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1 Introduction

This paper presents the recent results (cf. also [KW 89], [We 91]) on the VC dimension and the
learnability of sparse univariate polynomials over the real numbers. The framework is the model
of probably approximately correct (pac) learning concepts from examples introduced by Valiant
([Val 84]). The results presented in this paper crucially depend on the connection between pac
learnability and the Vapnik-Chervonenkis (VC) dimension.

We derive linear upper (4t — 1) and lower (3¢) bounds on the VC dimension of the class of
t-sparse polynomials over the real numbers implying uniform pac learnability of this function class.
We transfer these results to sparse rational functions and sparse, degree-bounded polynomials. The
results generalize to uniform distribution-free learnability of sparse polynomials even in the extended
metric model of Haussler ([Ha 89]). Applying this result, we solve Vapnik’s open problem on uniform
estimation of the polynomial regression function ([Vap 82]).

The interest in the computational complexity in learning sparse polynomials and rational func-
tions has several motivations. The first motivation is the growing interest in sparse polynomials from
the complexity theoretic point of view. The complexity analysis of algorithms manipulating poly-
nomials usually measures the input length in terms of the degree of polynomials. For polynomials
with a small number of terms, this model is not reasonable since sparse polynomials are usually
represented by a list of non-zero coefficients and the corresponding exponents. Hence, the natural
measure of the size of a polynomial is given in terms of its sparsity when applying the uniform cost
model of computation (cf. [AHU 74]). Recent results indicate also that sparse polynomials play a
key role in the harmonic analysis of Boolean circuits ([Br 90, BS 90]) and, surprisingly, in the area
of learnability of Boolean functions as well ([KM 91]).
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The second motivation are the issues of sparse polynomial interpolation. In the black box model,
a learning algorithm for sparse polynomials has access to an oracle which gives the value of the
polynomial for an arbitrary evaluation point ([Kar 89]). Grigoriev and Karpinski ([GK 87]), Ben-
Or and Tiwari ([BeTi 88]) and Grigoriev et al. ([GKS 90]) show that in this oracle model there
are efficient algorithms for exact learning (interpolation) of sparse determinants ([GK 87]), sparse
polynomials over fields of characteristic zero ([BeTi 88]) and also over finite fields ([GKS 90]).

It is known (cf. [WD 81, F1 89]) that elements of vector spaces of real valued functions are
pac learnable. Therefore, the third motivation of this work is to explore the learnability of sparse
polynomials as a function class which is not embedded in some vector space.

2 Previous Work

Throughout this paper, we employ the model of machine learning introduced by Valiant ([Val 84]),
usually referred to as the PAC model. Valiant used this new model of distribution-free learning from
examples to exhibit and analyze several learning algorithms for Boolean functions.

In this section, we review the definition of Valiant’s distribution-free model of learning. This
model was extended by Blumer et al. ((BEHW 86], [BEHW 89]) to classes of concepts defined by
regions in Euclidean space E". Blumer et al. applied results of the pioneering work of Vapnik
and Chervonenkis ([VC 71]) on the uniform convergence of empirical dependences to provide the
necessary and sufficient conditions for feasible learnability.

The reader is referred for the basic notations of set theory, probability theory, and stochastic
processes to [Coh 82, Po 84, Vap 82]. For a set X, 2X will denote the set of all subsets of X.
Whenever we talk of an unknown probability distribution P on X , P is assumed to be arbitrary but
fixed. For a collection C C 2% of subsets of X, we assume each member of C to form a Borel set, such
that unions, intersections, sequences, and limits of events result also in events, i.e. probabilities are
assigned to them by any probability distribution P on X. This assumption is of crucial importance
for the connection of learnability and convergence of stochastic processes.

2.1 The PAC Model and the Vapnik-Chervonenkis Dimension

There are many approaches proposed in the literature, especially from the area of artificial intelli-
gence, to formalize the notation of learning and to give it a precise meaning. This paper explores the
learnability of sparse polynomials in the framework of Valiant’s model of distribution-free learning
from ezamples.

In Valiant’s probabilistic model of learning (concepts) from examples, each concept ¢ from a
non-empty class C C 2% is a subset of a given instance space X (for example, X might be {0,1}"
([Val 84]) or n-dimensional Euclidean space E™ ((BEHW 86])). The unknown target concept ¢ to be
learned is assumed to be a member of the class C.

In this model of learning, we assume a fixed but arbitrary (and unknown) probability distribution
P defined on X. It is assumed that a learning algorithm has access to a finite set of ezamples of



the unknown target concept t. Each example (z,c) consists of an instance z € X, which is drawn
independently according to P, and its classification ¢ € {1,0} as either a positive instance (z € t)
or a negative instance (z ¢ t). This set is called a sample of the target concept.

In the PAC (Probably Approximately Correct) model, a learning function for C is a function that,
given a large enough randomly drawn sample, returns a hypothesis which is, with high probability,
a good approximation (with respect to P) to the target concept, no matter which concept from C
we are trying to learn. The error of the hypothesis is the probability that the hypothesis disagrees
with the target on a (with respect to P) randomly drawn example.

We formalize this using the notation from [BEHW 89

Let C C 2% be a non-empty class of concepts and ¢ € C is a Borel set. Forz = (zy,...,z,,) € X™,
m 2> 1, the m-sample of ¢ € C generated by z is given by

same(z) = (< &1, 1e(21) >, ..., < T, Le(2m) >),

where I is the {0,1}-valued indicator function for ¢, that is I.(z;) = 1 iff z; € c. The sample space
of C, denoted S¢, is the set of all m-samples over all ¢ € C and all z € X™, for all m > 1.

The learning algorithm takes an m-sample as an input and produces a hypothesis from some
hypothesis space H. Usually, the hypothesis space is C itself, but in some cases it is preferable to
approximate concepts from C in a different class H.

Let H C 2% now be a set of Borel sets, called the hypothesis space. Let A¢ g denote the set of
all functions that map the sample space S¢ to the hypothesis space H.
A € Ac,n is called consistent if, for each sample s = (< z1,a1 >,...,< Zm,am >), the hypothesis
produced by A, h = A(s), agrees with s, that is ¢; = Ix(z;) for all 1 < i < m.

In the PAC model, the sample is generated according to an unknown, but fixed probability
distribution P on X. The error rate of a hypothesis h € H (with respect to the target concept
t € C and P) is the probability that & and ¢ classify a randomly drawn example differently, which is
P(h @ t), the probability of the symmetric difference of A and ¢.

Let C C 2% be a non-empty class of concepts and let H C 2X be a hypothesis space. For
0 < €6 <1, let m(e,8) be an integer-valued function of € and 6. Let P be a probability distribution
on X.

We say C is uniformly learnable by H under the distribution P if there is (a learning function)
A € Ac¢ g such that for a randomly drawn sample of size m(e, ) of any target concept in C, A
produces, with probability at least 1 — §, a hypothesis in H with error rate no more than e.

If there exists A € Ac g such that A is a learning function for C with sample size m(e, §) for all
probability distributions P on X, C is uniformly learnable by H. The smallest sample size m(e,d)
is called the sample complezity of A.

Note that this general definition of uniform learnability imposes no restrictions of feasibility or
even computability of the learning function.

For finite concept classes C C 2%, Vapnik ([Vap 82]) gave an upper bound on the sample com-
plexity for any uniform learning algorithm. For infinite classes, such as geometric concept classes



on E", there was no general characterization of uniform learnability known, until Blumer et al.
([BEHW 86]) employed ideas from Vapnik and Chervonenkis ([VC 71]) to show that the essential
condition for distribution-free learnability is finiteness of a combinatorical parameter of the concept
class C, called the Vapnik-Chervonenkis dimension.

Let C C 2% be a concept class on X. For any finite set F' C X, let Ile(F) = {cn Flc € ¢}
denote the restriction of C to the set F. If e (F) = 2F  then the set F is shattered by C. In other
words, each subset of F is of the form ¢ N F for some ¢ € C. The Vapnik-Chervonenkis dimension
(VC dimension) of the class C is the largest integer d such that some § C X of size d s shattered
by the class C. If arbitrary large subsets of X are shattered by the class C, then the VC dimension
of C is infinite. The class consisting of one concept is of VC dimension 0, and, by convention, the
empty class is of VC dimension -1. Let VCdim(C) denote the VC dimension of C.

Vapnik and Chervonenkis ([VC 71]) give necessary and sufficient conditions for the uniform
convergence of the empirical risk functional to the expected risk functional in terms of the VC
dimension. Their work has been extended to handle much more general situations ([Po 84]). Blumer
et al. ((BEHW 86]) were the first to draw the connection between distribution-free learning and the
VC dimension.

To avoid measurability difficulties in Theorem 1, Blumer et al. assume that the concept class
is well-behaved which is a relatively benign measure-theoretic condition. Tt is not likely to exclude
any concept class considered in the context of machine learning applications. For common use, it
is sufficient to show that a concept class is universally separable (cf. [Du 78]). The well-behavior of
the concept class follows from this.

Theorem 1 [BEHW 86]  Let C be a non-trivial, well-behaved concept class. C is uniformly learn-
able iff the VC dimension of C is finite.

Blumer et al. and Ehrenfeucht et al. give upper and lower bounds on the sample complexity
m(¢, ) for distribution-free learning of a concept class C of finite VC dimension d < co.

Theorem 2 [BEHW 86] Let C be a non-trivial, well-behaved concept class of VC dimension
d < 00. Then, for 0 < ¢,6 < 1 and sample size at least

ax (4 lo 2 &d lo 1—3)
= & o g B
any consistent function A : S¢ — C is an (¢, 6)-learning function for C.

Blumer et al. also give a lower bound on the sample size. This bound was improved by Ehren-
feucht et al.

Theorem 3 [EHKL 89]  Let C be a concept class of VC dimension d > 1. Then, for 0 < € <
%,0 <6< %, any (€, §)-learning function A for C must use sample size

l-—-el ld-l)
%85 32¢ )

m(e,§) > max (



2.2 The Extended PAC Model

One of the shortcomings of the standard PAC model is that it is only defined for {0, 1}-valued func-
tions. Haussler ([Ha 89]) proposes a generalization of the PAC model for distribution-free learning of
functions that take values in an arbitrary metric space. This is of particular interest when learning
real-valued functions. Haussler generalizes the notation of VC dimension and shows that, similar to
the standard model, small VC dimension implies fast uniform distribution-independent convergence.
We recall some of his results briefly.

Let F (the hypothesis space) be a family of functions from a domain X to a set Y with metric
dy. Let D be a family of probability distributions on § = (X x Y). A pair (z, y) € S is called an
example, a sequence of examples is called a sample. A learning problem P is stated as follows: Given
a sample chosen independently at random with respect to some unknown distribution D ¢ D, find
a hypothesis h from F that is close to the target ¢ from F, where the target is the element from F
which is closest to the sample.

More formally: Let erp(f) be the expectation (with respect to D) of dy(f(z),y) when (z,y)
is drawn at random from § (with respect to D). Let opt(D, F) be the infimum of erp(f) over all

E. ]

f € F. Let dy(r,s) = 5&';, for r,s,v € RT, be a metric on R*.

The set F is called uniformly learnable ([Ha 89]) iff there exists a function L from the set of
all samples into F such that for all v > 0,0 < @ < 1,0 < § < 1 there exists a finite sample size
m = m(v, a,§) such that for all D € D and samples s of size m the (learning) function L produces
with probability at least 1 — § a hypothesis that is acceptably close to the optimal hypothesis in F,
that is

dy(erp(L(s),o0pt(D, F))) < e

Similar to the results of Blumer et al. ((BEHW 86]), Haussler shows that the essential condition
for distribution-free uniform learnability of F is the finiteness of the “VC dimension of the graphs
of functions in F” which is an extension of the standard VC dimension:

For each f € F, we denote by I(f) the function from X x Y x R* into {0,1} defined by

I(/)(@3,9) = { L Hdr(f(e)y)<e

0 otherwise

Let I(F) = {I(f)| f € F}. We define the metric VIC dimension of F as the (standard) VC dimension
of I(F). Let m-VCdim(F) denote the metric VC dimension of F.

In Section 3, we investigate learnability of sparse real polynomials in this generalized model. In
this case, ¥ = R and dy(z,y) = |z — y|, and the notation of metric VC dimension is similar to the
notation of VC dimension of real-valued functions given in [Po 84] and [Vap 89].

Haussler gives bounds on the sample size required for uniform learnability in this generalized
model depending on the metric VC dimension of F and on the metric dimension of the metric space
(Y,dy). This bounds reduce to the bounds given in Theorem 2 for the standard PAC model.



3 Learnability of Sparse Polynomials

In this section, we prove uniform learnability of sparse univariate polynomials over the real numbers
in the standard PAC model as well as in the generalized model defined by Haussler (cf. Section 2.2).

We prove upper and lower bounds on the VC dimension of sparse polynomials, and apply results
of Blumer et al. to derive bounds on the sample size required for uniform learning.

Combining these bounds with the results for degree-bounded polynomials (cf. Section 3.2), we
derive bounds on the VC dimension of the class of sparse and degree-bounded polynomials.

3.1 Notation

Let C C 2% be a concept class on X. For a sample s = (< z1,a1 >y.0 0y < Ty 8 >) € 8¢, we call
the vector a = (a1,...,am) € {0,1}™ the labeling of s. A concept ¢ € C is said to satisfy the labeling
a on (Z1,...,Zm) if ¢ is consistent with the sample s.

Let F be a collection of real-valued functions on a set X. We investigate learnability of the
concept class pos(fo — F) defined as the collection of all concepts

pos(fo— f) = {z € X | fo(z) — f(z) > 0},
for f € F and fy € F an arbitrary real function on X.

For each ¢ € N, let P, C R[z] denote the set of {-sparse univariate polynomials over the real
numbers, i.e, for each p € P, the number of non-zero coefficients in the expansion of p is bounded
by . Let P}t C R[z] denote the set of t-sparse polynomials where the domain is restricted to R, We
identify the VC dimension of P; (P}}) with the VC dimension of the concept class pos(y — P;) C R?
(pos(y — P;f) C Rt x R).

3.2 Learnability of Degree-bounded Polynomials

In this section, we briefly survey results on the learnability of regions defined by elements of vector
spaces of real-valued functions . Real polynomials of bounded degree fit in this setting as a special
case.

Let X = R?, and consider the set P, C R[z] of univariate polynomials of degree less than n. Let
fo(2,y) = y. For p € P,, the concept pos(fo—p) = {(z,y) € R?|y > p(z)} consists of all points in the
plane that lie “above” the graph of p. It is simple to see that the VC dimension of C = pos(fo — Pn)
equals n. First, any subset § C X of size n is shattered by C since a satisfying polynomial from P,
can be retrieved via interpolation for each labeling in {0, 1}". Assume that a set R C X of size n+1
is shattered by C,. Then there are polynomials p1,p; € Pn, p1 # p; satisfying the two alternating
labelings oy = (1,0,1,0,...) and 02 = (0,1,0,1,...) of size n + 1. Hence, there are at least n points
with py(z) = pa(z).This implies p; = p,. From Theorem 1, the class of polynomials of degree less
than n is uniformly learnable for each fixed n > 0.



This result holds in the much more general case of vector spaces of real-valued functions. Wenocur
and Dudley ([WD 81]) extended a result of Cover ([Cov 65]) and proved that the VC dimension
equals the dimension of the vector space.

Theorem 4 [WD 8l] Let F be an m-dimensional vector space of real functions on a set X . Let
fo  F be a real function on X. Then the VC dimension of pos( fo — F) equals m.

3.3 Bounds on the VC dimension of P,

We show that the VC dimension of P is linear in . For P;t, we determine its VC dimension exactly.

3.3.1 Lower Bounds

We start with a lower bound on the VC dimension of P:.
Lemma 5 The VC dimension of P; is bounded from below by 3.

PROOF:  We show that for each labeling o € {0, 1} there is a 1-sparse polynomial f, satisfying
o on the set § = {(-3,4),(1,2),(7,6)} of size 3. Choose, for example, fooo = 7, foor = 5, for0 = 72,
Joi1 = -2z, fioo =3z, fin =3, o=z and f;; =1 (cf. Figure 1). Note that the VC dimension
of P is at least 2. O

Figure 1: Monomials shattering the set S of size 3

In the following proofs, it will be convenient to assume that no element of a set S , Which is
shattered by some set of sparse polynomials, lies on the graph of these polynomials.

7



Remark 8  Let aset § of size d be shattered by the class of {-sparse polynomials. Then there are
aset Z = {(zi,:)}i=1,..4 and constants ¢; > 0,3 = 1,...,d such that every set §' = {(Zi,%i) }i=1,..4
with |(Z;, %) — (zi, ¥)| < € is shattered by ¢-sparse polynomials.

Proor: For each o € {0, l}d, there is a t-sparse polynomial f, satisfying o on §. For i =
1,...,d, we define the regions

M,-:{(x,y)[Vae{O,l}di { 32;: iigg:g:é }}

Since §' is shattered by {f;},e{0,1)4) there exists a point (z;,y;) and a constant ¢ > 0 such that
the ball

Be(zi,4:) = {(I,y) | (=, y) = (2, yi), <& }
is a proper subset of M;. Hence, each set S defined as above is shattered by the t-sparse polynomials
{fo}oeonye o

Lemma 7 states that the VC dimension of sparse polynomials is subadditive. We use this lemma
to derive a lower bound.

Given a set shattered by t;-sparse polynomials and a set shattered by t;-sparse polynomials, we
construct a set shattered by (t; + t2)-sparse polynomials.

Lemma 7  For t3,1; €N, let d;, d; denote the VC dimension of P, Py, respectively. Then the
VC dimension of Py, 44, is at least dy + ds.

Proor: Let S; and §; denote some sets of points of size dy, d> respectively, shattered by
t1-sparse polynomials, ¢y-sparse polynomials respectively.

Let §; = {(m,(-l),y,(l))}i=1,___,,g1 and S; = {(m?),y}z))}jgl,,,,,d,. For a labeling o(!) € {0,1}% let

£,y satisfy o) on 5y, and for a labeling o(? € {0,1}% let g,z satisfy o(*) on Ss.

In order to show that VC dimension of Py ¢, > di + da, we modify the sets §; and 57 (and
the corresponding polynomials shattering S; and S3) such that the union of these modified sets is
shattered by polynomials derived by adding some of the modified polynomials.

First, we pull the sets §; and S; apart such that the absolute values of the z-coordinates of
points in 5] are at most % and the absolute values of the z-coordinates of points in 53 are at least
2.

Let ;
1 > 2+ max {|z; d ¢ < —- min z:|}.
1 (z.-,y.-)esl{l i} an 3< 5 (%w}esz{l il}

By Remark 6, we may assume that ¢; > 0.

Then, the set

81 = {(2:, %) }i=1,.0,  With (Zi,5) = (j—:,yi), (ziy¥i) € 81,
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is of size d; and is shattered by the set of ¢;-sparse polynomials {fa(lj}o(l)e{o 1)d1, Where fw(z) =
fen(a1z).

Similarly, the set
s = . = o Tg
S2 = {(%;,¥i)}i=1,.qz  With (Z;,7;) = (;i,yj)a (z5,v;) € Sa,
is of size d3 and is shattered by the set of {5-sparse polynomials {90(2)}a(?)e{0 1)42, Where g 2)(z) =
9, (c22).

S and 5 satisfy the conditions claimed above, i.e. Y(z,y) € 5 :|z| < % and Y(z,y) € Sy : |2] >
2.

Let ¢; be the minimal distance of the point (z;,y;) € 5; to some shattering polynomial in {f,n}
ie.

&= min |f -yl
T rellm) 4

Similarly, for each point (z;,y;) € Sz, define é; by

§; = min — ;.
T el o) 9=

Again, by Remark 6, we assume that ¢;, §; > 0.

Our goal is to modify the polynomials from { fam} and {g,)} such that the polynomials from
{f,y} do not interfere the shattering of the set S, and vice versa.

We define a polynomial F(z) to be an upper bound on the polynomials shattering S; in the
region according to So, i.e.

F for all |z| > 2.
(z)>f(z)rgf-;jm}lf(z)l or all |z] >

F(z) is an upper bound on the influence of the polynomials shattering 5; on the shattering of the
set 5'2.

For some even integer N, we transform the set S, into the set S by
(zj,5;) €8 = (-'B.n -y;) € 57

Since N is even, z% is positive, and the set SJ is shattered by the set of t5-sparse polynomials
{z" - §»}. The minimal distance of the point (z;,y;) € S to some shattering polynomial in

{zVg,} is 2 - 6;.

We choose the parameter IV to be large enough such that the following two conditions are
fulfilled:

¢ The polynomials {z" - §,()} may not interfere with the shattering of 5, i.e

:.cfv -G, < €& forall (z;,4) € 5, and for all () ¢ {0, l}d?.

9



Let G be the maximum of the absolute values of the polynomials {g,(z)} for |z| < 1/2 (all
|zi| < %), and € the maximum over all ¢;. Then we choose N according to

G- (%)N < €, ie. N> logg(g).

e The polynomials {f )} may not interfere with the shattering of SN, ie
Flz;) < :z:f‘r -8; for all (zj,y;) € S5.
There exists such an N since the absolute value of the z;’s is at least 2 and N is even.

Let 8y = {(«!,4)}i=1,...4; With 2} <...< 2 , and let SY = {(2,¥D}s=1,.0; Withz{ < ... <
T,

Let § = §1USY. § = {(z, ¥k) o=, dy+d, a0d Zy < ... < Tdy4d,- For o € {0, 1}91+92 e define
o1 € {0,1}% and o, € {0,1}% by

o1(i)=c(k)if zx =2 and  o3(j) = o(k) iff zx = 2.

S is of size dy + d; and is shattered by the set of (¢, + t3)-sparse polynomials {hs},c(01}d1+42,

where h, = fgl + 2N Jo,- Hence, the VC dimension of the class of (¢; + t2)-sparse polynomials is at
least d; + da. o

We are now able to state our lower bound on the VC dimension of ¢-sparse polynomials.
Lemma 8  The VC dimension of t-sparse polynomials is at least 3t.

Proor: Combine Lemma 7 and Lemma 5. a

Note that Lemma 7 is also valid for P;'. Hence, 2t is a lower bound for the VC dimension of P;.

3.3.2 Upper Bounds

In Section 3.2, we have derived an upper bound on the VC dimension of degree-bounded univariate
polynomials from the maximal number of roots.

The main tool in this section is Descartes’ Rule of Signs used to derive an upper bound on the
number of roots of t-sparse polynomials. This leads to a first upper bound on the VC dimension of
t-sparse polynomials. Considering the structure of sparse polynomials with the maximal number of
roots, we derive a (slight) improvement of the upper bound.

We begin with the well known Descartes’ Rule (cf. [Coh 82]).

Let fi = Y'_,ciz% € R[z], f # 0 be a t-sparse polynomial for ¢; < ejy1,i = 1,...,t = 1.
The sequence ¢ = (¢;,¢,...,¢) is said to have a sign alternation at position i if ciciy1 < 0 (zero
coefficients are deleted from the sequence). Denote by s(f;) the number of sign alternations in c.
Let n*(f;) denote the number of positive real roots of f; counted with multiplicity.

10



Theorem 9 [Descartes’ Rule] Let f € R[z], f # 0 be a t-sparse polynomial. Then s( f)—nt(f)
is a non-negative even integer.

Hence, the number of positive real roots of a t-sparse real polynomial f # 0 is strictly less than
its sparsity t. The (total) number of real roots of f is bounded by 2t — 1 (where the root at the
origin is counted without multiplicity).

Let f € R[z]. f is said to be eveniff fi(z) = fi(—z) (i.e.Vi=1,...,t: e is even), and f is said
to be odd iff fi(z) = - fi(—z) (i.e. Vi = 1,...,t: € is odd). We call f symmetric iff f is odd or

even.

Lemma 10  Let f; € R[z], f; # 0 be a t-sparse polynomial. If f; has the maximal number of
2t — 2 non-zero real roots, then f is symmetric.

Proor: Let f, = i, c;iz% € R[z], for &; < €i41,i = 1,...,t — 1. Assume f; has 2t — 2
non-zero real roots. Then, f; has t — 1 positive roots. Hence, the sequence of coefficients ¢ of f
has ¢t — 1 sign alternations. Furthermore the ¢t — 1 negative roots are positive roots for fi(—z).
Let ¢’ = ((—1)¢y,...,(—1)%c;) denote the sequence of coefficients of f;(—z). Suppose f; is not
symmetric. Then there is an index 7 such that ¢; and e;4; are not both even or odd. Therefore,
(=1)%¢ - (-1)%*+1¢iq1 = (=1) - cicip1 > 0, since ciciy; < 0. Hence, ¢’ has at most t — 2 sign
alternations, contradicting the assumption that f; has t — 1 negative real roots. O

Using Descartes’ estimate on the number of positive real roots of a sparse polynomial, we deduce
the (exact) VC dimension of P;.

Lemma 11 The VC dimension of the concept class pos(y — P;) equals 2t.

Proor: Let d denote the VC dimension of P;f. In Section 3.3.1, we proved d > 2t. Hence, we
have to show d < 2t.

Let S = {(z:,¥i)}i=1,...d, where 0 < z; < 23 < ... < z4 be a set of points shattered by ¢-
sparse polynomials. Let f; and f; be t-sparse polynomials satisfying the two alternating labelings
o =(1,0,1,0,---,1,0) and o, = (0,1,0,1,:++,0,1). Let F = (f; — f2). Note that F is 2t-sparse
and s(F') < 2t — 1. Furthermore, F(z;) - F(zi4+1) < 0 for i = 1,...,d — 1, forcing F to have at least
d — 1 positive real roots. By Descartes’ Rule d — 1 < 2t, proving the statement. o

By Lemma 11, the VC dimension of P; is bounded by 4¢. With Lemma 8, the VC dimension of
P, is linear in .

Lemma 12 gives an improvement of the upper bound on the VC dimension of P;. As a conse-
quence, the VC dimension of 1-sparse polynomials is exactly 3.

Lemma 12 The VC dimension of P; is at most 4¢ — 1.

11



ProoF: Assume, for purpose of contradiction, that the set S = {(zi, ¥i)}i=1,.. 4 for z; <
Ty < ...<Z3 <0< Zy41 <...< T4 is shattered by t-sparse polynomials.

Consider the following 4 labelings on the set S:

Jl = (}!011‘!07"'!1'!_0;\1'!0}1)0!"'!11@’

2t 2t

3= (0,1,0,1,...,0,1,0,1,0,1,...,0,1),
2t 2t

and

1=(0,19,1,...,0,1,1,0,1,0,...,1,0),
2t 2t

72=(1,0,1,0,...,1,0,0,1,0,1,...,0,1).
2t 2

Let the f-sparse polynomials fi, f, and g1, g2 satisfy the labelings o4, 02, and 71, 72.

Define F' = f; — f, and G = g; — g;. Note that both F and G are 2t-sparse. By the alternating
structure of the labelings, both F and G have at least 4t — 2 non-zero real roots. From Lemma 10,
F and G are symmetric.

We show that F' is odd and G is even. Assume, F' is even and let |2o¢| < z2:41. Then, F(—z9;) =
F(zg) > 0 and F(z9+1) < 0, i.e. F has an ’extra’ positive root in the interval (—zs¢, To41),
contradicting the upper bound on the number of positive real roots. For |z2: > z2:41 F has an
‘extra’ negative root in the interval (24, —~22¢41). The proof that G is even is similar.

Note that F is odd implies that both f; and f, are odd (if some monomial occurs in f; and in
fa as well, F would be at most 2¢ — 1-sparse). Similarly, both g; and g, are even. Then, w.l.o.g., we
may assume (for sake of simplicity of notation) that the z-values of the points from § are symmetric
as well, i.e. z; = —z4041-4, 8= 1,...,2L.

We define 2¢ — 1 intervals J; on the negative real line by J; = (24, %i41), 1 = 1,...,2t — 1. We
prove that for each i = 1,...,2¢t — 1 at least two polynomials from { fi, f2, g1, 92} have a (negative)
root in the interval J;, We distinguish two cases:

1. Let y; and y;4+; have different signs. Assume y; < 0, yi+1 > 0 and ¢ odd. Then, by definition of
the labelings, fi(z;),g2(zi) < ¥ < 0 and fi(%i41),92(2i41) > vig1 > 0. Hence, f; and g; have
a root in J;. If ¢ is even, f, and g; have a root in J;. The case y; > 0, ;41 < 0 is symmetric.

2. Let y; and y;41 have equal signs. We show that f; or g» and f; or g; have a root in J;.

Assume y;,yi41 > 0 and ¢ odd. Then fi(zi41),92(zi41) > yi+1 > 0. Assume f; has no root
in J; (f1 is strictly positive in J;). Then f; is strictly negative in the interval (z4¢—i, Taz—i41)
(f1 is odd). Since g2 is even, ga(Z4t—i+1) > 0 and ga(24¢—i) < fi(zae-:) < 0. Hence, g; has a
root in the interval (z4¢-i, Z4t—i+1) and (g2 is symmetric) g, has a root in J;. Similarly, we can
show that either f; or g; has a root in J;. The remaining cases are symmetric.

12



Hence, the total number of negative roots of the polynomials from {f;, f2, 91,92} is at least 2. (2t -
1) = 4t — 2 contradicting the assumption that each polynomial from {f;, f2,91,92} is t-sparse (each
polynomial has at most ¢ — 1 negative roots summing up to at most 4t — 4 negative roots). This
proves the claimed upper bound of 4t — 1 on the VC dimension of t-sparse polynomials. a

We state the main result of this section:

Theorem 13 For fixed ¢ € N, the class of ¢-sparse polynomials is uniformly and distribution-free
learnable. The sample size required for (¢, §)-learning is at most
4 2 13
- - log — - — .
- - max (ogé,(Bt 2) log £)
Proor:  Apply the results of Blumer et al. (Theorem 1, Theorem 2). Note that the concept

class pos(y — P;) is universally separable since any real polynomial can be written as the pointwise
limit of some polynomial over the rational numbers. o

Note that the bounds derived in this subsection remain valid when restricted to t-sparse poly-
nomials over the rational numbers and ¢-sparse polynomials over the integers.

Let R denote the set of real rational functions with ¢-sparse numerator and t-sparse denominator.
Following the proof of Lemma 11, we derive the upper bound of 4t? on the VC dimension of pos(y—
R:) proving uniform learnability of t-sparse rational functions for any fixed t.

Theorem 14  The VC dimension of R; is at most 4¢2.

ProoF:  Let d denote the VC dimension of pos(y — R;). Consider the two rational functions
fi = #, f2 = { from R, satisfying the alternating labelings. Then fi(z) = fa(z) for at least d — 1
points, that is, the 2¢>-sparse polynomial gihs — goh; has to have at least d — 1 real roots. From
Theorem 9, we have d — 1 < 4t% — 1. m]

Remark 15 It is interesting to compare our results on the learnability of polynomials with the
learnability of trigonometric polynomials. Since degree-bounded trigonometric polynomials form a
vector space of finite dimension, this concept class is of finite VC dimension (cf. Theorem 4) and,
hence, uniformly learnable (cf. Theorem 1). On the other hand, sparse trigonometric polynomials
may oscillate arbitrarily often. It is easily verified that the VC dimension of the class of sparse
trigonometric polynomials is infinite and, hence, not learnable. a

3.4 Related Results
3.4.1 VC Dimension of Degree-bounded Sparse Polynomials

We give now sharp bounds on the VC dimension of sparse and degree-bounded univariate real
polynomials. For practical applications, this is the most important case.
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For each t,n € N,t < n, let P,, C R[z] denote the set of ¢-sparse univariate polynomials of
degree less than n, i.e. P, = {p € P; | deg(p) < n}. Let Pt = {p€ P | deg(p) < n}.

From Section 3.2 and Section 3.3.2, we derive an upper bound of min{n,4¢ — 1} on the VC
dimension of P, and min{n,2t} on the VC dimension of P, In this section, we investigate the
corresponding lower bounds.

Lemma 16 1. VCdlm('Pt'n) > VCdim('Pg_l‘n_3] +3
2. VCdim(P},) > VCAim(P}, ;) + 2.
Proor: Let d = VCdim(P;—; »-3). Then there exists a set § = {(zi, i) }i=1,....a that is shat-

tered by the set {fo}oe{ﬂ.l}d of (¢ — 1)-sparse polynomials of degree less than n — 3.

As shown in the proof of Lemma 7, we may assume max |z;| < 1. Let

1
0 <e<min|fo(z:) - yi
be the minimal distance of some point from § to some shattering polynomial in {f, }oefo,1}4- Since
deg(f;) < n — 3, there exists a > max{ 5=, 5‘;;5} such that
Vo € {0,1}* Vo > 1 : |f,(2)| < a-|z|** =: M(z).

We show that three additional points are shattered by adding monomials of degree at most n—1

to the polynomials in {f,},e{ﬂvl}d, that is, by increasing the sparsity by one and the degree by three.

Consider, for instance, the points (zo, y9) = (—81%,(-1)"30 - M(-812)), (Zdt1,¥Yd41) = (92,2.
M(9%)) and (zat2, ya+2) = (812,60 - M(-812)).

In Figure 2, we give monomials {g;};=1,...s of degree less than n shattering these three points.

Note that the minimal distance of the g;’s to (zo,%), (Z441,¥a+1), and (Td42, Yd+2) is at
least M(zo), M(z441), respectively M(z442), hence greater than the absolute values of each
f € {fo}oefo,1)4 2t these points. On the other hand, g;(z) < eforz < 1,j=1,...,8.

Hence, the set 5’ = {(2;, %)}i=o,...a+2 is shattered by the set { f, +gjloe{0,1}4,i=1,...,8}
of t-sparse polynomials of degree less than n. This proves the first statement.

Note that the monomials {g;};=;,. 4 of degree at most n — 2 shatter the two points (Zd+1,Yd41)
and (2442, Ya+2)- Hence the second statement follows. O
Lemma 17 1. VCdim(P,,,) = min{=n, 3}.

2. VCdim(P{,) = min{n, 2}.
Proor:  The statement is clear for n = 1,2. Note that VCdim(P}) = 2 and VCdim(P;) = 3.

For the first statement, we proved in Lemma 5 that for each labeling o € {0, 1}3 there is a monomial
fo of degree less than 3 satisfying o on the set § = {(=3,4),(1,2),(7,6)} of size 3. m|
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; : Tz

el o el R
g1 = 0 0 0 0 011 111
g2=  §-2"3 | —27(-1)" 3 27 001 101
g3= & . gn? 81 (—1)" 1 81 010 110
94 = gugh= =81 (-1)" 9 81 100 000
G5= Fm-z"?|  243(-1)" 3 243 000 | 100
g6= X g3 —-54 (-1)" 6 54 101 001
gr=—5=-2"? | —243(-1)n | -3 —243 111 | o011
98 = 557 -2™1 | —2187 (-1)» 1 2187 110 | o1o0

Figure 2: Monomials {g;} shattering the three additional points

Corollary 18 1. min{n, 4t — 1} > VCdim(P;,) > min{n, 3t}.
2. VCdim(P{,) = min{n, 2t}.
ProoF:  Note that VCdim(P,,,) < min{n, 4t — 1}, since VCdim(P,) = =, VCdim(P;) < 4t—1
and VCdim(P{,,) < min{n, 2t}, since VCdim(P}) = n, VCdim(P}) = 2¢.
The statement follows by induction with Lemma 16 and Proposition 17. Then

min{n,4¢ -1} > VCdim(P,,)
> VCdim(Pi—1n-3)+3
min{n - 3,3(t- 1)} +3 = min{n,3t}

and

min{n, 2t} VCdim(P},,)
VCdim(Pt, ,_,) +2

min{n, 2¢}.

v IV

3.4.2 Learnability of Sparse Polynomials in the Metric PAC Model

In this subsection, we investigate the learnability of sparse polynomials in the generalized PAC
model of Haussler (cf. Section 2.2). The essential condition for distribution-free uniform learnability
(in this model) of the class of sparse polynomials is the finiteness of the metric VC dimension of P;.
We prove linear bounds for m-VCdim(P,).

First, we construct a lower bound on the metric VC dimension of the class P,.
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Lemma 18 m-VCdim(P;) > VCdim(P,).

Proor: Let d = VCdim(7,), and let § = {(zi, 4i)}i=1,..,a be a set of points shattered (in the
standard sense) by the set of -sparse polynomials {feloconye C Py, e

; <0 ifo(i)=1
Yi=1,.o05d VO’E{U,I}d : f,(x,')——y,'{ ;0 ;f:§3=0 .

Let ¢ be defined by
€= g omax %- fo(=i).

Then

Vi=1,...,d Yo e {0,1}* : Ifa(z.-)-(y-—f)l{ f.f. iiiﬂ%:é ’

ie. the set 5 = {(z,y—€,€) | (z,y) € §} of size d is shattered (in the metric sense) by the set
of t-sparse polynomials {f,},¢0,1}¢ C P:. Hence, m-VCdim(P;) > VCdim(P,). w)

We introduce the following lemma to derive an upper bound on m-VCdim(7P;).

Lemma 20 Let S = {(2i,¥i €i)}i=1,.,.4 Where z; < 29 < 23 < 74. Let 0y = (1,0,0,1), 09 =
(0,1,1,0),03 = (1,0,1,0),04 = (0,1,0,1) be labelings on 5. Let {fi}i=1,....4 be continuous functions

satisfying o; on § (in the metric sense). Then at least one of the following pairs of functions ( f;, f2),
(f1, f3), (f1, f4), (f3, f4) have an intersection point in the interval (zy,z4).

Proor:  Consider the 22 cases for fi(z;) > y; + €; or fi(z;) < y; — €; if o3(4) = 0. a
Theorem 21 The metric VC dimension of the class of t-sparse polynomials is at most 48¢ — 9.

PRroOF: Let d = m-VCdim('Pt) and § = {(m,-,y,',e,-)},-ﬂ'____d, where 7 < 29 < ... < 4.
Assume § is shattered by t-sparse polynomials. Consider the labelings oy = (1,0,0,1,0,0,1,0,0,...),
o2 = (0,1,1,0,1,1,0,1,1,...), o3 = (1,0,1,0,1,0,...), and o4 = (0,1,0,1,0,1,...). Let f1,..., fs
be t-sparse polynomials satisfying oy, ...,04. Then, by Lemma 20, there are two polynomials with
at least d/12 intersections, and, with Lemma 10, we conclude that d < 12(4t — 1) 4+ 2 = 48¢ — 10
(there may exist two additional points, where we cannot apply Lemma 20). O

Corollary 22  For any fixed ¢ € N, the class of t-sparse polynomials is uniformly and distribution-
free learnable in the metric PAC model.
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3.4.3 Approximating the Polynomial Regression

As an application of the results derived in the previous section, we consider the open problem stated
by Vapnik ([Vap 82]) on computational approximation of the general regression functions used in
the theory of empirical data dependences.

One of the central problems in computational regression theory is the problem of determining
the number of terms in an arranged system of functions. The most important case of this problem
is the approximation of polynomial regression (cf. [Vap 82], pp. 254-258).

The classical scheme of approximating polynomial regression, which involves the determination
of the true degree n of regression and the expansion in a system of n orthogonal polynomials of
degree 1,2,...,n, can be successfully implemented only when large samples are used. The reason
for this is the (possibly) large degree of regression and therefore the large metric VC dimension
(capacity) of the class of polynomials of degree n. The problem for small samples remained open.

We prove linear bounds (Theorem 21) on the metric VC dimension of ¢-sparse polynomials
(independent of the degree) implying Corollary 23.

Corollary 23 The polynomial regression can be estimated for small samples (depending only
on the number of required terms).

4 Open Problems and Further Research

In Section 3, we have proved uniform and distribution-free learnability of sparse univariate polyno-
mials, but several related problems remain open. In this section, we list some of the open problems
in the area of learnability of sparse polynomials.

Learnability of Multivariate Polynomials

From Theorem 4, degree-bounded multivariate polynomials are of finite VC dimension for any
fixed number of variables. There is no corresponding result for sparse multivariate polynomials. As
described in Section 3, the main tool for proving the finiteness of the VC dimension in the sparse
univariate case is the upper bound on the number of roots of sparse polynomials derived from
Descartes’ Rule. A promising approach for the multivariate case might be the work of Khovanskii
([Kh 83]). Khovanskii generalizes the Descartes’ estimate to the sparse multivariate case and proves
that the number of non-degenerate roots of sparse polynomials as well as the number of connected
components of a singular real algebraic variety can be estimated in terms of the sparsity and the
number of variables. In spite of these results, it is not clear in the multidimensional case how to
relate the VC dimension to the upper bounds on the roots of multivariate polynomials.

Efficient Learning Algorithms

It is an open problem if there exists a hypothesis finder for the class of ¢t-sparse polynomials such
that the time complexity of the algorithm is bounded only in terms of the sparsity and the sample
size.
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A related problem is the problem of whether or not the class of sparse polynomials is learnable
with respect to target complexity. The results of Linial et al. (([LMR 88]) imply that this is equivalent
to the question of whether or not the class of sparse polynomials is polynomially uniformly decom-
posable. This reduces to the problem of the existence of a polynomial-time algorithm for sparse linear
programming. Note that the existence of such an algorithm would not imply polynomial learnability
of the class of i-sparse polynomials for fixed ¢ since the appropriate degree is unknown.

Exact VC Dimension of Sparse Polynomials

From Lemma 11, the VC dimension of sparse univariate polynomials on the right half space
equals 2¢. Lemma 8 and 12 give a lower bound of 3¢ and an upper bound of 4t — 1 on the VC
dimension in the unrestricted case. The exact VC dimension remains unknown. For the metric VC
dimension the tradeoff between lower bound (3t) and upper bound (48¢ — 10) is even larger.

Data Compression Schemes

Given a finite set of examples, labeled consistently with some concept from a concept class, a
data compression scheme of size d saves at most d of those examples. From the d saved examples, the
data compression scheme reconstructs a hypothesis that is consistent with the original sample. Data
compression schemes are of crucial importance in the context of on-line and space-bounded learning
algorithms. It is an open problem whether or not there exists a data compression scheme of small
size for the class of sparse univariate polynomials. For the case of univariate real polynomials of
degree less than n, Floyd ([F1 89]) shows that there is a data compression scheme of size n and gives
an on-line learning algorithm saving at most n examples at a time. The techniques used by Floyd
depend mainly on the vector space structure, induced by degree-bounded polynomials, implying that
any interpolation problem is solvable. For sparse polynomials, these techniques are not applicable.

Acknowledgements

We thank Manuel Blum, Allan Borodin, Sally Floyd, Dima Grigoriev, Les Valiant, Vladimir Vapnik,
and Manfred Warmuth for the number of stimulating discussions.

References

[AHU 74] Aho, A., Hopcroft, J., Ullman, J., The Design and Analysis of Computer Algorithms,
Addison-Wesley, London, 1974.

[BEHW 86] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K., Classifying Learnable Ge-
ometric Concepts with the Vapnik-Chervonenkis Dimension, Proc. 18%% ACM STOC,
pp. 273-282, 1986.

[BEHW 89] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K., Learnability and the
Vapnik-Chervonenkis Dimension, Journal ACM 36 (4), pp. 929-965, 1989.

[BeTi 88] Ben-Or, M., Tiwari, P.A., A Deterministic Algorithm for Sparse Multivariate Polyno-
mial Interpolation, Proc. 20'* ACM STOC, pp. 301-309, 1988.

18



[BoTi 89
[Br 90]
(BS 90]
[Coh 82]
[Cov 65]
[Du 78]

[EHKL 89

[F1 89]

[GK 87]

[GKS 90]

[Ha 89]

[Kar 89]

[KW 89

[Kh 83]

[KM 91]

[LMR 88]

Borodin, A., Tiwari, P.A., On the Decidability of Sparse Univariate Polynomial Inter-
polation, IBM Research Report RC 14923 (#66763), 1989.

Bruck, J., Harmonic Analysis of Polynomial Threshold Functions, SIAM J. Discrete
Math. 3 (2), pp. 282-287, 1990.

Bruck, J., Smolensky, R., Polynomial Threshold Functions, AC° Functions, and Spectral
Norms, Proc. 31** IEEE FOCS, pp. 632-641, 1990.

Cohn, P.M., Algebra, Vol. 1, 2™ ed., John Wiley & Sons Ltd., 1982.

Cover, T.M., Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern Recognition, IEEE Trans. Electron. Comput. 14, pp. 326-
334, 1965.

Dudley, R.M., Central Limit Theorems for Empirical Measures, The Annals of Proba-
bility 6 (6), 1978, pp. 899-929.

Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L., A General Lower Bound on the
Number of Ezamples Needed for Learning, Information and Computation 82 (3), pp.
247-261, 1989.

Floyd, S., On Space-bounded Learning and the Vapnik-Chervonenkis Dimension, Tech-
nical Report TR-89-061, Ph.d. dissertation, International Computer Science Institute,
Berkeley, 1989.

Grigoriev, D.Yu., Karpinski, M., The Matching Problem for Bipartite Graphs with Poly-
nomially Bounded Permanent is in NC, Proc. 28" IEEE FOCS, pp. 166-172, 1987.

Grigoriev, D.Yu., Karpinski, M., Singer, M., Fast Parallel Algorithms for Sparse Mulli-
variate Polynomial Interpolation over Finite Fields, SIAM J. Comp. 19 (6), pp. 1059~
1063, 1990.

Haussler, D., Generalizing the PAC Model: Sample Size Bounds from Metric
Dimension-based Uniform Convergence Results, Proc. 30t* IEEE FOCS, pp. 40-45,
1989.

Karpinski,M., Boolean Circuit Complezity of Algebraic Interpolation Problems, Proc.
CSL’88, LNCS 385, Springer Verlag, pp. 138-147, 1989.

Karpinski, M., Werther, T., VC Dimension and Learnability of Sparse Polynomials
and Rational Functions, Technical Report TR-89-060, International Computer Science
Institute, Berkeley, 1989.

Khovanskii, A.G. Fewnomials and Pfaff Manifolds, Proc. of the Intern. Congress of
Math., Warsaw, 1983.

Kushilevitz, E., Mansour, Y., Learning Decision Trees Using the Fourier Spectrum,
Proc. 23 ACM STOC, pp. 455-464, 1991.

Linial, N., Mansour, Y., Rivest, R.L., Results on Learnability and the Vapnik-
Chervonenkis Dimension, Proc. 29'* IEEE FOCS, pp. 120-129, 1988.

19



[Po 84]
[Val 84]
[Vap 82]

[Vap 89]

[VC 71]
[WD 81]

[We 91]

Pollard, D., Convergence of Stochastic Processes, Springer Verlag, 1984,
Valiant, L.G., 4 Theory on the Learnable, Comm, ACM, 27(11), pp. 1134-1142, 1984,

Vapnik, V.N., Estimation of Dependences Based on Empirical Data, SpringepVeﬂag,
1982.

Vapnik, V.N., Inductive Principles of the Search Jfor Empirical Dependences (Methods
Based on Weak Convergence of Probability Measures), Proc. of the 9nd Workshop on
Computational Learning Theory, pp. 3-21, 1989,

of Events and their Probabilities, Th. Prob. and its Appl., 16(2), pp. 264-280, 1971.

Wenocur, R.S., Dudley, R.M., Some Special Vapnik-Chervonenkis Classes, Discrete
Mathematics 33, pp. 313-318, 1981.

Werther, T., VC Dimension and Learnability of Sparse Polynomials, Ph. D. Thesis,
University of Bonn, 1991.

20



