
rapidly. More than 720 new subnetworks joined the NSFnet backbone in the eighteen months
between January, 1990, and June, 1991, and 38 subnetworks joined in the second week of June,
1991, alone [20]. This network carries predominantly Internet protocol traffic — we observed that
more than 94% of wide-area Internet traffic is due to TCP and UDP. Future networks will carry
audio and video traffic with different characteristics from current traffic. However, traditional
forms of traffic will prevail for several years and will continue to be used for much longer. As a
result, future B-ISDN networks based on ATM must efficiently support TCP and UDP.}

Figure 1 illustrates some of the efficiency concerns addressed in this paper. It shows
transmission efficiency as a function of payload size, that is, the portion of an ATM cell used to
carry higher-level data. The input to the calculation was a histogram of wide-area TCP and UDP
application data lengths measured on the current Intemet. Application data bytes plus datagram
header bytes were considered useful, all others were not. The protocol overhead used was: 40
bytes per TCP-IP datagram and 28 bytes per UDP-IP datagram at the transport and internetwork
levels, 8 bytes per datagram at the framing level, 4 bytes per cell at the adaptation level, and 5
bytes per cell at the data link level. The solid line represents the efficiency obtained by following
standard ATM procedures, including padding partially-filled cells. The cross-marked line
represents the efficiency obtained when these cells are not padded. The difference between the
two lines is the efficiency lost to cell padding.

We observe the following:

e  Efficiency responds abruptly to changes in payload size. The sharp drop in efficiency near
48 bytes of payload is due to the abundance of wide-area TCP-IP datagram lengths between
40 and 50 bytes. After ATM-related overhead, these short datagrams generate one full
ATM cell and a second cell that is mostly padding. Moving from the 48-byte CCITT stan-
dard payload to a 54-byte payload increases efficiency by almost 10%. The previously pro-
posed payload sizes of 32 bytes and 64 bytes both perform better than the eventual standard.

e  Discarding cell padding not only reduces overhead but also smooths the efficiency curve.
At the standard payload size, not padding partially-filled cells increases efficiency by 12%.
As evident by the smoothness of the upper curve, the jaggedness in the lower curve is
almost entirely due to cell padding.

T Appendix 2 contains a glossary of networks, protocols, and applications.
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With padding, transmission efficiency as seen by a host is only 62.9% at the standard
operating point and never rises above 72%. Under the same conditions, a similar calcula-
tion shows that efficiency as seen by an application program is considerably worse — it
never rises above 49%.
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Figure 1 - Efficiency of ATM Networks in Transporting TCP and UDP Traffic
These results suggest that ATM networks are inefficient in transporting traditional wide-

area data traffic. We investigate whether the phenomena evident in Figure 1 extend to other
ATM-related protocol choices. We also study the efficiency effects of non-standard compression
techniques such as discarding cell padding. To isolate the effects of overfiead contributed by dif-
ferent levels in the protocol hierarchy, we calculate efficiency from the point of view of a network
application, a host transmitting IP datagrams, and certain per-datagram framing protocols. The
following are selected results:

The non-linear effects due to interaction between short TCP-IP datagrams and cell padding
are common to all protocol combinations — efficiency is sensitive to small changes in cer-
tain design dimensions and insensitive to large changes in others.

Discarding cell padding can improve efficiency by 6.9 to 11.9% as seen by a host.

Grouping all the cell payloads corresponding to a datagram and adding to the group only
one cell’s worth of overhead can improve efficiency by 4.7 to 8.8% as seen by a host.
Predictive encoding of TCP-IP headers can improve efficiency by 5.0 to 12.7% as seen by
an application program.

Simultaneously applying these three compression techniques improves efficiency by 24.6 to
34.0% as seen by an application program.

The rest of the paper explains these and other results in more detail. Section 2 surveys

related work. Section 3 presents the transmission overhead introduced by Internet-related and
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ATM-related protocols. Section 4 describes our measurements of wide-area Intemnet traffic taken
at two universities and two industrial research laboratories. Section 5 presents a characterization
of TCP and UDP datagram sizes derived from the traffic measurements. Finally, Section 6
discusses our efficiency calculations.

2. Related Work

Kleinrock et. al. [18] studied line overhead in the ARPANET during the mid-1970’s. They
noted the critical dependence of network efficiency on traffic mix — they found that average
transmission efficiency could be as low as 1% for single-character traffic and as high as 79% for
file transfers. They suggested that designers of future network protocols take more account of the
effect of line overhead on network performance. We note that ATM networks also exhibit severe
efficiency problems for an important class of traffic, and make a similar suggestion to designers
of protocols for ATM networks.

DeSimone [7] calculated ATM transmission efficiency based on a statistical model of TCP
traffic. His model is based partly on network measurements; we drive our calculations directly
with measured TCP and UDP traffic data. From him we borrow the definitions of application,
datagram, and frame efficiency. He presents results for one of the four protocol combinations and
two of the three principal compression techniques we discuss here. Because of the difference in
assumed workload, he finds the effects of discarding ATM cell padding less significant than we
do — he saw an improvement in efficiency of only 2-3%; we see 4-12%. Similarly, after
compressing TCP-IP headers he saw improvements of 0-7%; we see 5-12%. As a result, we draw
different conclusions regarding the merits of these two compression techniques.

Recently, there has been considerable activity in network traffic measurement and analysis
[5]1 [12] [14] [19] [24]. Traffic measurements are valuable in the study of network performance
because they provide a snapshot of real network workloads. Analysis of the same traffic traces
used in this study appears in two related publications: one presents packet length characteristics
broken down by the type of application responsible for the traffic [2], and the other presents addi-
tional characteristics further broken down by individual conversations of each application type
[3]. Here, we apply aggregate TCP and UDP packet length statistics to the issue of transmission
efficiency.

3. Protocol Overhead

In an ATM network transporting TCP and UDP traffic, protocols introduce transmission
overhead at all levels in the hierarchy. This overhead takes three forms: header and trailer bytes,
alignment bytes, and padding bytes. Header and trailer overhead are fixed per data unit, while
alignment and padding overhead are variable. In this paper, we ignore overhead added to user
data by network applications such as TELNET and FTP, and consider only overhead added below
the application level.

datagram
TCP/UDP 1P APPLICATION
HEADER HEADER DATA
| I
I 1
frame : :
FRAME FRAME
HEADER DATAGRAM

Figure 2 - Frame Format

After an application data unit is prepared for transmission, Internet protocols add their share
of overhead while forming a datagram, as shown in Figure 2. In the absence of rarely-used pro-
tocol options, TCP adds 20 bytes of header at the transport level and UDP adds 8. IP adds



another 20 bytes at the internetwork level.

A frame is then formed by wrapping each datagram with an optional frame header, trailer,
or both, as shown in Figure 2. Examples of proposed services and protocols at the frame level are
AT&T’s Message Stream Protocol (MSP) [10], AT&T’s Frame Relay Service for XUNET 2
(XFRS) [16] [11], and Bellcore’s Switched Multi-Megabit Data Service (SMDS) [26]. All three
specify the length of the enclosed datagram so it can be reconstructed from a stream of fixed-size
cells. In addition, MSP provides sequencing to detect the loss of full frames. XFRS also pro-
vides frame sequencing and detects bit errors in both the datagram and the frame trailer. This
combination of techniques allows XFRS to handle both the corruption of single bits and the loss
of full ATM cells. SMDS detects similar types of errors and supports a larger source and destina-
tion address space than IP does. MSP adds 8 bytes of header, XFRS adds 12 bytes of trailer, and
SMDS adds 24 bytes of header and 4 bytes of trailer. An XFRS trailer must be also 8-byte
aligned and reside entirely in one ATM cell, which may introduce additional overhead in the
form of alignment bytes.

cell payload
ADAPTATION FRAME . PADDING ADAPTATION
HEADER DATA : TRAILER
1 I
1 |
| I
cell V v
CELL
AD
HEADER CELL PAYLO

Figure 3 - Cell Format

An ATM network will then break up a frame into fixed-length cells whose format is shown
in Figure 3. The CCITT ATM standard calls for 53-byte cells with 5 bytes of header and 48
bytes of payload. The ATM header provides virtual circuit identifiers and single-bit error detec-
tion on the contents of the cell header alone. An optional adaptation layer inserts in each payload
a header, a trailer, or both, leaving the remaining space to carry frame data. Examples of pro-
posed adaptation protocols are Bolt, Beranek and Newman’s Segmentation and Reassembly
(SAR) protocol [9] and IEEE’s 802.6 segmentation and reassembly layer [8]. SAR provides
sequencing to detect the loss of full cells, and also detects bit errors in the payload; 802.6 pro-
vides similar error-detection. In order to account for partially-filled cells, 802.6 also specifies the
number of higher-level bytes actually carried in the payload; SAR leaves this responsibility to
higher levels. SAR adds 3 bytes of trailer and 802.6 adds 2 bytes of header and 2 bytes of trailer.
Table 1 summarizes the fixed overhead contributed by the services and protocols just discussed.

Level Data Unit | Protocol | Bytes of Overhead
Transport Datagram EIC)II)’ 2(8]
Internetwork | Datagram IP 20
SMDS 28
Framing Frame XFRS 12
MSP 8
Adaptation |  Cell ey .
Data Link Cell ATM 5

Table 1 - Fixed Protocol Overhead

In addition to header, trailer, and alignment overhead, ATM networks introduce fragmenta-
tion overhead in the form of padding bytes. When the length of a frame is not an integral number
of usable payload lengths, the last cell for that frame is padded to the required fixed length. The
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amount of overhead contributed by fragmentation is equal to the number of bytes left unused in
the last cell for the frame.

Finally, the physical layer also introduces overhead. For example, the DS3 transmission
standard offers a raw 44.7 Megabits/second. The IEEE 802.6 standard calls for 12 ATM cells per
125-microsecond DS3 frame, which yields 40.7 Megabits/second, or 91% transmission efficiency
[7]. The effects of the physical layer are ignored in our efficiency calculations.

4, Traffic Measurements

4.1. Tracing Sites

To accurately gauge the workload of current wide-area networks, we obtained Intemnet
traffic traces from two universities and two industrial research laboratories: the University of Cal-
ifornia in Berkeley, the University of Southemn California (USC) in Los Angeles, AT&T Bell
Laboratories in Murray Hill, New Jersey, and Bellcore in Morristown, New Jersey. We gathered
packet headers from the gateway Ethernet carrying all traffic between the local networks at each
site and the corresponding regional access network: the Bay Area Regional Research Network
(BARRnet) for Berkeley, Los Nettos for USC, and the John Von Neumann Center Network
(JVNCnet) for Bell Labs and Bellcore. We filtered out local and transit traffic but kept all IP
datagrams flowing between each site and the rest of the world.

We analyzed 24 hours of traces from each site. Trace collection started at 10:30 on Tues-
day, October 31, 1989, in Berkeley; 14:24 on Tuesday, January 22, 1991, in USC; 7:59 on Thurs-
day, July 13, 1989, at Bell Labs; and 14:37 on Tuesday, October 10, 1989, at Bellcore. Tables 2
and 3 show the amount of traffic attributed to TCP and UDP at each site.

Site
Protocol Berkeley USC Bell Labs Bellcore
# % ___# % # % # %

TCP 5,891,621 | 83.3 || 5,094,504 | 97.5 || 393,305 | 78.7 || 1,466,297 | 88.5
6.3

52

UDP 1,046,027 | 14.8 52,068 1.0 || 104,799 | 20.9 103,355
other 135,406 1.9 77,696 1.5 1,806 | 04 86,587

Table 2 - Packet Counts from each Tracing Site
Site

Protocol |5 5306 USC Bell Labs || Bellcore
TCP || 504,969,623 || 662,737,646 || 5,007,0497 || 154,093,992
UDP | 63033070 | 4351976 | 3362217 | 5532723

Table 3 - Byte Counts from each Tracing Site {

4.2. Trace Applicability

Given that wide-area TCP and UDP traffic will be an important application of ATM net-
works, we believe our traces are representative of such traffic. A look at aggregate statistics for
the NSFnet backbone [20] lends weight to this claim. The breakdown of traffic in our traces
shows strong similarities to the breakdown of NSFnet backbone traffic during October, 1989,
when our Berkeley and Bellcore traces were gathered, and January, 1991, when our USC traces
were gathered.f Most importantly, the seven applications we identified as transmitting the most
packets (TELNET, RLOGIN, FTP, SMTP, NNTP, DOMAIN, and VMNET) [3] also appear as
such on the NSFnet backbone.

¥ Byte counts for protocols other than TCP and UDP are not available,
i Bell Labs network activity is not listed in the NSFnet statistics database.
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NSFnet statistics for the total packet activity generated by a stub network also suggest that
our traces are representative, Of 1,174 stub networks for which backbone activity was detected
during October, 1989, Berkeley was the 3rd busiest and Bellcore was the 130th busiest. Of 2,345
stub networks measured during January 1991, USC was the 31st busiest. Thus, our traces capture
activity generated by a range of stub networks, from an very active one like Berkeley, to a
moderately active one like USC, to a less active but non-trivial one like Bellcore.

The uniformity of our trace data further justifies its use as representative of wide-area Inter-
net traffic. Although our data comes from four different organizations and spans a period of one
year and a half, traffic from all four sites shares many characteristics [3]. Of particular relevance
to this work are the length distributions of application data units. These distributions are very
similar among the four sites and, consequently, transmission efficiency results obtained using all
four traces are also similar.f All efficiency results in the body of this paper are derived from the
Berkeley data.

4.3. Trace format

The traces from Berkeley, USC, and Bellcore were saved on 8-millimeter helical scan mag-
netic tapes. Every network packet generated a trace record consisting of a time stamp and the
first 56 bytes of raw Ethernet data. The time stamp records the arrival time of the packet at the
tracing apparatus. The 56 bytes of data are enough to hold the Ethernet header, the IP header, and
either a TCP header or a UDP header. 1 Due to hardware limitations, the Bell Labs traces were
not saved on tape. Rather, packet counts were broken down by application type and data unit
length, and written to disk; the raw trace data was discarded.

44. Tracing Instruments

The Berkeley traces were gathered using a Sun 3/50 workstation equipped with a
microsecond timer [6]. The Ethernet driver in the SunOS kernel was modified to write trace
records to a circular kemel buffer big enough to hold 128 full-size Ethenet packets. The result-
ing time stamp resolution was 10 microseconds. A dedicated user-level program inspected the
buffer and wrote new records to tape. No packet losses due to buffer overflows were detected
during the Berkeley measurements.

The USC data was collected using the NNStat program suite [1] on a Sun SparcServer
4/490. The NNStat package uses the standard SunOS timer, which on that system has a 20-
millisecond resolution. During tracing similar to that reported here, the loss rate was estimated
by injecting a Poisson stream of short packets; only 0.6% of these packets were missing from the
tape.

Bell Labs traffic was inspected with a DEC microVAX II. A new streams module was
inserted in the Ninth Edition UNIX kemel between the standard Ethernet driver and user space.
It prepended a 10-millisecond-resolution time stamp to each incoming Ethemet packet and for-
warded the packet to user space. A user-level program read the time stamps and Ethernet packet
data, extracted the statistics of interest, and wrote them to a set of disk files. No packet losses due
to buffer overflows were detected during the Bell Labs measurements.

The Bellcore traces were collected with a Sun 3 workstation augmented with: a single-
board computer with a Motorola MC68030 processor and an on-board LANCE Ethemet con-
troller, an interval timer board, several local hard disk drives, and two 8-millimeter tape drives.
A system of hierarchical buffers stretching between the single-board computer and the tape drives
carried the trace records to tape. No packet loss was recorded anywhere in the monitoring system

+ Section 5 discusses the application length distributions for Berkeley, and Appendix 1 presents a comparison
of efficiency results using data from the four sites.

+ We did not encounter any packets carrying IP or TCP options, and ignored packets containing IP frag-
ments. TP fragments accounted for only 0.02% of all IP packets at Berkeley, 0.05% at USC, and 0.02% at
Belicore.



during the Bellcore measurements [19].

5. Datagram Size Characterization

Since transmission efficiency is strictly a function of the number of bytes carried by a net-
work, the efficiency of ATM networks in transporting wide-area Intemet traffic is critically
dependent on the length distributions of IP datagrams. Figure 4 is a histogram of TCP applica-
tion data lengths extracted from the Berkeley data, and Figure 5 is a similar histogram for UDP.

TCP is the dominant protocol on the Internet — Table 2 shows it was responsible for more
than 80% of all packets observed at Berkeley. Consequently, the distribution shown in Figure 4
will dominate our efficiency calculations. It is sharply bimodal, not random, with very large
peaks near 0 bytes and 512 bytes. The O-byte peak represents almost 40% of all TCP datagrams
and is due to acknowledgments and other control information traveling without accompanying
data.t The next largest peak represents 30% of all TCP datagrams; it is due to data units between
0 and 10 bytes exchanged by interactive network applications like TELNET and RLOGIN. The
512-byte and 536-byte peaks are due to the Maximum Segment Size (MSS) for wide-area net-
works configured in most Intemnet hosts.} Figure 5 shows similarly well-defined peaks in UDP
data lengths.

40
30
Packets
(percentage)
10—
| | |
0 500 1000
Application data length (bytes)

Figure 4 - Histogram of TCP application data lengths

These length characteristics have a strong negative effect on efficiency. As we observed,
TCP datagrams are often the smallest possible, and both TCP and UDP datagrams are predom-
inantly small. Almost 70% of TCP datagrams are smaller than 10 bytes, and more than 84% are
smaller than 256 bytes. Almost 80% of UDP data lengths are smaller than 48 bytes, and more
than 97% are smaller than 150 bytes. In general, the efficiency of a network carrying small data
units is more adversely affected by protocol overhead than the efficiency of a network carmrying
large ones.

1 A majority of 40-byte TCP datagrams contain only acknowledgements. The fact that TCP is seldom able to
piggy-back acknowledgements on reverse-flowing data suggests that TCP connections between wide-area ap-
plications are often one-way. Piggy-backed acknowledgments would improve efficiency.

F To avoid IP fragmentation [17], the TCP MSS is set to roughly 40 bytes less than 576, the commonly-used
IP Maximum Transmission Unit (MTU) for wide-area networks. The choice of 576 is historical and should
be reconsidered since the actual MTU of the NSFnet backbone is at least 1500 bytes. Methods for setting a
more accurate IP MTU are discussed in [23]. A higher MTU would result in higher efficiency.
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Figure 5 - Histogram of UDP application data lengths

The abundance of TCP application lengths between 0 and 10 bytes has a particularly strong
effect on ATM efficiency. In ATM networks, the loss of efficiency due to cell padding depends
on how application data lengths map into cell payload lengths. TCP datagrams with 0-10 bytes
of application data are 40-50 bytes long. In comparison, the CCITT standard ATM cell payload
is 48 bytes long. After framing and adaptation overhead are added, these short TCP datagrams
often fill one complete 48-byte payload and very little of another. Cell padding overhead
becomes significant when for every two cells transmitted one consists almost entirely of padding.
This phenomenon was responsible for the sharp efficiency loss near 48 bytes of payload evident
in Figure 1.

6. Transmission Efficiency

6.1. Definitions

We define transmission efficiency as the ratio of useful bytes to total bytes carried by a
network’s communication lines, expressed as a percentage. Useful bytes can refer to bytes origi-
nally sent by an application program, or also include header and trailer bytes added by lower
level protocols. We calculate three measures of transmission efficiency to show the effects of
overhead contributed by three different levels in the protocol hierarchy. For application
efficiency, useful bytes refer only to application-level bytes; it is efficiency as viewed by an appli-
cation program. For datagram efficiency, useful bytes include application-level bytes and TCP,
UDP, and IP header bytes; it is efficiency as viewed by a host transmitting IP datagrams. Finally,
for frame efficiency, useful bytes include datagram-level bytes and framing protocol bytes; it is
efficiency as viewed by the framing protocol. Bytes inside ATM cell headers, adaptation headers,
adaptation trailers, and cell padding are not considered useful in any of these measures.

6.2. Efficiency of Standard Procedures

Table 4 shows the transmission efficiency of four protocol combinations. The SMDS-802.6
combination is a proposed standard, and MSP-802.6 was being considered for XUNET 2 experi-
ments [11]. XFRS is also in consideration for XUNET 2. It does not need an adaptation layer,
thus our use of the XFRS-none combination, which incidentally shows the effects of doing
without an adaptation layer. SAR is a recent proposal that can be used alone or with SMDS,
MSP, or some other framing protocol. We include the none-SAR combination to show the
effects of doing without a framing layer. The overhead introduced by these protocols was

+ Since the none-SAR protocol combination introduces no framing overhead, its datagram and frame
efficiency results are identical.
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discussed in Section 3. All calculations were driven directly by the measured application data
lengths discussed in Section 5. Throughout, we used a 53-byte cell with a 5-byte header and a
48-byte payload.

% Efficiency

Frame

T2.5
67.1
74.9
76.6

Table 4 - Transmission Efficiency Using Standard ATM Procedures

As expected, Table 4 shows that protocols with less overhead are more efficient than proto-
cols with more overhead. However, cell padding causes efficiency to respond non-linearly to
changes in overhead. That is, efficiency is insensitive to large variations in certain protocol
design dimensions, and sensitive to small variations in others. Table 4 shows that moving from
SMDS, with 28 bytes of overhead, to MSP, with § bytes of overhead, improves application
efficiency by only 2.8%. In contrast, Figure 1 shows how a change in payload size from 50 to 54
bytes can increase datagram efficiency by 10%.

Protocol Compression Technique % Efficiency

Discard Group Encode

Framing | Adaptation Cell Cell TCP-IP | Application | Datagram | Frame
Padding | Payloads | Headers

- - - 40.1 58.7 72.5

Yes - - 44.8 65.7 81.0

SMDS 802.6 - Yes - 45.8 67.2 82.9

- - Yes 50.8 555 72.9

Yes Yes Yes 64.7 70.7 92.8

- - - 429 62.9 67.1

Yes - - 51.0 74.8 79.8

MSP 802.6 - Yes - 48.8 71.7 76.4

- - Yes 55.6 60.8 66.2

Yes Yes Yes 76.9 84.0 91.5

- - - 44.7 65.5 74.9

Yes - - 53.0 777 88.8

XFRS none - Yes - 47.9 70.2 80.3

- - Yes 56.7 62.0 73.6

Yes Yes Yes 73.6 80.5 95.5

- - - 52.3 76.6 76.6

Yes - - 57.0 83.5 83.5

none SAR - "~ Yes - 58.1 85.1 85.1

- - Yes 57.3 62.6 62.6

Yes Yes Yes 84.0 91.8 91.8

Table 5 - Transmission Efficiency using Non-Standard Compression Techniques

Datagram header overhead is responsible for the difference between application and
datagram efficiency. For the protocol configurations shown in Table 4, the overhead intrinsic to
TCP, UDP, and IP is responsible for 18.6 to 24.3% of the 47.7 to 59.9% overall loss in efficiency.
ATM-related protocols and procedures are not to blame for this portion of the efficiency loss.
However, ATM networks could make use of non-standard compression techniques to improve
this aspect of network performance without modifying the Internet protocols running on end
hosts. The following discussion addresses this and other compression issues.
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6.3. Efficiency Effects of Non-Standard Compression Techniques

Table 5 shows the efficiency obtained when three non-standard compression techniques are
used in isolation and in tandem. These techniques make use of several types of redundancy in the
protocol hierarchy. Cell padding carries no useful information and is by definition redundant.
There is also redundancy between TCP-IP headers in consecutive datagrams for the same TCP
connection, and between cell and adaptation headers in consecutive cells for the same frame.
Finally, there is redundancy between a reliable transport protocol like TCP and proposed framing
and adaptation protocols.

All three compression techniques are realizable if ATM networks transform data to the
compressed format when data enters the network, and convert it back to the standard format when
it leaves. The first technique, discarding cell padding, transmits a variable-size cell containing
only frame data as the last cell for a frame. The second, grouping cell payloads, transmits all the
payloads for a frame in a single burst accompanied by only one cell header and at most one adap-
tation header and trailer. The third technique compresses TCP-IP headers through differential
encoding, taking advantage of the predictable changes between successive headers for the same
TCP connection. Using such an encoding scheme, Jacobson [15] has demonstrated a 10-to-1
compression ratio of TCP-IP headers over serial links. We assume the same compression ratio
for 40-byte TCP-IP headers but leave 28-byte UDP-IP headers intact.{

6.4. Summary of Results

In addition to the results shown in Tables 4 and 5, we calculated efficiency for all combina-
tions of two or more compression techniques. For XFRS, we also compared the efficiency of the
proposed XFRS with trailer alignment to that of a modified XFRS without alignment. Finally,
we produced curves similar to those in Figure 1 for our range of protocol combinations and
efficiency measures. From all these results, we reach these conclusions:

e Discarding cell padding can improve application efficiency by 4.7 to 8.1%, datagram
efficiency by 6.9 to 11.9%, and frame efficiency by 6.9 to 13.9%.

e  Grouping all the cell payloads comresponding to a datagram and adding only one cell’s
worth of overhead per group can improve application efficiency by 3.2 to 5.9%, datagram
efficiency by 4.7 to 8.8%, and frame efficiency by 5.4 t0 10.4%.

e Predictive encoding of TCP-IP headers can improve application efficiency by 5.0 to 12.7%.
In this case, datagram and frame efficiency can drop because compressing datagram headers
subtracts from the numerator in those efficiency fractions.

e  Simultaneously applying all three compression techniques improves application efficiency
by 24.6 to 34.0%. Datagram efficiency improved by 11.9 to 21.1% and frame efficiency by
15.2 to 24.4%, but these figures also include the negative effects of smaller datagrams and
frames due to TCP-IP header compression.

e  For MSP-802.6, the example used in Figure 1, the worst efficiency loss due to cell padding
is in the standard operating region of 48 bytes of payload. Other protocol choices do not
behave as badly in this region. For example, Table 5 shows that while MSP-802.6 lost
11.9% in datagram efficiency due to cell padding, SMDS-802.6 lost 7.0%. Nevertheless, a
variable sensitivity to changes in protocol overhead due to the non-linear effects of cell
fragmentation is common to all protocol choices.

e  Aligning the XFRS frame trailer so it is on an 8-byte boundary and fits entirely in the last
cell causes less than 1% loss in application and datagram efficiency. Frame efficiency with
alignment is better by almost 3% because the larger aligned frames add to the numerator in
that efficiency calculation.

+ Compression ratios comparable to those achieved by Jacobson are feasible in an ATM environment if each
TCP cormection maps to a separate virtual circuit in a connection-oriented ATM network. They may not be
feasible if multiple TCP connections are multiplexed onto a single virtual circuit.
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7. Conclusion

We have compared the transmission efficiency obtained by different ATM-related network
protocols when using both standard procedures and a range of non-standard compression tech-
niques. As expected, the comparison shows that reducing protocol overhead improves efficiency.
We have also shown that compression techniques can moderately improve efficiency when used
in isolation, and significantly improve efficiency when used in combination. Throughout, we
found that ATM efficiency is not linearly proportional to changes in overhead due to the non-
linear effects of cell padding, and that efficiency is alarmingly low for many proposed protocols
and procedures.

These issues should be taken into account when designing future networks. In particular,
transmission efficiency should be among the principal tradeoffs considered when engineering an
ATM network. For example, the bare ATM service does not detect corrupted data. Some fram-
ing and adaptation protocols address single-bit errors, some address the loss of an integral number
of cells, and some address both types of corruption. The benefits of providing a rich framing or
adaptation service should be compared to the efficiency lost to larger headers and trailers. On the
other hand, efficiency improvements due to compression techniques come at the expense of
added complexity. Handling variable-size cells, grouping cell payloads, and encoding TCP-IP
headers all require additional processing by the ATM network. Improved efficiency should be
weighed against the added complexity in network components. In all cases, efficiency should be
calculated for each combination of network design and workload; it should not be extrapolated
from values obtained for other combinations.

We believe we have provided accurate results for the transmission efficiency of ATM net-
works in carrying traditional wide-area data traffic. These results should prove useful in the
design of future networks. In addition, we feel our method of driving efficiency calculations with
real traffic data is a valuable approach to the study of network performance.
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Appendix 1 - Comparison of Efficiency Results Using Data from the Four Sites

Protocol % Application Efficiency
Framing | Adaptation || Berkeley | USC | Bell Labs | Bellcore
SMDS 802.6 40.1 49.0 46.1 442
MSP 802.6 429 52.0 495 46.8
XFRS none 447 548 51.3 49.0
none SAR 52.3 59.2 554 559

Table A - Application Efficiency Using Standard ATM Procedures

Protocol % Datagram Efficiency
Framing | Adaptation || Berkeley | USC | Bell Labs | Bellcore
SMDS 802.6 58.7 64.1 62.2 61.2
MSP 802.6 62.9 67.9 66.8 64.9
XFRS none 65.5 71.6 69.2 67.8
none SAR 76.6 774 74.8 71.5

Table B - Datagram E

fficiency Using Standard ATM Procedures

Protocol % Frame Efficiency
Framing | Adaptation || Berkeley | USC | Bell Labs | Bellcore
SMDS 802.6 72.4 74.7 74.3 73.4
MSP 802.6 67.1 71.2 70.5 68.6
XFRS none 74.9 78.8 77.0 76.2
none SAR 76.6 77.4 74.8 71.5

Table C - Frame Efficiency Using Standard ATM Procedures

Appendix 2 - Glossary of Networks, Protocols, and Applications

802.6
ATM
B-ISDN
CCITT
DOMAIN
FTP
IEEE

IP
NNTP
MSP
RLOGIN
SAR
SMTP
SMDS
TCP
TELNET
UDP
VMNET
XFRS
XUNET

IEEE segmentation and reassembly layer
Asynchronous Transfer Mode
Broadband Integrated Services Network
International Telegraph and Telephone Consultative Committee
Domain name server protocol
File Transfer Protocol

Institute of Electrical and Electronic Engineers

Internet Protocol
Network News Transfer Protocol
Message Stream Protocol

Unix remote login protocol
Segmentation and Re-Assembly protocol
Simple Mail Transfer Protocol
Switched Multi-Megabit Data Service
Transmission Control Protocol
Internet remote terminal protocol
User Datagram Protocol
Virtual machine job transfer protocol
Frame Relay Service for XUNET 2
Experimental University Network




