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Chapter 1

Introduction

Tools for automatic complexity analysis can be used for formal program development methods (such
as [BMD*85, BW80, Smi88]). in order to compare intermediate results of program development
and to control the direction of the development. Actually, in the recent program development
methods, only correctness aspects are considered in a formal way, but no method deals efficiency
aspects formally. The efficiency aspect become even more important when parallel algorithms are
considered. Most of the parallel algorithms iterate a computation until a fixpoint is reached. In
most of the machine models the test whether a fixpoint is reached is expensive [KR90]. Therefore
the design of this kind of algorithms is based on the number of iterations necessary to reach this
fixpoint, i.e. constructions like!:

repeat logn times
a statement list

play an important role in the design of parallel algorithms. Information about complexity is even
used in the design of parallel algorithms (and should therefore also be used in the design of parallel
programs). On the other hand complexity results for parallel programs can be used in order to
compare it with sequential algorithms for the same problem, and to determine the input size where
parallelization is profitable.

In this report, the underlying machine model are PRAMs. Even if this model is considered as an
unrealistic machine model for parallel computation, it is used most often, because it is easier to
program these abstract machines than distributed memory machines. Correctness and complexity
properties are easier to prove for PRAMS (and sometimes only feasible to prove it for PRAMs).
Recent work consider therefore simulations of PRAMS on distributed memory architectures [MV84,
AHMP87, UW87, DM89, DM90, LPP90]. It should be mentioned that none of these simulations
are within a constant time factor.

The method for automatic complexity analysis for sequential programs of [Zim90a] is generalized
to parallel programs. [Zim90b] describes a first approach to this generalization. In this report
it is shown how some of the basic techniques can be analyzed automatically. Here we generalize
the technique mentioned there in order to analyze a large class of algorithms. This is studied on

parallel algorithms on graphs. All the algorithms are from [GR88], however we mention the original
references.

'all logarithms are of base 2 troughout this report



The organization of this report is as follows: in chapter 2 we give some basic definitions and theory
behind parallel algorithms. This includes a discussion about PRAMS and other parallel machine
models, the definition of a functional language based on vectors with explicit parallelism, and the
machine model together with the definition of time, space and processor complexities. In chapter
3 the principles of the automatic analysis method are introduced. In later chapters we refer to the
different steps mentioned there. It also contains an analysis of a simple adaptive algorithm. In
chapter 4, the analysis of sorting networks is shown. In chapter 5, some algorithms on graphs are
analyzed. The aim of this report is to provide examples (still analyzed by hand, but by the uniform
method described in chapter 3) to be tested by an implementation of the method described in this
Teport.
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Chapter 2

Foundations

This chapter has three tasks. First it discusses different aspects of parallel machine models and
justifies our choice for a particular model. Second it defines basic notions and principles for parallel
algorithms and third it defines the language in which algorithms are expressed throughout this
report.

2.1 Parallel Machine Models

Parallel machines can be classified with respect to several aspects. A parallel machine consists
usually of p > 1 processors. One distinction is whether they have a common memory or not. If
they have a common memory, the architecture is called a shared memory architecture while the
others are called distributed memory architectures, Distributed memory architectures are discussed
in subsection 2.1.3 and shared memory architectures are discussed in subsection 2.1.4.

Another distinction is whether all processors perform at the same time the same operation or not.
In the former case the machine is called SIMD (Single Instruction Multiple Data) and in the latter
case the machine is called MIMD (Multiple Instruction Multiple Data). This types of machines are
discussed in subsection 2.1.1

Finally there is a distinction between synchronous and asynchronous machines. These concepts are
defined and discussed in subsection 2.1.2. Throughout the rest of this report we use synchronous
shared restricted MIMD machines.

2.1.1 SIMD-Machines vs. MIMD-Machines
Definition 2.1 (SIMD- and MIMD-Machines) A parallel machine is called SIMD iff each

processor performs at the same time the same operation or is idle. Otherwise the machine is
called MIMD. | _§

Usually MIMD-machines perform some processes independently on different processors. In order
to use the full power of these machines explicit communication operations

send data to processor i



and
receive data from processor i

are required. These two operations are either performed explicitly by a network or via a shared
memory. On the other hand, these operations makes it usually difficult to understand programs
on such machines. It is therefore also difficult to prove their correctness and to analyze their
complexity.

SIMD-machines are characterized by statement of the form:
for all i € I do in parallel 5(?)

This statement means that all processors P; with an address ¢ € I perform the command S(%) while
the other processors are idle. Consider now the case where §(i) is a conditional statement, i.e.

S(i) = if B(i) then (i) else S3(i)

Let Iirye = {i|i € I A B(i) = true} and Ij,, = {i|i € I A B(i) = false}. In order to satisfy the
SIMD condition, first all processors P;, i € I execute B(i) while the other processors are idle.
Second, all processors P;, i € I;.,. execute Sy(i) while the others are idle. Finally, all processors
P;, i € If. execute S3(7) while the others are idle. This sequence of executions seems however
unnecessary if each processor is a full processing unit (i.e. each processor can locally hold its
own program). In this case the statements §(i) and S;(Z) could be performed in parallel. The
correctness proof and the complexity analysis of algorithms for SIMD machines are usually simple
compared to MIMD-machines.

We combine therefore the advantages of both computation models. Statements like the above
conditional statement are allowed to be executed parallel, on the other hand explicit communica-
tions are not allowed. Observe that there must be an implicit communication, determining when
each processor finished the computation of the statements 5(¢). The programs on such restricted
MIMD-machines have therefore the understandability of programs on SIMD-machines and use the
advantages of MIMD-machines. Somehow, a restricted MIMD-machine can be considered as “high-
level” SIMD-machine. In the rest of the report we consider therefore restricted MIMD-machines.

2.1.2 Asynchronous vs. Synchronous Machines

Consider a statement sequence

Sp: for all i € I do in parallel 5;(i)
Sy: for all ¢ € I do in parallel S5(¢)

Statement S is ezecuted synchronously, if each processor P;, i € I waits until each processor
has finished the execution of statement S;(7). In contrast, if S; is executed asynchronous, then
the processor P; starts with the execution of Sy(¢) as soon as it finished the execution of Sy(z).
Asynchronous machines allow asynchronous execution of parallel statements while synchronous
machines forbid them.
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Figure 2.1: A Linear Array with 8 Processors

The advantage of synchronous models is again the simplicity of programming, correctness proofs
and complexity analysis compared with asynchronous machines. On the other hand, processors
spend time in waiting while eventually slower processors could profit from more work done by the
faster processors. Unfortunately, correctness proofs of asynchronous machines are quite difficult,
and complexity analysis is already quite difficult to analyze even for simple problems [CZ90]. We
therefore restrict ourselves to synchronous machines.

2.1.3 Distributed Memory

In distributed memory architectures, memory is only local to the processors. Hence, algorithms
must be designed, such that they avoid request to non-local data as often as possible, and if
there is such a request, that they are possibly located close. Distributed memory architectures
are distinguished in special purpose architectures and general purpose architectures. Special pur-
pose architectures are for example VLSI-circuits, neural networks and sorting networks. We don’t
consider here special purpose architectures. A more detailed and more quantitative discussion of
distributed memory architectures can be found in [Val90].

Distributed memory architectures can be characterized by graphs G = (V, E) where V = {0,...,p—
1} represents processors (i € V represents the processor P; with address 7), and (%, j) represents a
link between processors P; and P;. If the graph G is directed, this link is called one-way, otherwise
it is called two-way. A network G is called a bounded-degree network, iff for all i € V, the degree
is constant w.r.t. the number of processors p. Networks are assessed by the number of processors,
the number of links (i.e. the size of E), the time for access to global data (i.e. the diameter of G),
and the bottlenecks (i.e. the expected number of paths between any i € V and j € V).

The probably most simple architecture is a linear array with p processors (see figure 2.1). Here
each processor P; is linked by two-way link to its neighbours P;_; and P;4;. Sometimes there is also
a connection between processor Py and Pp_;. In this case the architecture is called a ring. These
two architectures are realized in hardware (for example [Mor90]). A p-processor linear array has
p — 1 links (or p links, if it is organized as a ring), the access time to global data is O(p), and the
bottleneck is 1 (or 2 in the case of a ring array). Between any processor P; and any processor P; is
just one (or in the case of a ring two) communication path, i.e. it is quite likely that communication
paths overlap.

A better performance can be achieved by a mesh of p processors! (see figure 2.2). The processors
are organized as two-dimensional array, each side of length ,/p. The processor F;; is linked by
two-way links to the processors Pi_y;, P;j+1, Piy1,5, and P;;_1. Sometimes, the additions and

'For simplicity we assume that p is a square number



Figure 2.2: A Mesh with 16 Processors

subtractions are modulo ,/p (the mesh is then a torus). A p-processor mesh has 2-/p- (/P — 1)

links and the access to global data costs O(,/p) communications. Between two processors of a

great distance there are many possible communication paths (between a processor P;; and Py,
k—i4l-3 i :

are ( ;t ; ") communication paths). Hence meshes do not have the bottlenecks of linear

arrays. Meshs or torus can be easily realized as transputer networks [INM86, INM88].

A further generalization is a d-dimensional hypercupe with p = 2¢ processors (see figure 2.3). The
processors are linked together as in a d-dimensional hypercube, i.e. two processors are linked by
two way links, if the binary representation of their address differ by one bit. Observe that each
processor has log, p links. Altogether, a d-dimensional hypercube with p processors has p/2 log, p
links and access to global data costs O(log, p) communications. The bottlenecks of a linear array
or a mesh become less serious. It is unlikely that communication paths overlap. The architecture
of the connection machine with 65536 processors is based on 16-dimensional hypercube [Hil85].

A different style of architectures are tree-based. The most simple one is the tree interconnection
network as shown in figure 2.4. The processors are connected like a balanced rooted binary tree
(or in general a rooted r-ary tree). If such a network has p processors, then it has p — 1 links, and
the cost of access to global data is at most O(log p) communications. The root and “high-level”
nodes are however a bottleneck. If more than one global data access has to use the root, then they
must be executed sequentialy. This situation is quite likely. A shuffle exchange network overcomes
this problem (see figure 2.5). If it has p processors, then process P; is linked by a one way link to
processor Pj if

.2 if0<i<p/2
T=Y 2i+1-p ifp/2<i<yp

Additionaly the processors P; and P,;; are linked by a two-way link. Hence, there are altogether
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Figure 2.3: A Hypercube with 8 Processors

3/2p links. A realization of a shuffle-exchange network can be found in [PHT90]. Finally, a widely
used network is the butterfly network for p, = (r+1) 27 processors. It can be recursively described
as in figure 2.6. Here By stands for a butterfly network with py processors. If addresses are assigned
to the processor, then the binary address of a processor is divided in two parts, the first consisting
of the r rightmost bits, the second consisting of the remaining bits. Observe that the second part
represents a number «, where 0 < a < r. Let bp,...b,—; and « be these parts of processor F;.
Then P; is connected two the processors P;, where j consists of a first part bg,...,ba,...,0-—1 Or
bo,--.ybey- .-, br_1, respectively, and a second part a+1 (see figure 2.7). Sometimes level r and level
0 are identified. Thus there are altogether 2 r links, and an access to global memory costs at most
O(r) communications. There is no bottleneck like the root in the tree-based network. Butterflys can
easily realized as transputer networks. Descriptions of hardware realization of butterfly networks
can be found in [Fan86, RT86, SABS86].

Finally, a network overcoming all these problems is the complete network (i.e. the underlying graph
is the complete graph). Unfortunately, a complete network with p processors has p (p — 1)/2 links,
and is therefore realistic only for small p.

Algorithms for distributed memory machines have to be designed in such a way, that access to
memory of other processors is avoided whenever possible, and if there is such an access, then the
targeted processor should be close enough to the processor sending the request. It is therefore no
surprise that some problems can be very easily implemented on particular networks (for example
FFT on a shuffle-exchange network), while other problems are difficult to program (e.g. matrix
multiplication on a tree-based network). Even if these networks are general purpose in the sense
that every problem can be programmed, they are not as universal as we wish, because the algorithms
must be designed taking into account the particular architecture. In this sense, we do not consider
these machines as universal.
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Figure 2.4: A Tree Interconnection Network with 15 Processors

¥ | [ S | ! [ ] l | B
F Py Py P Py Ps Ps Pr
T t ) ; % I |

Figure 2.5: A Shuffle-Exchange Network with 8 Processors
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2.1.4 Shared Memory Architectures

The shared-memory architectures are all based on a PRAM. All the PRAM models are easy to
program compared to distributed memory architectures, because the geography of the processors
need not to be considered. In this sense PRAMS are considered as universal.

A PRAM (Parallel Random Access Machine) consists of a set of processors (with addresses), each
of it being a RAM with local memory, and a global random access memory. A PRAM with
p processors and m global memory cells is sometimes called a (p,m)-PRAM. A EREW-PRAM
(Exclusive Read Exclusive Write) allows that a global memory cell i can be read (and written) only
by one processor at the same time. In a CREW-PRAM (Concurrent Read Exclusive Write), it is
allowed that different processors can read the same memory cell at the same time, but writing to
the same memory cell by more than one processor at the same time is forbidden. A CRCW-PRAM
(Concurrent Read Concurrent Write) allows also more than one processor to write into the same
memory cell. They are further distinguished by their way to solve write conflicts. In a COMMON
CRCW-PRAM a value is written into a memory cell 7, only if all processor who want to write into
i write the same value. In-a ARBITRARY CRCW-PRAM one of the processors who want to write
into location 7 is chosen arbitrarly. In a PRIORITY CRCW-PRAM to each processor is assigned
a priority, and in the case of writing into location i, the processor with lowest priority (among the
processors who want to write into 7) is chosen.

PRAMs, especially the CRCW-PRAMs, are the most unrealistic machine models for parallel ma-
chines. Because of the easyness of programming them, in recent time, they are simulated on
bounded-degree networks. We give some of the main results. It is distinguished between random-
ized and deterministic simulation of PRAMs. The first theorem is standard and involves only the
simulation of concurrent reads and concurrent writes by an EREW-PRAM:

Theorem 2.2 (Simulation of Concurrent Reads and Concurrent Writes) T steps on a
CRCW-PRAM with p processors can be simulated in time O(T logp) on ¢ EREW-PRAM.

A proof of this theorem can be found for example in [AkI89].

The next two theorems are proven in [KUS8S].

Theorem 2.3 (Karlin and Upfal) T steps on a (p, m)-PRAM, m polynomial in p, can be sim-
ulated on a bounded-degree network of p processors in expected time O(T logp).

Observe the restriction of m and that this theorem also states a lower bound. The following theorem
is a generalization:

Theorem 2.4 (Karlin and Upfal) T steps on a (p, m)-PRAM can be simulated on a bounded-
degree network with p processors in time O(T logm) with probability tending to 1 as n tends to
00.

Both of these simulations are performed with the butterfly network. The processor must use queues
in order to handle message passing. Their queue size is O(log p). A better and more simple solution
reducing the queue size to O(1) is given in [Ran87]:

Theorem 2.5 (Ranade) T steps of a p-processor CRCW-PRAM can be simulated probabilistically
on a bounded-degree network with p processors in ezpected time O(T log p).

10



His network is again the butterfly network.

As a consequence of [DM90] the following theorem holds:

Theorem 2.8 (Dietzfelbinger and Meyer auf der Heide) T steps on a PRIORITY CRCW-
PRAM with p processors can be simulated probabilistically on a complete network of p processors
in ezpected time O(T log p/ loglog p).

The fastest known deterministic simulation is result is due to [LPP90]. The disadvantage of their
result is the huge number of processors.

Theorem 2.7 (Luccio, Pietracaprina, and Pucci) T steps on a (p,m)-PRAM can be simu-
lated on a bounded-degree network with O(p?) processors in time O(T log? p/ loglog p).

Their network is a mesh of trees. This network consists of a mesh of p? processing units. Each row
 R; and each column C; of the mesh is associated with a tree having as leaves the processing units
in R; and C; and as root a processor P; and P;, respectively. Observe that with the exception of
the tree-roots the processing units are simple switching elements, and that processor P; is the root
of both column C; and row R;.

However, there are deterministic simulation results, which are better (and optimal) w.r.t. the
product of the number of processors and time. An optimal simulation is given in [AHMP87]:

Theorem 2.8 (Alt, Hagerup, Mehlhorn, and Preparata) T steps on a p-processor CRCW-

PRAM can be simulated deterministically on a bounded-degree network with p processors in time
O(T log?p).

They proved also, that any deterministic simulation scheme simulating T steps on a p-processor

PRAM must take time at least Q(log® p/ loglog p).

Finally, the most remarkable results are given in [Val90]:

Theorem 2.9 (Valiant) T steps on a EREW-PRAM with p processors can be simulated proba-
bilistically on a bounded-degree network with q processors in expected time O(T p/q), if p > q logg.

Valiant proved a similar result even in the case of a CRCW-PRAM:

Theorem 2.10 (Valiant) T steps on a CRCW-PRAM with p processors can be simulated prob-
abilistically on a bounded-degree network with q processors in expected time O(T p/q), if p > ¢**+¢
for some £ > 0.

Observe that these results that the product of the number of processors and time is asymptotically
the same for the algorithm on the PRAM and the simulated algorithm on the bounded-degree
network. The simulations can be performed either with a hypercube or with a butterfly.

In the rest of this report we use a CREW-PRAM. This choice is justified because of the universality
of the machine and the above simulation results.

11



2.2 Parallel Algorithms

Here several aspects of parallel algorithms are discussed. First some basic notion concerning com-
plexity measures are dicussed. Based on this definitions some desirable properties of parallel al-
gorithms can be defined. This motivates the introduction of a complexity class NC. We do not
discuss further details of this complexity class. It should only be mentioned, that all algorithms
discussed in this report belong to NC. A more extensive description of the concepts discussed here
can be found in [GR88, AkI89, KR90].

Definition 2.11 (Parallel Complexity Measures) An algorithm A on a PRAM has time com-
plexity T(n), if the algorithm A halts for all inputs of size n after T(n) parallel steps. A has
processor complexity p(n), if it needs for any input of size n at most p(n) processors to ezecute A.
Finally, A has space complexity m(n), if for any input of size n at most m(n) memory cells are
needed to ezecute A. A has work w(n), if w(n) = p(n) t(n). : |

For space complexity, usually only global space is considered. Observe that the notion of work
counts the number of operations of an performed by a parallel algorithm. We can therefore consider
a parallel algorithm as optimal, if its work is asymptotically equal to the time complexity of the
best known sequential algorithm:

Definition 2.12 (Optimal Parallel Algorithm) A PRAM-Algorithm A solving a problem P
is optimal, iff its work w(n) = O(i(n)), where t(n) is the time complezity of the fastest known
sequential algorithm solving problem P. |

Although it is desirable that a parallel algorithm is optimal, it is often difficult to achieve this
property using parallel execution. Also the time complexity of a parallel algorithm should be low.
On the other hand a parallel algorithm should not use to many processors. These requirements
motivate the notion of an efficient parallel algorithm.

Definition 2.13 (Efficient Parallel Algorithms) A PRAM algorithm A is said to be efficient,
iff its time complezity t(n) = O(logF n) for a k > 0, and its processor complezity p(n) = O(n') for
anl> 0. [ ]

Observe, by the simulations results from the last section, the notion of efficiency is invariant under
the different PRAMS and under butterfly-networks or hypercubes. This motivates the definition
of the complexity class? NC, first studied in [Pip79]:

Definition 2.14 (NC) The complezity class NC is the set of all problems, which can be solved by
an efficient parallel algorithm. [ |

It is unknown whether P = NC or not. This problem seems as hard as the problem P = NP7.
Hence, the notion of N P-completeness and reductions are also defined for the P = NC? problem. It
makes therefore sense to talk about P-complete problems. In this report we consider only problems
in NC. [GR88, KR90] contain a more extensive discussion of these aspects on parallel computation.

In practice, algorithms should be designed in such a way, that they can adapt themselves to the
available number of processors. Such algorithms are called adaptive. This is theoretically always
possible as first shown in [Bre74]. In order to discuss this result, we give also the standard proof:

?NC = Nick (Pippengers) Class
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Lemma 2.15 (Brent) Let A be a PRAM-algorithm with time complezity t(n) and work w(n).
Then A can be implemented on a p-processor PRAM with parallel time O(w(n)/p + t(n)).

Proof: Let w;(n) be the number of operations performed by A on step i. These operations can
be simulated with p processors in time w;(n)/p + 1. Thus the complexity of the algorithm on a
p-processor PRAM is:

t(n)
Y wi(n)/p+1=w(n)/p+t(n)
i=1

Observe that this proof does not schedule the w;(n) operations explicitly to the p available pro-
cessors. It assumes that scheduling is not a problem. However, this assumption is not justified
in practice. Many algorithms are just made adaptive using Brents lemma. They are not easy im-
plementable within the given requirements, and often it is even yet unknown how to schedule the
operations to the p processors. We consider therefore only adaptive algorithms, if the scheduling
is known.

2.3 The Language PARFLO.1

In this section we define a language PARFL0.1 for expressing CREW-PRAM algorithms. This
, language is in its nature functional (as e.g. that in [Zim90a] defined for sequential algorithms).
The parallelism is explicit in order to allow economic processor usage — a main property of many
parallel algorithms. Typing is not explicit, it has a similar structure as the vector types of FP (see
for example [HC88, LeM88]) just with the difference that all the elements of a vector must be of
the same type. Additionaly we introduce cartesian products. In the first subsection we introduce
the syntax of PARFL, in the second subsection the semantics of PARFL is defined and finally in
the third subsection, we define the complexity measures for PARFL.

2.3.1 Syntax

We start first with the definition of the types in PARFL, and giving then a context-free grammar
for PARFL in EBNF. The informal idea behind the semantics of the syntactical constructs will be
explained here, while the formal part is postponed to the next subsection.

The notion of vectors and types is defined as follows:

Definition 2.16 (Types of PARFL) The set Q) of types is the smallest set satisfying (i), (i),
and (i11):

(i) The basis types nat and bool are in ). They are defined by the sets
bool = {true, false} nat = {0,1,2,...}

The operations of bool are the standard logical operations and, or, and not. The operations
on nat are the standard arithmetic operations +,—,- and /. Sometimes max and min are
also included. Additionaly it contains the basic relation operators =,<, <, >, >, #.

13



ol . v; ifv={vp,...,0n—1)and0<i<n
Projection o[i] = { 1 otherw(ise
Appending an element
at the front cons(a, (v, ..., Vn-1)) = (@,v0,- -, Vn-1)
Appending two vectors {vg,...,Vn—1) 0 {Woy«. ey Wn=1) = (Voy e+ s Vna1, Wy« + oy Win-1)

vo if v={(vo,...,n—1)and n >0

First element hd(v) = 1 ‘othetwise
: ) {v1yeenyvnm1) ifv=(vo,...,0n—1)and n >0
Tail elements tl(v) = { 1 bhermis
] true ifv= ()
Empty = false otherwise
Length lg({voy. ..y tn=1)) =n

Figure 2.8: Vector Operations

(i) If A isin Q, the set (A) of vectors over A is also in Q and defined as the smallest set satisfying:

- The empty vector () is in (A).
- Ifvg,...,v,—1 € A then the vector of length n (vg,...,v,-1) is in (A).

The operations on vectors are (feﬁned in figure 2.8.

(iii) If Ay,... A are in § then the cartesiaon product Ay X---X Ay isalso in§) Ifa; € Ay,...ax €
Ay then (a,...,ar) € Ay X---X Ax. The operations are just the projections (ay,...,ax).i = a;
if 1 < i<k and 1 otherwise.

The set of extended objects is defined as @t = |J,eqw U {T,1}. |

Remark: The elements L and T play the role of undefined and nothing, respectively. The element
T occurs only in connection with control structures and means that a processor evaluating T is idle.
The bottom element 1| means that a program does not terminate or terminates with a run-time
error. |

The syntax of PARFL is defined by the following grammar G = (N, T, P, (prog)), where:

N = {{prog), (fun), (pars), (type), (ezpr), (simpleezpr), (letezpr), (ifezpr), (forallezpr), (selectezpr),
(compezpr), (op), (uop)}

T = {(:d)’ (nat), (boaf)” :f‘f =f,f xf,f (.i'!l' f!.l' ‘l' ’l' {J“!]l"f 'l"] +l’}} _.f‘.’ *!‘l /.f’.f {.’,J‘ (:,‘, >f’f >=f‘f <>f’f of’ Skip'
let, in, if, then, else, forall, do, parallel, select, from, to, modify, and, or, not, hd, 1, mi, lg}

P is defined in figure 2.9

The terminal (id) represents any identifier. An identifier starts with a letter and is followed by
any sequence of characters. The other terminals (nat) and (bool) represent any natural number or
boolean. Infix-expressions are bracketed left-associative and with the standard precedence. Vector
operations and operations on cartesian products have higher precedence than any infix- or unary

14



(prog) = ({fun)"
{fun) == fun (id)[{pars)]' ' {type)’ =’ (ezpr)
(pars) == '('(id)' ' (type)(',' (id)" :' {type))" ')’
(type) == boollnat|'('(type)')|{type)’ x' (tupe)('x'(type))*
(ezpr) u= (simpleexpr)|{ictezpr)|(ifezpr)|(forallezpr)|{selectezpr)|{modifyezpr)|{compezpr)|'('(ezpr)
(simpleczpr) = (id)|(nat)|(bool)lskipl'({ezpr)(', (ezpr))" "YI'({ezpr)(’) (ezpr))” ')
(letezpr) = let (id)' =' (ezpr) in (ezpr)
(ifezpr) = if {expr)['=' (ezpr)] then (ezpr) else (ezpr)
(forallezpr) ::= forall {ezpr)’ <='(id)' <' (ezpr) do in parallel {ezpr)
(selectezpr) = select {ezpr)’ <='{(id)' <’ (ezpr) in parallel from (ezpr)
(modifyezpr) == modify ['('I{ezpr)(’, (ezpr))'[')] ', (ezpr)’ <='(id)’ <’ {ezpr) to (ezpr) from (ezpr)
(compezpr) = (id)'(‘(eapr)(' {ezpr))" 'Y (ezpr)(op)(eapr)l(ezpr) [{ezpr) | (ezpr" (ezpr)|(uop)ezpr)
(op) == '+ '='['+'/imaxjmin <'|' <=' [ ='|'>' |' >=' ' <>' |andlox|' o’
{unop) u= hd|H|mt|lg|not

l)!

Figure 2.9: The Syntax of PARFL

operator. Unary operators have higher precedence than infix operators. Relational operators have
the lowest precedence.

The let, if and function application are standard expressions. Informally the parallel expressions
have the following meaning. A forall statement delivers a vector, i.e. the statement

forall / < i < r do in parallel #(7)
is described the value of vector v of the imperative statement:

forall 0 < i < r —[ do in parallel
v[i] :=-t(i +1)

Thus it delivers a vector. In this statement, no write-conflict can occur.

The select-statement select a value with a certain property from a vector, i.e. the statement

select | < i < r in parallel from
if ¢(7) then (i) else skip

is the value of the scalar k after the imperative statement:

forall [ < i < r do in parallel
if ¢(i) then k := (1)

Observe that the statement skip leaves some processors idle. In the select-statement, write conflicts
can occur. They are resolved by one of the strategies described in subsection 2.1.4.
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Finally the modify statement modifies some vector entries from another vector. Thus the expres-
sion

modify t;(i), { < i < r to 13(i) from i3

is the value of variable v after the execution of the following imperative statement (n is the length
of vector t3):

forall 0 < j < n do in parallel
v[i] := t3(3);
forall I < i < r do in parallel

v[t1(3)] := t2(d);

Write conflicts can also occur by evaluating this expression. The generalization to higher dimensions
is straightforward.

Although in parallel imperative languages one statement for parallel execution is sufficent, in parallel
functional languages the two latter expressions are necessary, because they evaluate to different
types of expressions. The first parallel statement could be considered as a special case of the third.
Even if the second statement could be simulated by the third, this cannot be done within a constant
time factor. We therefore consider it as necessary.

2.3.2 The Semantics of PARFLO.1

The semantics of PARFL is defined in three steps. First we consider the structure of 2+. This
will give us some insight how to express the different styles of solving write-conflicts. Then we
define the static semantics by giving typing rules for expressions. Finally the operational semantics
defines the dynamic behaviour of correctly typed expressions and programs,

An important fact is that Q% obey several ordering structures. These structures correspond to
the way how and whether write-conflicts can be solved. The following definition and lemma plays
therefore a major role in defining an operational semantics:

Definition 2.17 (Structures of Qt) The quadruple (QF,Cew,Ngw,Ugw) where Cpw is the
transitive closure of the following relation:

(i) LCgw w for allw € QF.
(1) wCegw T forallw € QF.
(fii) If vg CEwW wo,-..,Un—1 CEW Wn— then (Uﬂ.,. ..,vn_l) Crw (wo,.. .,wn_1>.

(iv) If ay Cew by,...,ax CEw bk, then (ay,...,ax) Cew (b1,...,bk).

is called an exclusive write structure. The operations x NEpw y (x Ugw y) ts the largest (smallest)
element z with 2Cpw z and zCpw y (t Cgw 2 and yCpw 2), and x MNpw = = L.

A common concurrent write structure is a quadrupe (%, Ceeow, Noew,Uccw) where Coow s
defined as the reflezive and transitive closure of a relation satisfying also (i)-(iv). The operations
z Necew y and x Ucew y are defined analogously to the exclusive-write structure (just with the
difference that x Ngcw = = . |
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If values z1,...,z shall be written at the same location then it is written z; M- M zx into this
location.

Remark: The other strategies to solve write conflicts (PRIORITY CRCW-PRAM and ARBI-
TRARY CRCW PRAM) can be defined by similar partial orderings, but the domains are different.
In the priority based models, Q¥ is replaced by 2+ x N. The second component defines the priority
of the element to be written in a certain memory location. If the first component is different from T
and L then the elements are further ordered by their second component. Otherwise the definition
is the same as above.

In the case of an ARBITRARY CRCW PRAM, Q+ is replaced by the power domain 2%, Then a
set is associated to each memory cell, namely the set of possible values it can contain. Concurrent
writes are defined as the union of the sets to be associated with a memory cell. The ordering
becomes quite complicated. L

Lemma 2.18 (The Ordering Structure of %) The relation Cgw of the exclusive write struc-
ture is a strict ordering relation with the least element L and the largest element T. The relation
Ccew of the common concurrent write siructure is a ordering relation with the least element L
and the largest element T.

Proof: The minimality of L and T is by (i) and (ii) of definition 2.17 obvious for both structures.
The transitivity of both relations is clear from their definition. Observe that only Coow is reflexive.
Hence Cgw is a strict ordering relation. It remains to show that Coow is antisymmetric, i.e. from
a Ccecw b and b Coow a follows that @ = b. Suppose that this is not the case. If a and b are
vectors then there must be a ¢ such that a; Coow b; and b; Coow a; and a; # b;. A similar
argument applies for cartesian products, Hence we can restrict ourselves to the basic types. But
for these types it is obvious from (i) and (ii) of definiton 2.17 that a = b. |

It follows immediately:

Corollary 2.19 The ezclusive-write structure is well-defined, i.e. z Mpw y and ¢ Ugw y ezist.
Furthermore, the common concurrent write structure is a lattice.

Observe that the only lattice laws not satisfied by the exclusive-write structure are the adjunction
laws (aM(aUb) =a and aU (aNb) = a).

For the definition of correctly typed programs, technically a typing environment is required, i.e. to
each identifier is associated a type. Because polymorphic types are allowed, we need an ordering on
polymorphic types representing a “more precise” relation. Intuitively, the language of types consists
of a signature representing basic types, vectors and cartesian products, and a set of variables. If a
type 11 can be obtained from a type 7, by a substitution, then 71 is more precise than 5. If types
have to be coerced then they are unified. If they are not unifiable, then a type error occurs. Thus
we use the following notions (see for example [EM85] for the general definitions):

(i) Qv is the set of types with variables V. They are defined as in definition 2.16 including the
properties that a variable v € V is also a type, and if 7} and 1, are types, then 7; — 73 is also
a type. PARFLO.1 is restricted in its functions to first-order functions, i.e. neither 7; nor 1
contain .
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(ii) A type substitution 0 is a finite list of pairs [v/t] where v € V, t € Qv all the variables on the
left are different, and no type on the right contains any variable on the left. It is interpreted
as the following mapping Qv — Qy:

iy = {t if [v/t] € 8

error otherwise

6(r) = (fr)
(g X ---X1) = Oy X+ XO7%
(1 —1) = O 0n

(iii) A substitution 8 is called a unifier of types 71 and 73, if 871 = 675. It is called the most general
unifier iff for each unifier 8 there is a substition o such that & = ¢ 0#.

A program II can be considered as a set of functions. The type associated to a function fun f(z; :
Tlye.yTk 2 Tk) : T = 1is 7y X -+ X 7, = 7. The type environment 6 associated to a program
Il is the substitution defined by the functions f € II together with their associated type. A type-
environment @ is simply a type substitution. Let TYPEENV be the set of all type environments.
A type T is called the most general common type of types Ti,...,7k, if 7 = 8y = --- = O where
f is the most general unifier of 7y, ..., 7. Now we are ready to define the type of expressions (i.e.
words derivable from the non-terminal (ezpr), denoted by EXPR).

Definition 2.20 (Type of Expressions) The type of an expression under a type enviroment s
a mapping '

TYPE : EXPR x TYPEENV — Qv W {error}
inductively defined over the structure of expressions (see figure 2.10). L]

The types of the basic operations are included in the type environment. Now we can define the
notion of a correctly typed program:

Definition 2.21 (Correctly Typed Program) A program Il is correctly typed, if for each func-
tion

fun f(zq:7y,...,2k:7k) T =e

TYPE[e] 8 (# error) and 7 are unifiable, where § = 8, 0 01, 6, is the environment for the basic
operations, and 0y the type environment associated with II. |

Only correctly typed programs are considered for interpretation.

When interpreting programs, we have to take into account the parallel nature of the language, i.e.
we need to assign to the evaluation the processor evaluating a particular expression. Hence, the
number of the currently unavailable processors and the address of the processor evaluating the given
expression have to be provided. The adresses are natural numbers. Hence, adequate mappings from
more dimensional arrays to one dimensional arrays have to be used [ASU86, WG85]. If the vector
clements are of variable length then techniques for compacting sparse arrays are used. We address
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TYPE[v] 8 = 6(v)

(o) if o is the most general common type of
TYPE[eo] 0, ..., TYPE[en_1] 6

error if the most general common type does not exist

error if at least one TYPE[e;] # = error

TYPE[(EQ, e ')Eﬂ—l)] 3 =

16 .= error if at least one TYPE[e;] ¢ = error
@18 =\ ' TYPE[a]6 otherwise

TYPE[(})] ¢ = (4)

TYPE[c]8 = rifcer

error if at least one TYPE[e;] # = error
or, if 8(f) = 7y x --- x i — 7 and either k #{

TYPE[f(e1,...,ex)] = or at least one TYPE[e;] @ is not unifiable with =
oT if 8(f) = 1 x -+ -7 — 7, o is the most general unifier

of [I5_, = and [[5_, TYPE[e:] 6

TYPE[(ey, . .

TYPE[skip] 8 = A

error if TYPE[e;] 6 = error for an i

TYPEDet v=repine] = { TYPE[es] 0 0 [v/ TYPE[e,] 6) otherwise

TYPE[if e; then e, else e3] § =

error if at least one TYPE[e;] 6 = error or TYPE[e ] 6 # bool or TYPE[e;] 8
are not unifiable for i = 2,3
L3 if 7 is the most general common type of TYPE[e;] 8, i = 2,3

TYPE[foralle; < i < €3 do in parallel e3] 0 =

error if at least one TYPE[e;] 6 = error
(TYPE[es] 6) otherwise

TYPE[select e; < i < e3 in parallel from e3] § =

error if at least one TYPE[e;] 8 = error
TYPE[e3] 8 otherwise

TYPE[modify ey, es <i< e3 to e4 fromes] § =
error if at least one TYPE[e;] 8 = error

or TYPE[es] 0 # (-) or TYPE[es] 0 = (r), and  and TYPE[e4] 6 are not unifiable

{n1) if TYPE[es] 0 = (r1) and 7, is the most general common type of 7 and TYPE[e4] 0

The symbols for the basic operations are dealt as variables, e; stands for any expression (i.e. ¢; € EXPR), ¢ for
any constant (function), v for any variable, A for a type variable, and @ for any type environment.

Figure 2.10: Typing Rules

19




therefore processors by tuples of natural numbers. If ¢ is such a mapping, and k is the number of
unavailable processors, then processor Py, .. ;) has address k + @(i1, ..., i;). Before coming to the
definition of the semantics of programs similar tools as in the typing are provided:

A substitution p is a finite list of pairs [v/e] where v is a variable, and e € EXPR. It is interpreted as
a mapping EXPR — EXPR defined by (v,v’ denote variables, e, e; expressions, and f any function
or operation symbol):

Qo = v

% gl
([v’/ E] p)e { ;v gt;e;wl;se
pfler,....,ex) = f[lper,...,pek)
plery ... ek) (pe1, - . ., pex)
pler,....ex) = (per,...,pek)

An environment is a substitution. The set of environments is denoted by ENV. Furthermore let
LOCAL = Uiso N* the address space of the processors, and PROG the set of correctly typed
programs, where programs are considered as set of functions.

The formal operational semantics is then defined by?:

Definition 2.22 (Operational Semantics) The operational semantics of ¢ PARFL program is
a mapping

EVAL : EXPR x PROG x N x LOCAL x ENV — EXPR
where EVAL[e] Il n p p is inductively defined by the equations in figure 2.11. s

Intuitively, EVAL[e] Il n p p means that expression e is evaluated under program Il and environment
p by processor P,_4(,), where ¢ is the above stated mapping.

Remark: From the definition of the semantics it is obvious that the underlying machine model is
a CREW-PRAM. The shared memory is necessary, because each processor must have access to the
evaluated expressions, the exclusive-write property is because of the use of Mgw in the definition
for the select and modify expressions. Therefore it is not difficult to generalize this definition to
concurrent writes. It is just necessary to replace Mgw by the adequate Ny.

The machine needs for sychronization (i.e. determining whether all processors invoked by a parallel
statement are idle) a global wired-or (or wired-and). The time for this synchronization can be
assumed in practice as constant [PHT90]. This allows then for example checking in constant time
whether two vectors (tuples) are equal.

All vectors are stored in the shared memory, all objects of the other type are hold locally in the
processors (as well as their local address). L]

The language PARFL is strict in the sense that it evaluates its arguments before they are needed.
It can be made lazy if in figure 2.11 following changes would be made:

e In the case of a function call the environment would be

p = z1fel] - [zrfex] p

%¢(1) denotes an expression containing eventually i
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For variables v: EVAL[v] I n p p = pv.
For any basic operation op:
EVAL[op(er,.-.,ex)] I npp=op(EVAL[e] M npp,..., EVAL[ex] Il n p p)

EVAL[skip] lnpp=T .

EVAL[(e1,...,ex)] T npp=(EVAL[ey]J] I npp,..., EVAL[ex] Tl n p p)
EVAL[(e1,...,ex)] U npp=(EVAL[e1] M npp,...,EVAL[er] 1 n p p)
For a function fun f(z, :m,...,Zx 1 Te) T =€t

EVAL[f(es,...,ex)]Inpp=EVAL[e] I npp

where o' = [21/EVAL[e1] T n p p]- -+ [zx/ EVAL[ex] Il 7 p p] p-
EVAL[let v=e,ines] I n p p= EVAL[ez] Tl n p p' where p' = [v/EVAL[e;] I np p] p

EVAL[es] Mnpp if EVAL[élﬂ Il npp=true
EVAL[if e; thenes elsees] Mnpp=< EVAL[e3) I npp if EVAL[e;] T n p p = false
4 otherwise

For the rest let be

I = EVAL[e4]Inpp
r = EVAL[e;]Inpp

EVAL[foralle; < i < e3 do in parallel e3(i)] I np p =
(EVAL[ea()] M n+r—1(p,0) p,...,EVAL[es(r—1)] M n+r—1(p,r—1-1) p)

EVAL[select e; < i< ey in parallel from e3(:)] I np p =
EVAL[es()] M n+r—1(p,0) pNew ---New EVAL[es(r—1)] Mn+r—I(p,r—1)p

Define now:
m = lgey
I7) = {j: W<gigrie(]) =i}
bi) = (EVAL[es] M n p p) if 1(i) =9
- New{EVAL[ea(HN] U n+r—1(p,j—1) p:j€I(i)} otherwise
Then:

EVAL[modify eg(i), ) <1< ey to es(i) from eg] 11 n p p =(b(0),...,6(m — 1)}

Figure 2.11: Operational Semantics
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o For variables the equation would be EVAL[v] I n pp = EVAL[p(v)] Il n p (p — [v/p(v)])

However, the complexity analysis of lazy functions is very difficult. This was the reason why we
chose a strict semantics.

2.3.3 Complexity Measures

Now, we are ready to define complexity measures. The following measures are distinguished:
time complexity (proportional to the number of parallel EVALs necessary for the evaluation of
expressions), work (proportional to the overall number of EVALs), number of processors, space
complexity (maximal size of intermediate expressions needed for the evaluation of expressions), the
output length, and output size of expressions.

Hence, at first complexiy measures on data are defined. One already known is the length of a vector,
The size of a data corresponds to the number of memory cells. The dimension of a cartesian produkt
plays the role of the length of a vector, but it is already known at compile time.

Definition 2.23 (Size of Objects) The size of objects is a function sz : QF — {T,1} — N,
inductively defined as follows:

(i) For any object w in the basic types: sz(w) = 1.

(i1) s2({)) =1 and sz(()) = 1.
(iii) For vectors: sz({ep,-.-,€x—1)) = sz(ep) + + - - + sz(€ex-1)

(iv) For tuples: sz((eo,...,ex—1)) = sz(ep) + - -+ sz(ex—1)

The vector length has to be generalized to different levels, i.e. if for example v € ({A)), then lg v
counts only the dimension of the top-level vector. However, it is sometimes necessary to count the
sum of dimensions of the vectors in v, i.e. if Ig v = n then lg(vg) + - - - 4 lg(v,,—1) must sometimes
be counted. Therefore the length of the vectors is generalized to the level-length of vectors, i.e.

Definition 2.24 (Level-Length of Vectors) The level-length of a vector is a familiy of func-
tions U : N x (-+-{ A)---) — N, inductivly defined by:
S’ S’

k times k times
(i) U = lg and li(1,v) = lg(v).

lg(v)—-1

(ii) Ux(i,v) = Z Hg-1(2 = 1,0[5])

=0
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The definition of the time complexity is based on the time needed for the basic operations and the
execution of the control structures. Their names are defined as:

Top for each basic operation op (see figure 2.8 and definition 2.16)
Tiin for access to variables

Teall for function calls

Tiet for the evaluation of let expressions

Tif for the evaluation of conditional expressions

Tobip for the evaluation of skip

Tfor for the evaluation of a forall expression

Tselect  for the evaluation of a select expression
Tmodify foT the evaluation of a modify expression

If each of these basic complexities is defined to be one, then the number of parallel calls of EVAL
is counted. The complexity of evaluating an expression needs again an environment as it was
used in definition 2.22. Hence, the definition of the time complexity needs the same notations
and definitions as the definition of the operational semantics. However, it is not necessary to use
processor allocation.

Definition 2.25 (Time Complexity) The time for the evaluation of an ezpression e € EXPR
under a correctly typed program Il € PROG and an environment p € ENV is inductively defined
(see figure 2.12) by the function

TIME : EXPR x PROG x ENV — N {oc}

The time complexity of a function f : y X ++-7 —» 7 € Il € PROG is a function time_f :
T1 X ++-Tp — N W {oco} where for each term t; € 71,...,tk € T4 holds:

time_f(t1,...,t) = TIME[f(t1,...,t)] T {)

The worst case time complexity of f w.r.t. to measures my,...,mg on T,...,Tr 15 a function
time_f : N* —» N W {oo} where for each t; € 7; with mi(t;) = n; (= 1,...,k)

time_f(t1,...,t) < time_f(ny,...,nk)

s valid. [ |

Observe that the worst case time complexity (as it will be for the other complexities) is just defined
as an upper bound for the time complexity of a function. A complexity analysis should deliver
at least the asumptotic worst case. Following observations can be made in figure 2.12: first the
equations does not use the fact that concurrent writes are forbidden. They can therefore also used
for the time complexity of any CRCW PRAM. Second the EVALs start just with one processor
their evaluation. This is formally justified because in the definition of time, it is sometimes only
necessary to know the value of the expression, and not the processor actually used in the evaluation
of this expression.

The definition of the other complexities are similar to the definition of the time complexity:
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For variables v: TIME[v] Il p = 7yar
For any basic operarion op:

TIME[op(e1,...,ex)] 1 p=Top + TIME[e ] Tl p+---+ TIME[ex] 11 p

TIME[skip] IT p = Tykip
For a function fun f(2y :7m,...,2x ! 1) = ¢!

TIME[f(e1,-..,ex)] N p= Teau+ TIME[e ] M p+ -+ + TIME[eg] 1 p+ TIME[e] 11 ¢/

where o' = [z1/EVAL[e)J T 1 () p]-- [z /EVAL[ex] TT 1 () p] £
TIME[let v=-e; in e2] Il p = 710t + TIME[e1] I p+ TIME[e2] I p' where p' = [v/EVAL[e ] T 1 () p] p.

TIME[ €; thenes elseez] 11 p =

Tif + TIME[e ] T p+ TIME[e2] 11 p if EVAL[e ] IT 1 () p = true
iy + TIME[e;] 1T p+ TIME[es] I p if EVAL[e1] 11 1 () p = false
00 otherwise

For the rest, let be | = EVAL[e1] 1 1 () p and r = EVAL[e2] 1 1 () p. Then:

TIME([forall ¢; < i < e; do in parallel e3(i)] 1 p =
Tror + TIME[e;] 1 p+ TIME[es] T p + &{.—_{x TIME[e3())] 11 p

TIME[select e; < i < ey in parallel from e3(i)] Il p =
Toetect + TIME[e] 1T p + TIME[e] 1T p + m:f.:x TIME[e3(i)] 11 p
Let now I = {EVAL[eo(2)] T 1 () p:l<i<r}:
TIME[modify eg(i), e; <i < es to e3(i) from eq] 1T p =
Tmodiy + m;a}c TIMEeo(i)] 11 p+ TIME[er] 11 p+ TIME[ea] 1T p+ max TIME[es(k)] 11 p
+TIME[es] 11 p

Figure 2.12: Time Equations
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Definition 2.26 (Processor Complexity) The processor complexity for the evaluation of an
ezxpression e € EXPR under a correctly typed program Il € PROG and environment p € ENV is
the function

PROC : EXPR x PROG x ENV — N W {00}

inductively defined by figure 2.13. The processor complexity of a@ function f: 7Ty X -+ X Tk = T €
Il € PROG is a function proc_f : 7y X «++ X 7x — N W {00} defined by (e; € T, i=1,...,k):

proc_f(e1,...,ex) = PROC[f(e1,...,ex)] Il p

. The worst case processor complezity of f w.r.t. to measuresm; on7; (i=1,...,k) is a function
proc_f : N¥ = N

satisfying for all e; € 7; with m;(e;) = ny:

proc_f(ex,...,ex) < Procf(ni,.., ni)n

The remarks after definition 2.25 are here also valid.

The space complexity is similar to the processor complexity. Only the first three equations need to
be changed. All the other equations are the same. Thus:

Definition 2.27 (Space Complexity) The space complexity for the evaluation of an ezpression
e € EXPR under a correctly typed program 11 € PROG and environment p € ENV is the function

SPACE : EXPR x PROG x ENV - Nt {00}

inductively defined analgous to figure 2.13 with the exception of the first three equations which are:

For variables v: SPACE[v] Il p = sz(p(v))

For any basic operation op:

SPACE[op(e1, ... ex)] 11 p = max{maxf_, SPACE[e;] I p,sz( EVAL[op(e1,...,ex)] T 1 () p)}
SPACE[skip] Il p=10

The space complexity of a function f: 7 X - X1 — 7 € Il € PROG 1s a function space_f :
T X o X 7, = N {oo} defined by (e; € 7, i=1,...,k):

space_f(ey,...,ex) = SPACE[f(e1,...,ex)] Il p

. The worst case space complezity of [ w.r.t. to measures m; on7; (i=1,...,k) ts a function
space_f : NF = N

satisfying for all e; € ; with m;(e;) = n;:

space_f(er, .., ex) < space_f(n,..., ni)n



For variables v: PROC[v] I p=1
For any basic operarion op:

PROC[op(e1, ... ex)] T p= r?fa.lx PROC[e;] T p

PROC[skip] T p=1

For a function fun f(zy : my,...,2x: Tk) = e
PROC[f(e1,...,ex)] M p= max{mfaix PROC[e] 11 p, PROC[e] T '}

where p' = [z1/EVAL[e;J 11 () p] -+ - [z /EVAL[e,] T 1 () p] #'.
PROC[let v = e; in e3] I p = max{ PROC[e,] I p, PROC[e2] 11 p'} where p' = [v/EVAL[e1] TI 1 () p] p.

PROC[ e, then e; else ez] Il p =

max{PROC[e,] 1T p, PROC[ez] 11 p} if EVAL[e;] 1 1 () p = true
max{PROC[e1] Tl p, PROC[e3] 1 p} if EVAL[e;] T 1 () p = false
o0 otherwise

For the rest, let be I = EVAL[e;] 1T 1 () p and r = EVAL[e2] 1 1 () p. Then:

PROCTforall ¢; < i < e; do in parallel e3(i)] I p =
r—1
max{ PROC[e1] Il p, PROC[ez] TN p, Y~ PROC[es(i)] I p}

i=l

PROC[select ¢; < i< e in parallel from e3(:)] IT p =
r—1
max{PROC[e,] 11 p, PROC[es] 1 p, > PROC[e3(i)] 11 p)

i=!
Let now [ = {EVAL[eo(z)] M 1 () p:I<i<r}:

PROC[modify eq(i), e <i< ez to es(i) from e Il p =
r—1
max{3_ PROC[eo(i)] 1T p, PROC[e1] T1 p, PROCEe2 Tl p, 3 PROCTes(k)] 1T p, PROC[ea] T p}

=l kel

Figure 2.13: Processor Complexity
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Other complexities more used in automatic complexity analysis are the output length, output size,
and output level-length of an expression or function. We show the definition for the output length.
The other measures are defined analogously (named SIZE and LLg, respectively):

Definition 2.28 (Output Length) The output length of an ezpression e € EXPR under a cor-
rectly typed program Il € PROG and environment p € ENV is the function

LENGTH : EXPR x PROG x ENV — N ¥ {0}

defined by LENGTH[e] 11 p = lg(EVAL[e] TT 1 () p). The output length of a function f :
1 X+ X1~ 1 €Il € PROG is a function length_f : 11 X --- X 7 — N & {00} defined by
(e; €Ty, i=1,...,k):

length_f(e1,...,ex) = LENGTH[f(e1,...,ex)] Il p
The worst case output length of f w.r.t. to measures m; on7; (i=1,...,k) is a function
Tength-f : N* = N
satisfying for all e; € T; with m;(e;) = n;:
length_f(ey,...,ex) < length_f(n1,...,n)n
|

An automatic complexity analysis system has to derive a closed form expression for the worst case
complexities. It is called correct, if the derived complexity is a worst case complexity of the required
measure for each obtained result. Observe that an automatic complexity analysis system can never
be complete (i.e. the complexity of each computable function can be derived), because otherwise
the halting problem would be decidable. It is therefore a goal to enable the analysis of algorithms
defined by the most common algorithm design principles, but it should be clear that there will
always be algorithms, which cannot be analyzed. Furthermore if an automatic complexity analysis
system obtains result, they should be good in the sense that it matches the asymptotic worst case
(i.e. it is asymptotically not just an upper bound).
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Chapter 3

Foundations of the Analysis Method

The analysis process consists as in the case of sequential algorithms [Zim90a] of a transformational
phase and an algebraic phase. In the transformational phase, the program is transformed into a set
of recurrence equations, which are solved in the algebraic phase. For reasons of completeness we
give the whole transformation process which consists of the rules in [Zim90a] and some additional
rules dealing with the parallel computations.

Most of the recurrences occuring in the analysis process are geometric recurrences. Their solution
algorithms are already implemented in Maples rsolve [CGG*88]. Some more difficult recurrences
can be solved as in [Zim90a], or via generating functions [FV90, FS87, Fla88, FSZ91, Zim91].

Finally, the method is demonstrated by two simple examples. First the classical pointer jumping
for list ranking [GR88, KR90], and the second example is an adaptive algorithm for prefix sums
[GR8S].

3.1 The Transformational Phase

The transformational phase of the analysis process consists of four main parts. Let II be the
program to be analyzed for the complexity measure C. It is first translated into a program II'
computing the complexity C, i.e. whenever an expression E is computed by II, the complexity
w.r.t C of this expression is computed by II'. After this transformation the results are algebraically
simplified.

The second substep consists of a normalization procedure preparing the program II’ for the third
substep, which derives equations defining the complexity C of TI'. Finally these equations are
translated into recurrences by adequate mappings from vectors to natural numbers.

The goal is to make the transformation into recurrences complete, i.e. recurrences are always
obtained for correctly typed programs. We reject the former choice of repeating the process with
the output length, output level length and output size, if necessary, and analyze instead these
measures at the same time with measure C (this choice is different from previous work [Weg75,
Zim90a, Zim90b]). We will sce that otherwise finding adequate measurs in step 4 have to use a
time consuming algorithm a second time.

Another source of making the analysis process incomplete in previous works [Weg75, Zim90a,
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Zim90b] are the analysis of output measures like hd(g(t,...,tx)) or t(g(t1,...,tk)), when g is a
function defined in the program I[. These methods provide no way to analyze such measures. We
transform therefore first II to eliminate such subterms.

Thus the transformation algorithm is:

Algorithm transform
INPUT: A program II, and a complexity measure C
OuTPUT: A recurrence system R, describing the complexity C of II and a set of
M required measures on argument positions

R:=0
M:=0
II' := remove_incompleteness(Il);
transform II according to C by the method of subsection 3.1.1 [Let this program be Ilg]
let k& be the maximal nesting depth of vectors in II;
transform IT U II' according to LENGTH; [This program is defined to be II]
fori=2,...,k do

transform IT U I according to LL;; [This program is defined to be II;]
end for
transform IT U IT" according to SIZE; [This program is defined to be ITj4q]
1:[ = HoUH] U "'UHk+1;
normalize IT by the method of subsection 3.1.2 [Let T be the normalized program
derive a set of equations E from ITI” by applying the method of subsection 3.1.3
derive from E and II’ by the method of subsection 3.1.4 the recurrence equations R,
and the required measures to M;
output R

During the transformation process equations are created. In order to provide a notion of correctness,
it is necessary to extend definition 2.22 to equations. Let Il be a program and E be a set of
equations, n € N, p € LOCAL, p € ENV, and f(t1,...,1,) € EXPR. Each equation of £ has the
form LHS = RHS, where LHS, RHS € EPXR and LHS is of the form g(uy,...,u%y), where the
t; consist only of variables and constructing basic operation (i.e. they don’t contain operations like
fst, tl, etc.) Then the evaluation of expressions in figure 2.11 is replaced by

EVAL[f(t1,...,ta)] (IUE)npp=
EVAL[RHS] (TUE)n p p" ifthereisa LHS= RHS € E and o s.t. f(1},...,th) = a(LHS)

EVAL[B] (TUE)npp'p if there is no matching equation and
fun f(r; :mn,...,zn:m):T=Bell
error otherwise

where t! := EVAL[t;] (WU E) npp, p' = op, and p"” = [z1/t]]---[zn/t}]p. Observe that the

equations are applied by pattern matching, and that they have priority over functions. The latter
is done for formal reasons to ensure that when equations are added, that they are actually really
used in the evaluation of terms. Furthermore, recurrences are special equations, they contain only
variables of type nat, and the type of the LIIS and RIS is also nat.

The idea of subsection 3.1.4 is to apply one of the complexity measures lg, sz, or ll; to the argument
positions of the functions defined by E. When this is done the E become recurrences. In order
to obtain adequate results these mappings must be kept during the analysis process. Informally,
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algorithm transform is correct, if the semantics of the output R together with M describe under
EVAL the same as C.

Observe that if the analysis process is complete (i.e. it terminates always) it makes sense to give
upper bounds for their running time. The parameters we need there is the length of the program,
the maximal nesting depth (outside of conditionals), and the maximal natural number occuring
in the program. We will see that the running time of the analysis is linear in the length of the
program while it grows very fast (even faster than exponential) in the other two measures. Hence,
as expected, not the length of the program makes the analysis process difficult, but its structure.

We define in advance the algorithm remove_incompleteness because it is somehow a preprocessing
step. After the application of remove_incompleteness, the program will not contain any expressions
like hd(g(t1,---,ts)) or t(g(t1,...,2n)). The algorithm preserves the semantics, and so w.r.t. the
output measures, the transformed program will deliver the same result.

The algorithm remove_incompleteness replaces expressions like these discussed above. During this
removal process, new functions must added to the program II.

This algorithm (and also the normalization step) makes use of program transformation rules. There
are two type of transformation rules. Rules of the first type just transform a subexpression into
another one, if eventually some syntactic conditions are satisfied. They have the form

constructy s
————  (parameters) condilions type 1
constructs

The constructs are program schemes, i.e. they denote partial syntax trees containing some non-
terminals, here denoted by calligraphic letters A, B,C,.... The conditions may contain some of
these non-terminals, and the parameters may guide the application. Examples of rules guided by
a parameter are rules 7 and rules 8. These type of rules is applied to a program II as follows:

Algorithm apply_rule_1
INPUT: A program II, and a rule of type 1
OutpuT: A program II'

[Match a subtree of the syntaxtree of II with construct]
Find a subtree ¢ of the syntaxtree of Il and a tree substitution o s.t. t = o(construct;.
if no such ¢ and o exists then output IT end if
if o(cond) = true then
replace in the syntaxtree of II the subtree t by o(constructs);
end if;
output II

A subtree t as described in the above algorithm is called the reder of rule r.

The second type of rules enhance the program by new functions. They have therefore the form:

consirucly -~
———(parameters) conditions
constructy

def
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where the notations are as above and def is a function definition. These kind of rules are applied
to a program II as the rules of type 1. Additionaly in the then-part in algorithm apply_rule_1, a
statement II := II U {o(def)} is added.

We are now ready to define algorithm remove_incompleteness.

Algorithm remove_incompleteness

INPUT: A program II

OuTtpuT: A program II’, s.t. II' does not contain any sub term of the form p(g(- - -))
where g € II’ and II' is under EVAL equivalent to II.

VARIABLE: A representing new functions to be created

A=k
while rule 1 is applicable in IT do [loop 1]
apply rule 1 in R on a subterm u(f(1,...,%2);
if uf ¢ Mthen A:= AU {u-f}; end if
end while;
while A # 0 do [loop 2]
takea u_f € A;
A:=A-{pf}
Let fun f(z1:71y...,Zn:7y): 7 = B € Il be the corresponding definition
[Eliminate leading calls of ]
Let F ={fi,..., fr} be the mutually recursive closure defined by definition 3.1;
if 4f € F: rule 4 applicable then
for each f € F do [loop 2.1]
I:=01- {fun f(zy:7,...,&k:7k) : T = B};
while rule 4 is applicable on B with F,op(B), and m do [loop 2.1.1]
apply rule 4 on B with F.,top(B), and m;
end while;
For each t € top(B) where rule 4 was not applied, replace ¢ by tix(t,m);
Let B’ be the transformed body;
M:=1U{fun f(zy:7,...,25:Ty,m:nat): 7 = B'};
while rule 5 is applicable in II with fdo [loop 2.1.2]
apply rule 5 with f;

end while;
end for;
H::HU{ﬁm th+(l:(A),m:nat): (A) = }
if m = 0 then [ else il « (tl(I),m — 1)
end if;

Apply rule 2 on the new definition of f;
Let fun p_f(pars) : 7' = B’ be the result;
while rule 3 is applicable in B’ do [loop 2.2]
apply rule 3 in B’ with y;
simplify the result according to figures 2.8 and 3.5;
end while;
Let B” the result of these transformations;

Il := MU {fun p_f(pars): 7' = B"};
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while rule 1 is applicable in II on a subterm v(g(t1,...,%,))
for a function body By do [loop 2.3]
apply rule 1 in IT on the subterm v(g(ty;...,%;));
if v.g ¢ Il then A:= AU {v_g}; end if;
end while;
end while;
output Il and R

Loop 1 collects all the new functions to be created The new functions are created in loop 2. When
creating a function u_f then u is applied symbolically to the body of f (loop 2.2). But then it could
be necessary to create new functions. This can only happen, when p is applied to a term ¢ which
is a function call. Therefore the only terms where new functions must be created are “top-level”
terms, i.e, if

if C then £; else &;

is the body of f, then the “top-level” terms are £; and £;, and u is applied to them by rule 1. If
the £; are themselves conditionals then the notion of “top-level” is defined recursively, otherwise a
new function may only only to be created if & = py(---(pe(g(--+))---). Loop 2.1 is necessary for
the termination of algorithm remove_incompleteness. Consider for example the function

fun £f(1:<nat>,n:nat):<nat> =
if n=0 then 1
else t1(f(cons(n,l),n-1))

If hd_f must be created, then we would have after performing loop 2.2:

fun hd_f(l:<nat>,n:nat):nat =
if n=0 then hd(1)
else hd(tl(f(cons(n,1l),n-1)))

Therefore t1_f has to be created. After the execution of loop 2.3. This function would be

fun tl_f(1l:<nat>,n:nat):<nat> =
if n=0 then t1(1)
else tl(tl_f(cons(n,l),n-1)))

But now t1_t1_f has to be created. Loop 2.1 transforms Il into a program without such situations.
For example it transforms the above function into

fun f(1l:<nat>,n:nat,m:nat):<nat> =
if n=0 then tl1*{(1,m)
else f(cons(n,l),n-1,m+1)

fun tl*(1:<A>,m:nat):<A>) =

if m=0 then 1
else tl1*(tl1l(1l),m+i}
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and every other function call £(t,u) is replaced by £(t,u,0).

Algorithm remove_incompleteness would not terminate in this situation, if it wouldn’t be avoided by
loop 2.1. In appendix A we prove that such situations cannot occur with the other basic operations,
if the program is correctly typed.

To summarize the thoughts, we have to consider expressions of the form p1(+ - (px(g(---))---) on a
“top-level”, and they may lead algorithm remove_incompletenessit g is a recursive call. We therefore
base the definition of mutually recursive on top-level expressions. Algorithm remove_incompleteness
will be discussed in more detail in appendix A.

Definition 3.1 (Top-Level Recursive Closure) (a) The set top(£) of top-level expressions of
an expression £ is defined as follows:

top(g(tls-- "-‘tk)) = {g(tla .. 'stk)}r gE€ II,

top(pa (-~ - (e (g(tey- -, t))) - 2)) = {ml(g(tr,-- - t)}, k 2 1, g € II, p; basic opera-
tions.

top(if C then & else &;) = top(&;) U top(E,)
top(t) = 0, otherwise

(b) The top-level calling graph T = (V, E) is defined by:

-V = {flfun f(zy:7m,...,zx:7) € Il = B},

- E={(fy9)|fun f(z1 :71,...,zk: 1) = B € II,3tq,...,tn, 2 g(t1,...,ts) € top(B) V
p(g(t;,...,t“))}

(c) A set of function F = {f1,..., fm} are called top-level mutually recursive in II if they are a
strongly connected component in T_II.

The used rules are:

Rule 1 (Elimination of Basic Operations)

T o T

u (T, ._17;1)(#? f) g # ()] is a basic function, f € Il of arity n
(T T ) .
access.f('}'l,_._,ﬁ”z-)(ﬂ, f) p=()], f el of arity n

This rule performs the elimination of basic operation g in connection with f. In order to keep
equivalence, a new function u_f must be created by applying symbolically p to the body of f.

Rule 2 (Folding p into f)

(u, ) 2t # ()[] is a basic operation of type T — U, and f €Il

fun f(P):(T)=¢
fun access_f(P,i:nat): T = i

(1, f) p=0)], and f eIl
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The next rule propagates p through expressions:

Rule 3 (Propagation of p in Expressions)

u(if C then & else &)
if C then p(&;) else pu(&;)

(if C then & else &)[Z]
if C thené&[7Z] else &;[7]

p(let X =& in &)
let X =& in u(&;)

(let X = & in &)[J]
let X = 51 in fg[J]

p(for all L <7 < R do in parallel £(7))
for all L <7 < R do in parallel p(&(7))

(for all £L <7 < R do in parallel £(7))[J]
E(T)

p(select £ < T < R in parallel from £(7))
select £L <7 < R in parallel from u(£(Z))

(select £ < Z < R in parallel from £(T)[.7]
select £ <7 < R in parallel from pu(&(Z)[J]

p(modify AZ], LLT <R to £(T) from V)
modify A[Z, L <Z < R to p(&(3)) from u(V)

(modify A[Z], L < T < R to &(I) from V)[J]
E(K)

if AIK)=J

(modify A[Z], L <TI <R to £(I) from V)[J]
V[J]

fVL<i<R: AK|#£ T

Observe that it is impossible to simplify a access to the result of the modify statement, if the index
is just symbolic, because it is impossible to decide whether it is one of the modifying indices or not.

The following rule eliminates tis surrounding top-level expressions in mutually recursive functions.

Rule 4 (Elimination of tis)

HCHPY oo ‘ . N
m(ﬂhn) fEFAL>OAf(P)eTVH(f(P)eT
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Finally the last rule replaces all other function calls of f with a new call where the last argument
is 0, i.e. it has not yet surrounding tis.

Rule 5 (New Initializations)

f(A1y .00 Ak)
f(-Ala' "‘.nAkaU)

(def) def = fun(A] : Tooy -y Xk : Ti): T =8B

Rules 4 together with the new function created in loop 2.1, and rule 5 corresponds to the transfor-
mation [BW80, page 295].

Lemma 3.2 Algorithm remove_incompleteness is correct and terminates.

Proof: Suppose the algorithm terminates. Rule 1 is always applied together with rule 2. Therefore
it is just a fold transformation with the new function definition. This transformation is therefore
correct (see e.g. [BD77]). The other transformations in rule 3 just propagate a basic function
jt through expressions. Hence, these rules also preserve semantics. Finally the body of loop 2.1
together with rules 4 together with the new function created and the execution of loop 2.1.1.
preserve semantics because they correspond to the application of the transformation in [BW80,
page 295] with several additional foldings.

It remains now to show, that algorithm remove_incompleteness terminates. This proof is difficult,
because when new functions are created by rule 2, new redeces of rule 1 may occur. This proof is
long and requires some additional proofs. It is therefore given in appendix A b

3.1.1 Transformation in Complexity Computing Programs

A translation process TC w.r.t. a complexity measure C is given to translate a program Il into a
complexity computing program II’. For each function f(zy,...,z,) € Il a function C_f(z1,...,2,)
such that C(ty,...,1,) yields the complexity C of computing f(¢1,...,t,). The result of the trans-
lation if afterwards being simplified by standard algebraic simplification and by some additional
simplification rules taking into account that the worst case is analyzed. The main algorithm is:
Algorithm translate

INPUT: A program I, a set of equations R, and a complexity measure C.

OutruT: A program II' and a set of recurrence equations R’ satisfying theorems 3.3 - 3.32

case C of
TIME:  1l:= I1U {TTIME[def] |def € T1};
PROC: 11 := 11U {TPROC[def] |def € 11};
SPACE: 11 := 11U {TSPACE[def] |def € TT};
LENGTH: 11 := 11U {TLENGTH[def] |def € T1};
R:= {LHS = TLENGTH[RIS] |LHS = RHS € R};
11U {TSIZE[def] |def € TT};
R := {LHS = TSIZE[RIIS] |LHS = RIS € R};
LL;: IT := U {TLL[def] |def € 11};
R:= {LHS = TLL,[RHS] |LHS = RHS € R);

SIZE:

=
i
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_ | rear if vis a variable
TTIME[v] = { To if v is a constant

TTIME[fun f(z:: T1,...,zx : Ti) : T = B] =fun time_f(z, : T1,...,zx : Tk) : nat = TTIME[B]

TTIME[g(t1,...,ta)] =

7o + TTIME[t;] + - - + TTIME[t,] if ¢ is a basic operation
Teatt + TTIME[t:] +--- + TTIME[t,] + time_g(t,...,t.) otherwise

TTIME[skip] = ruip

TTIME[let v = ¢; in e2] = s + TTIME[e;,] + TTIME[e-]

TTIMEJIf e; then e; else e3] =
if e; then 7y + TTIME[e;] + TTIME[e:] else ryy + TTIME[e,] + TTIME[es]

TTIME[forall e; <i < ez do in parallel e;(1)] =
Ttor + TTIME[e1] + TTIME[e,] + max TTIME[es(i)]
=2

TTIME(select e; <1 < ¢z in parallel from e3(i)] =
Tselect + TTIME[es] + TTIME[ez] + max TTIME[ea(i)]
t=ey

TTIME[modify eo(i), e1 <1 < e2 to e3(i) from eq] =
Tmodify + max TTIME[eo(:)] + TTIME[e:] + TTIME[e2] + Mhax TTIME[ea(:)] + TTIME[e4]
=L 1=e]

Figure 3.1: Translation to Time Functions

end case;

simplify II and R algebraically and by the rules in figure 3.5;
output II and R;

The translation schemes TTIME[-] , TPROC|-], TSPACE[:] , and TLENGTH][:] are defined
in figures 3.1, 3.3, 3.2, and 3.4 respectively. The definitions of TSIZE[-] and TLLg[-] are
analogous to the definition of TLENGTH][] . L]

Together with algebraic simplification, the simplification rules of figure 3.5 are designed for the
worst case complexity. Another simplification considers the basic operations on vectors i.e. rules
like for example

lg(tl(v)) = lg(v) - 1 and lg(fr(v)) = lg(v) - 1

are applied. The simplification ends if no simplification rule can be applied. It is casy but long to
prove the following theorem by induction on expressions.
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TSPACE[v] = { size(v) if vis a variable

1 if vis a constant

TSPACE[fun f(z, : Ty,...,zx : Tx) : T'= B] = fun space_f(zy : Ty,...,zx : T) : nat = TSPACE[B]

TSPACE[g(t1,...,tn)] =

max(TSPACE[t,] ,..., TSPACE[t.] ) if g is a basic operation
max(TSPACE[t,] ,..., TSPACE[t.] , space_g(t1,...,tn)) otherwise

TSPACE[skip] =0
TSPACE[let v = e; in e;] = max(TSPACE[e:] , TSPACE[e:] [v/e1])

TSPACET[If e; then e; else e3] =
if e; then max(TSPACE[e,] , TSPACE[ez] ) else max(TSPACE[e;], TSPACE[es] )

TSPACE[forall e; <1 < ez do in parallel e3(i)] =

max (TSPACEI[eﬂ] , TSPACE[e2] ) + Z_: TSPACE[es(i)] )

i=e)

TSPACE([select e; <1 < ez in parallel from ez(1)] =

eg3—1
max (TSPACE[cl] ,TSPACE[e2] ) + ) TSPACE[es(i)] )

i=ey

TSPACE[modify eo(i), e1 €1 < ez to ea(i) frome,] =

eg—1 eq—1
max (Z TSPACE[eo(i)] , TSPACE[e1] , TSPACE[e:] , )  TSPACE[ea(i)] , TSPACE[e4]

i=e) i=e)

)

Figure 3.2: Translation to Space Functions




TPROC[v] =1 if v is a variable or a constant

TPROC[fun f(z;: T1,...,7zx : Tk) : T = B] =fun proc_f(z1 : Th,...,z& : Tk) : nat = TPROC[B]

TPROC[g(t1,-..,ta)] =
{ max(TPROC[t] ,..., TPROC[,] ) if g is a basic operation

max(TPROC[t],..., TPROC[t.] , proc_g(t1,...,tn)) otherwise
TPROC[skip] =1
TPROC[let » = ¢; in e2] = max(TPROC[e;] , TPROC[e:] )

TPROCIif e1 then ez else e3] =
if 1 then max(TPROC[e;] , TPROC[e2] ) else max(TPROC[e;:] , TPROC[e:] )

TPROC[forall e; <i < ez do in parallel es(i)] =

eq—1
max (TPROC[e,] ,TPROC[ez] ) + Y TPROC[q(i)]])

1=e)

TPROC[select e; < i < ¢2 in parallel from esz(i)] =

eg—1
max (TPROCiIcl']] ,TPROC[e2] ) + Y TPROCIes(i)] )

i=ey

TPROC[modify eo(1), e1 <1 < ez to es(:) from e] =

e3—1 eg=—1
max (Z TPROC[eo(i)] , TPROC[e1] , TPROC]e2] , Y TPROCes(i)] , TPROC]e]

i=e; =€y

)

Figure 3.3: Translation to Processor Functions
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TLENGTH[] = length(v) if v is a variable
~]10 if v is a constant

TLENGTH[fun f(z,: Th,...,2x : Tx) : T = B] = fun length_f(z,: T1,...,zx : Tk) : nat = TLENGTH[B]

TLENGTH([g(t1,...,ts)] =

lg(g(tr,...,tn)) if g is a basic operation
length_g(t1,...,tn) otherwise

TLENGTH][skip] =0

TLENGTH[let v = e; in e2] = TLENGTH[ez[v/ei]]

TLENGTHI[If e; then e: else ea] =
if ey then TLENGTH[e:] else TLENGTH]Jes]

TLENGTH][forall e; <1 < ¢2 do in parallel e3(i)] = €2 — el
TLENGTH[select e; < i < ez in parallel from es(i)] = ;ﬁz;;( TLENGTH][es(1)]
=)

TLENGTH[modify eo(i), e1 <i < ez to es(i) from e5] = TLENGTH[e,]

Figure 3.4: Translation to Length Functions

e < e3 = max(if e; then e; else e3) = e3

e; > e3 = max(if e; then ey else e3) = e

. . s =1 i
(Vi:er < i< ey = ea(i) = ea(e))) = maxes(i) = es(er)
=€)

(forall I < i < r do in parallel {(2))[j] = t(j)

Figure 3.5: Some Additional Simplification -
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Theorem 3.3 (Correctness and Completeness of Algorithm translate) Algorithm translate
terminates for each correcly typed program Il and complezity measure C € {TIME, PROC, SPACE,
LENGTH,SIZE, LL;}. After termination holds for each ezpression e € EXPR and p € ENV:

(a) TIME[e] 11 p < EVAL[TTIME[e] ] ' 1 () p
if C = TIME and T = T1 U {TTIME[def] |def € T}

(b) SPACE[e] 11 p < EVAL[TSPACE[e] ] I 1 () p
if C = SPACE and TI' = TI U {TSPACE[def] |def € 1}

(c) PROC[e] 11 p < EVAL[TPROC[e] ] ' 1 () p
if C = PROC and I’ = 11 U {TPROC][def] |def € 11}

(d) LENGTH[e] Tl p < EVAL[TLENGTH[e]] ' 1 () p
if C = LENGTH and I’ = Tl U {TLENGTH][def] |def € T}

(e) SIZE[e] Tl p < EVAL[TSIZE[e] ] ' 1() p
if C = SIZE and 1’ = U {TSIZE[def] |def € 1}

(f) LL[e] T p < EVAL[TLLi[e] ] ' 1 () p
if C = LL; and II' = T U {TLL[def] |def € T}

Moreover simplifications of I do not change the properties (a) - (f).

3.1.2 Normalization

The goal of the normalization step is to bring the output of the transformation into an equivalent
form suitable to further processing. The result of this step is a program containing no nested
conditionals, having removed some irrelevant argument positions from complexity functions, and
contain no conditional statement inside a maximum operation. The normalization is performed
by applying some program transformation steps. Only the last transformation is performed by a
fold-unfold tactic. Thus the normalization algorithm is as follows:

Algorithm normalize

INPUT: A program Il
QuTruT: An equivalent program II’ satisfying definition 3.10.

while rule 6 is applicable do [loop 1]
Apply rule 6;
end while;
I := irrelevant_positions(1I)
while [ # 0 do [loop 2]
take an f/i € I;
apply rule 7 on Il with f/3;
while rule 8 is applicable on IT with f/i do [loop 2.1]
apply rule 8 on Il with f/3;
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end while;

snd while:

while rule 9 is applicable do [loop 3]
let f' be a new symbol [i.e. not defined by II or by figure 2.8]
apply rule 9 on II with f’

end while;

output II

The elimination of nested conditionals is given by the following rule:

Rule 6 (Elimination of nested conditionals)

if C; then if C; then £; else &; else &3
if C; AC, then £ else if C; A =-C; then &; else &5

The correctness of the rule (i.e. an application of rule 6 to a program II does not change the
semantics of I1) is obvious, and is for expample proven in a similar setting in [BW80]. After one
application of rule 6 to a program II, the number of the redeces in Il decreases obviously by one.
Hence:

Lemma 3.4 Loop 1 in algorithm normalize terminates, and afler its termination the program II'
does not contain nested conditionals and is equivalent to the program TI' before loop I

The translation to complexity functions makes some of the parameters superflous. This can be
easily seen by consideration of the rules for variables, because in some of them variables just
disappear. This effect is the idea behind loop 2 of algorithm normalize. A more formal definition
of this property is:

Definition 3.5 (Irrelevant Argument Positions) Let
fun LB iy eyiln )i =B

a function definition in a program Il (for ezample that after loop 1). An argument position f[i
(1 € i< n) is called irrelevant iff for all terms ty,...,t,,u; of lype T1,...,Tn, i, for alln € N, for
all pe LOCAL and all p € ENV holds:

EVAL[f(t1;-- s biatistisnae- 1 3a)) Nnpp=EVAL[f(t;, .- tic1, i, tigr, - tn)] I npp.

Otherwise, f]i is called relevant. An argument position f[i occurs in a term ¢, iff x; is a subterm

of 1.

It is clear, that in general it is not decidable whether an argument position is irrelevant or not.
However, it is possible to give an algorithm yielding a set of irrelevant argument positions of a
program II, but not necessarely all of them. This algorithm is an extension of that in [Weg75] and
has been successfully used in the automatic complexity analysis of sequential algorithms [Zim90b].
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Algorithm irrelevant_positions

InpPUT: A program II
OuTpuT: A set I of irrelevant positions in II

R := 0; [R is the set of eventually relevant position]
repeat
R := R U{f/i]|f/i occurs in a non-recursive subexpression of II}
U{f/i|f/i occurs in a condition in I}
U{f/i|f/i occurs in an argument at a position in R}
until R does not change;
output {f/i|f/iis an argument position in I} — R

In [Weg75] and in the generalized version in [Zim90b], this algorithm is used as a definition. It is
straightforward to show that this algorithm is correct.

Lemma 3.8 (Correctness of Algorithm irrelevant_positions) Algorithm  irrelevant_positions
applied onto a program 11 terminates and oulputs a set of irrelevant argument positions in Il

Proof: The termination is obvious because there is only a finite number of argument positions in a
program I, and no iteration deletes argument positions from R. If no argument position is added
to R, then the loop terminates. Thus there is only one execution of the loop body which adds
no argument position to R. This property together with the finiteness of the number of argument
positions ensures the termination.

Let I be the output of algorithm irrelevant_positions. It remains now to show that if f/i € I, then
f/iis in fact irrelevant. Observe first that if f/i € I and z is the parameter on f/i, then

(i) In the body of f, z doesn’t occur in a condition, and
(ii) z doesn’t occur in a non-recursive subexpression, and

(iii) z occurs only a subterm on a recursive call of a function g on the i-th position, if g/i € I.

We prove now by induction on the number of (mutually) recursive function calls the following
equivalent statement:

For each f/i € I (fun f(z, :7,...,2, : Ty) = B € Ml then foreachn € N,p € LOCAL,
p€ ENV:

EVAL[B) lnpp=EVAL[B] 1l npp’

where p’ is any environment satisfying p’(z) = p(z) for all z # z;. Especially the values
p(z;) and p'(z;) can be different.

42



INDUcTION BAsis: The number of mutually recursive function calls is 0.
Then (i) and (ii) are satisfied and there is no access to z; during the evaluation. EVAL[z;] I n'p' p
is never called. Thus, in this case the result of the evaluation doesn’t depend on p(z;).

INDUCTION STEP: The same arguments as used in the induction basis show that the only possibility
where the claim is not satisfied could be recursive function calls. Let

EVAIL[g(t1,...,t:)] ' p p

be such a function call and z; be a subterm of ;. By property (iii), it must be g/j € I. Furthermore
let be

fun g(y, : 01,-.., Yk :0x) :0 = B’
be the function definition of g in II. Then by induction hypothesis:

EVAL[B'] TIn' p' pp= EVAL[B'] Tn' p’ pp
and

EVAL[B'] Tin' p’' pp’ = EVAL[B'] TIa' p’ pp’
where p = [y /EVAL[L] IL o' p' p]---(y;/ EVAL[t;] T »' p' p]---[yx/ EVAL[t,] T 2" p’ p] and
p=I[n/EVAL[t;] T o' p' p]---[y;/EVAL[t;] TLn' p’' p']---[yu/EVAL[ty] T o' p' p]. f z;is a
subterm of B’ then z; € {y1,...,yx}, for if not then the evaluation would not be correctly typed in

the sense of definition 2.21. By definition we of the access to variables in the environment we have
therefore:

(p)(z:) = plz:) = (pp')(x:)
and therefore
EVAL[B'] TIn' ¢ jp = EVAL[B'] Tia' p' pp’
Thus
EVAL[g(t1,...,1)] T o' p' p= EVAL[g(ty,...,1)] L n' p' p'

By definition, irrelevant argument positions can be removed safely from a program, i.e. the corre-
sponding rules for function definition and function application are therefore

Rule 7 (Remove Irrelevant Argument Positions From Function Definitions)

fun f(P1y.ees Picty Piy Pigrys 1 Pu) : T =&
fun .f(’ph"'!Pf—lapi+la"'3pn) 1T =£

(f/7)
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Rule 8 (Remove Irrelevant Argument Positions From Function Calls)

f(gl} - I 1$£::£1+11
(51! . t 1151-}-11 .

=57

It is nearly obvious from definition 3.5 and from lemma 3.6:

Lemma 3.7 Loop 2 of algorithm normalize terminates, and after its termination, the program II'
is equivalent to the program before the loop and the argument positions in I are removed.

Proof: Suppose first that the inner loop always terminates. The body of the outer loop is executed
once for each element in I. Now let f/i € I. Then after execution of one iteration of the inner
loop, the number of redeces of rule 8 with the argument f/i is reduced by one. Therefore the inner
loop also terminates.

In order to prove the correctness suppose first that after application of rule 7, the original function
is still in the program. Let f(t1,...,1,) be a redex of rule 8. Suppose further that EVAL chooses
the function with the approbriate arguments. Let f/i € I. Because of lemma 3.6, the argument
position f/i is irrelevant. But then, by the definition 3.5:

EVAL[f(tla"'ati—lstfati+1a--- ] ]—Irnpp_EVALl]:f(tlv" ti- 1$tl+1$"'$tﬂ)] an’pp

for any n € N, p € LOCAL, and p € ENV. Hence, after the execution of the inner loop the
semantics of the program is not changed. Because then the argument position f/i is eliminated
from each function call, all calls of f have now n — 1 arguments, and the original function f with n
arguments is never called. Thus the old function definition of f with n arguments can be removed
from the program without changing its semantics. Hence, one execution of the body of loop 2 does
not change the semantics of the program and removes the selected argument position. |

The third important transformation is to eliminate conditionals as arguments of the maximum-
operation. The most easy transformation is to create a new function having the free variables of
the condional expression as parameters and the conditional expression itsself as the body. Then
the argument of the maximums-operation is replaced by a function call:

Rule 9 (Elimination of Conditionals in Maximums)

T1,...,Tn are the free variables in
max,_, if C then £ else & C, & and &. 7 are the appropriate
maxi_; f(z1,...,Zn) ) types of the variables z,;, and 1
fun f(z1:71,...,2Zn : Ta) : 7 =if € then £ else £; is the unified type of £ and £;

This transformation consists just of folding a conditional with the new function definition. Fold-
transformations are correct as often proven in literature (e.g. [BD77, BWR80]). Furthermore, in
each execution of loop 3, the number of redeces of rule 9 decreases by one. Thus:

Lemma 3.8 Loop 3 in algorithm normalize terminates, and after its termination the program II'
is equivalent to the program before loop 3.
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Putting lemmas 3.4 to 3.8 together we have:

Theorem 3.9 (Correctness of normalize) Algorithm normalize terminates, and after its termi-
nation its output R and I’ is equivalent to its input and satisfy definition 3.10

After execution of algorithm normal Il and R is said to be in normal form, i.e.

Definition 3.10 (Normal Form) A program Il is called in normal form, iff

e Fach function body is of the form

if C; then &
else if C; then &,

else &

e No function body contains let-expressions

e No conditional is inside a mazimum-operation

This step transformes a program in a very nice form for further processing, and is crucial for making
the transformational phase complete.

3.1.3 Derivation of Symbolic Equations

The goal is now to transform the program into an equivalent set of equations. The notion of
equivalence is based on definition 3.11. The transformation is performed by evaluating the functions
with symbolic arguments and hoping that the conditions evaluate to true or false. If this is not
possible then conditional equations are created.

The main algorithm of this subsection uses the definition of a term value. A value of a term ¢ is
the set of terms, where each variable in { is substituted by any term of its type. More formally the
value of a term ¢ containing variables z1,...,z, or types Ty,...,T,, respectiveley is definded by:

wal(t) = | U {z/t - [za/talt}

i=1 LEeT;

The value of a finite set .S of terms is the union of the value of its members.

After transforming the program obtained by the normalization phase into equations, the symbolic
evaluation is as follows:

Algorithm symbolic_evaluation
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INPUT: A set of equations £

OQuTPUT: An equivalent set of equations E’, s.t. each RHS in E’ of the form if
C then --- implies that there are no finite sets S; and S; whose values
form a partition of a certain type and have the following property:

. Y(t1,...,tn) € val(Sy) : EVAL[C] 0 1 () [z1/t1] - - -[zn/tn] = true
% Y(t1y...,1n) € val(S2):

EVAL[C] 0 1 () [z1/t1] - - -[zn/tn] = false

where z1,..., T, are the variables in C.

(1) E':= {LHS = RHS € E|RHS #if - -};
(2) E:= E-E';
[ The set E’ is the set to be examined]
(3) while E # 0 do [loop 1]
(4) let LHS =if C then E; else E; € E

(5) remove this equation from E;

(6) let {z1,...,2,} be the variables of C' with types T1,...,Ty;

(7) if C contains a non-basic operation V

(8) C contains a subterm of type nat which contains more than one variable or
(9) is not linear in its variables [see lemma 3.14 V

(10) C contains a condition of the form f(n) < g(m) where n # m are variables Vv
(11) C contains a term of the form a[t] where ¢ is not constant

(12) then [This equation is not symbolically evaluable]

(13) E':= E'"U{LHS =if C then E; else E,};

(14) else

(15) assume C in disjunctive normal form;

(16) find a finite set S of terms such that [see algorithm instantiate_condition]

(i) V(t1,...,tn) € val(S) : EVAL[C] B 1 () [z1/t1] - - -[zn/tn] = true
(i) V(t1yeeeptn) ETy X oo X Ty — val(§): EVAL[CY 0 1 () [z1/t1] - - -[zn/ta] = false
[The following step can be performed by algorithm complete ]

(17) Find a set S’ s.t. val(§') =Ty X --- X T, — val(5);
[The following condition can be checked by algorithm consistent]
(18) if S and S’ don’t form a partition of Ty x -+ x T},
(19) then E':= F'U{LHS =if C then E, else F,};
(20) else [The following two steps can be performed by algorithm minimize
(21) Find a minimal subset Sy C § s.t. val(5,) = val(S);
(22) Find a minimal subset §, C §' s.t. val($2) = val(S’');
(23) for each (s1,...,5,) € 5 do [loop 2]
(24) o= [z1/81] - -[xn/sal;
(25) E':= E'U{oLHS = 0E,};
(26) end for;
(27) for each (s1,...,5,) € S, do [loop 3]
(28) o :=[z1/81]++[znf5n];
(29) if £, is a conditional then
(30) E:= EU{cLHS = o Ey);
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(31) else E' := E'U{cLHS = oE,}; end if;
(32) end for;

(33) end if;

(34) end if;

(35) end while;

(36)output E'

Before performing any correctness proof and complexity analysis of algorithm symbolic_eval, we
define the algorithms used there, and analyze their complexity.

First, the precise definition of the semantics of equations is given. Observe, that a function can now
be defined by more than one equation. The semantics is then closed to the standard semantics of
strict functional languages, i.e. if evaluating a term, the equation with a matching LHS is chosen.
If there are more equations with a matching LHS, then the most specific equation is chosen:

Definition 3.11 (Semantics of Equations) (a) Let f(t1,...,t,) = RHS € E be an equation.
Then f is a by E defined symbol.

(b) Lett be a term, E be a set of equations. The set of variables V() of t is inductively defined
as follows:

Viz)
V(f(t1,-..1ta))

Il

{z} if 2 is not a by E defined symbol and not a basic operation
] otherwise

V(t) U+ UV(ta)

(¢) Lett be a term, E be a set of equations. The set
A(t) = {LHS = RH S|3substition ¢ : 0 LHS = 1}

is called the set of applicable (or matching) equations in E for t. The equation LHS =
RHS € A(t) s.t. for.all LHS' = RHS' there is a substitution o' with ¢’ LHS' = LHS is

called the most specific applicable equation.

(d) In figure 2.11 the evaluation rule for function application is replaced by:
EVAL[f(t1,...,t.)] Enpp= EVAL[RHS) En p op
where LHS = RIS is the most specific applicable equation in E, and o LHS = f(t1,...,1,).

Suppose now that a condition C has variables V(C) = {z,...,z,} and z; is type T;. Then
algorithm symbolic_eval has to find a partition of Syue ¥ Sputse = T1 X -+ X Ty, such that for all
(t1,---,8n) € Strye the condition C evaluatesw to true under the environment [z /t;]- [z, /t,].
Similarly C must evaluate to false, if it is instantiated with terms in Sfe.. This partition has to
be defined by finite sets of terms whose values are Sy, and Sy, , respectively. Furthermore these
two sets of terms should be as small as possible. Thus we define
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Definition 3.12 (Finite Description of A Partition of Type A) Two sets of terms S} and
S, describe a partition of A, iff val(S1) W val(S;) = A. They are called a finite description of
partition of A, if both S; and S; are finite. Finally, such a set S; is called minimal, if for any
different terms s, 8, € S;, there is no substititon o such that o s1 = 33 or o 83 = 8;.

Thus a set S of terms is minimal, iff for any proper subset S* C § also val(S’) C val(5). We start
now with defining a decision algorithm for the above definition, and obtain then from this algorithm
a new algorithm computing a partition. The next twolemmas provide important properties for finite
descriptions of partitions of natural numbers. We will see that such descriptions can contain only
constant or linear terms. These lemmas are based on well-known theorems of number theory. It is
assumed that the basic operations on natural numbers are addition, multiplication, and computing
the remainder.

Lemma 3.13 Let A;={ain+b; | n >0}, 1 <i<k. Then

k
ng{n|n > ng} C UA,‘ & Ja¥0<i<eaedjdn€ Aj:n=imod a

i=1
This is a standard number theoretic result, and proven by defining a to the least common multiple

of ay,...,ar. In this case ng = Iélaéxk b; is sufficient.
1<i

Remark: This lemma provides a methodology for checking whether a set of at most linear
terms describe N. First extract the linear terms a; n + &;,1 < i < k of this set, and choose
a = lem(ay,...,ax). Then check whether

k
Ui +7al0<j<a/a}={0,...,a—1}

1=1

If this is not the case, then by lemma 3.13, this set cannot describe IN. Otherwise, check whether
all terms less than b = max(by,...,bt) can be obtained by S either by constant terms in S or by
choosing finite values of n and evaluating with these values the linear terms (checking this forn < b
would be sufficient. | |

The other important result from number theory is

Lemma 3.14 Let be A; = {Pi(n) | n > 0}, 1 < i < k, where the P; are polynomials (or faster
increasing functions). If there is a ng € N s.t:

{nln>mng} C Ay U---U Ag
then there are A; , 1 < j <1 such that P; is linear and
{nln>n} CA,U---UA;,

for any € N.
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The proof is based on the fact that functions growing faster than linear functions grow so fast that
only a finite set of linear functions can cover the gaps left by this fast growing function. But then
it can be shown, that this finite set of linear functions cover already each large natural number.

This lemmas allows to exclude higher degree polynomials from consideration in finding finite de-
scriptions of partitions of N. Moreover if there are polynomials in one of the two sets, then it follows
immediately that the values these sets are either not disjoint, or their union is not N. Thus, if some
polynomials occur in a condition C, this condition cannot be evaluated symbolically in finite steps,
and hence a conditional equation is created.

The following algorithm, based on lemmas 3.13 and 3.14, checks whether the value of a given set
S of terms describe a type A. Later this algorithm is modified, s.t. it returns a set §' s.t SU S’
describes A.

Algorithm complete

INPUT: A finite set S = {¢1,...,t,} of terms, and a type T, where all ¢; are of type T
OvuTtpruT: true, if T = val(S), false otherwise. :

(1) if S = {a} then output(irue); end if
(2) caseT of

(3) nat: assume § = {a; n+b;|1 < i< k}U{c;|]1 <j< I}
(4) if £ = 0 then output(false); end if;
(5) b := max{by,...,b};
(6) a:=lem(ay,...,ax);
(7) C::{cJ-|1gjgf}u{a;n+b;|15i5k,a,-n+b;§b};
k
(8) if | J{b +j @i mod a|0 < j < a/a;} = {0,...,a -1}
i=1
(9) then output(C = {0,...,b— 1});
(10) else output(false); end if;
(11) (B): if § = {{)} V() ¢ 5} then output(false); end if;
(12) assume S = {{), cons(ay 1,11),..., cons(ar, 1,1),..., cons(@i,m,m), ..., cons(ag,, m,Im)};
(13) output(/\ complete({ay ..., ax i}, B) A complete({l1,...,1.}, {B})) 3
i=1
(14) B x C: assume S = {(a1,b1,1),...,(@1,06,1)s - s (@my bim)s - - s (@ bk ) )
(15) output (/\ complete({by ;,...,bx,:},C) A complete({ay,...,an}, B)) z
i=1

(16) end case;
|

Lemma 3.15 (Correctness of Algorithm complete) Algorithm complete terminates and returns

true if and only if val(S) = A.

Proof: The termination follows from the complexity results in lemma 3.16. Thus, suppose that
algorithm complete terminates on input S and A.

The correctness is proven by induction over the structure of types:
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CASE 1: A = nat. The correctness follows from lemmas 3.13 and 3.14

CASE 2: A = (B). This case is proven by induction on the cardinality of S.

Case 2.1: card(S) = 1. If § = {I} then val(S) = (B), and algorithm compleie returns true.
Otherwise § = {{)} or § = {cons(t;,t2)} for some terms t;,t;. In both cases algorithm complete
returns false.

CASE 2.2: card(S) > 1. Then, by the induction hypothesis for the induction over the type
structure, for all 1 < i < m:

complete({ay ;,...,ax;}, B) = true & val({ay;,...,ax,i}) =B
By the induction hypothesis on card(S) we have:
complete({l1,...,lm},(B)) = true & val({h,...,In}) = (B)

Suppose now complete(S, (B)) = true. Then it follows from the above observations:

)=
kg
val(S) = U cons(aj, :)[a € val( aJ) - € val(l;)}

3 qu

{}u U{cons(a,i,-)]a € B}

{()}u {=cons(a.,f)|a6 B, le (B)}
- (B)

Suppose now complete(S, (B)) = false. Then there is one i such that complete({ay ;,...,ax, :}, B) =
false or complete({ly,...,Im},(B)) = false. In the former case is a b; € B — val({ay;,...,ax, }).
Then for any ! € val(l;), we have cons(b;,1) ¢ val(S). A similar argument show in the latter case,

that val(S) # (B).
Cast 3: A = B x C. This can be proven similarly to the case A = (B). u

Lemma 3.16 (Time Complexity of Algorithm complete) . Let S = {t1,...,t,} be a set of
terms and m = sz(t;) + - - -+ sz(t,) Let S’ be the set of mazimal subterms of type nat in S, and S’
be partitioned as line (3) of algorithm complete, b defined as in line ({), and a defined as in line
(5). Furthermore let m be the cardinality of S'. Then algorithm complete(S, A) terminates after

O(m n alog(n a)+ m n b log(n b)) steps

Proof: Define T(n,m) be the number of steps algorithm complete(S, A) needs to terminate, where
n and m are the above numbers. We first discuss the complexities of each line. Line (1) costs
clearly only O(1) steps. The partition of a set with m elements in line (3) costs O(n log n) steps
by sorting according to a lexicographic ordering on the coeflicient tuples. Line (4) costs a constant
amount of time. If k is the number of linear terms, then line (5) costs O(k) time steps, and line
(6) costs O(k log max{ay,...,ac}) time steps. Both The computation in line (7) costs O(x b).
For the test in line (8) use 2-3-trees. First insert the elements 0,...,a — 1, and then compute all
b;+j a; mod a and delete them from the tree. If an empty setl remains, then the test was successfull.
Altogether a inserts and at most & a deletes are performed according to [AHU74, page 163], this
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needs O(k a log(k a)) steps. Similarly, if line (9) is evaluated together with line (7), this needs
O(k b log(k b)) steps. Line (10) needs a constant amount of time. Thus, line (3)-(10) need

O(n a log(n a) + n b log(n b)) time steps
We have therefore:
T(n,0) < ¢o (n a log(n a) + n b log(n b)

for some suitable constant cg.

Line (11) costs a constant amount of time. For arranging the order in line (12), count first the
length of each vector, and then sort the elements of S according to the lexicographic ordering on
(lg(t:), z) where z is the most inner list, and () < z. Thus line (12) can be done in O(n logn) steps.
The combination in line (13) requires at most O(n) steps, the cardinality of the recursive sets is
less than n, and the sum of their sizes is less than m — 1. We have therefore for line (11) - (13)
(and similar arguments hold for lines (14)-(15):

T(n,0) < c¢o(na log(na)+nblog(nb)

!
T(n,m) < e nlogn+ ) T(kiji)

=1

for some suitable constants cg, ¢;, and forall 1 < i< lis k; <!,and j1 +---+ 7y < m —1{'. Then
it is easy to proof by induction m:

T(n,m)<cimn logn+co(m+1)(nalog(na)tnblog(nb)

Now, the algorithm complete is modified to an algorithm complete’, such that it outputs a set of
terms completing the input set, i.e. complete’(S, A) = S’ such that val(S U S’) = A. In the case
of natural numbers, instead of the test of line (8) we compute the difference of these sets.. From
the remaining elements, the suitable terms are constructed. The same is done in line (9), and the
resulting set is the union of these two sets. It is important to sce, that we can use the same data-
structure (2-3-Trees) to construct these two sets. Thus, the asymptotic complexity doesn’t change
in this case. In the case of lists and cartesian products, the recursive calls output completing sets
for subterms. These sets are used to compute the output set S'.

Algorithm complete’

INPUT: A set S of terms, and a type A, s.t. the typeof f € §is A. All maximal
subterms of type nat in § are at most linear.
OuTruT: A set S’ such that val(SUS") = A

(1) if § = {a} then output(d); end if;
(2) case A of
(3) nat: assume S = {a; n+b; [1 <i<k}U{eo,...,cs};

'l is the number of recursive calls of complete and corresponds Lo m in algorithm complete



(4) if £t =0 then

(5) m = max S; output({0,...,m} - S)U {n+ m + 1});

(6) else b := max{by,...,b};

(7) a :=lem(ay,...,a;);

(8) H:={0,...,a=1} = U {(b: + j ;) mod a |0 < j < a/a;};
(9) L:={0,...,b—1} — {s|s € val(§), s < b};

(10) output(LU{a -n+b+ clc€ H});

(11) end if;

(12) (B): if ()} ¢ S then §':= {{)};

(13) else if § = {()} then output{cons(a,!)});

(14) else 5’ := 0; end if;

(15) S:=5U58"

(16) assume S = {{), cons(a; 1,1),...,cons(ax, 1,41),...,cons(ayr,!r),..., cons(ak, r,I:)};
(17) fori=1,...,rdo

(18) S’ := 8'U {cons(a,l;)|a € complete'({a,,;,...,ax,i}, B)};
(19) end for; '

(20) 5" := {cons(a,l)|l € complete'({l1,...,1:},(B))};

(21) output(5’);

(22) BxC: S8 :=0;

(23) assume S = {(a1,b11),...,(@1,06,1)s. -y (@ryb1p)y. s (@rybi ) )5
(24) fori=1,...,rdo

(25) §":= 5"U{(ai,b)|b € complete’({by,...,bk.i}, B)};

(26) end for;

(27) S':= §"U{(a,b)|b € complete’({as,...,a:},A)};

(28) output S’;

(29)end case;

The proof of the correctness or algorithm complete’ can be obtained by simply modifying the proof
of algorithm complete, and is therefore omitted here.

Corollary 3.17 (Time Complexity of Algorithm complete’) . Let S = {t;,...,1,} be a set
of terms and m = sz(t;) + -+ + sz(1,) Let S be the set of mazimal subterms of type nat in S, and
S’ be partitioned as line (3) of algorithm complete, b defined as in line (), and a defined as in line
(5). Furthermore let m be the cardinality of S'. Then algorithm complete(S, A) terminates after

O(m n alog(n a)+ m n b log(n b)) steps

Proof: It is obvious that in the case A = nat the complexity is the same as in algorithm complete.
If we can show that lines (16) — (20) cost O(nlogn) time then it follows immediately that the
asymptotic complexities of algorithm complete and algorithm complete’are the same. By the choice
of 2-3-trees, we know that the recursive calls return 2-3-trees. Lines (16) — (20) perform altogether
n + 1 union-operations. These operations cost according to [AITU74, page 263] O(n logn) steps.
|

The next algorithm checks for two given sets §; and Sy, whether val(.Sy)Nval(.52) = @. This property
is called the consistency of S) and S3. All subterms of type nat are assumed to be linear in one



variable or being constant. Otherwise zeros of multivariate polynomials have to be determined.
One example of this problem is Fermats problem, which is not yet solved in general. Hence, the
restriction to linear and constant terms. When we use the algorithm in algorithm symbolic_eval it
is ensured, that all subterms of type nat are either constant or linear. Again, lemmas 3.13 and 3.14
are useful to deal with natural numbers.

Algorithm consistent

INPUT: Two sets S; = {t1,...,1n}, and S2 = {u1,...,un} such that each sub-
term of type nat is either constant or linear in its variables, and each t;
and u; are of the same type A.

OvutruT: If wal(S;) N val(S;) = O then true else false.

(1) if §; = {a}V S3 = {a} and ¢ is a variable then output(false) end if;
(2) case A of

(3) nat: assume S} = {a; - n+ b;|1 <1 <k}U {c1y..-,Cnk};

(4) assume 52 = {a; - n+ G|l <i < U {11, Tm-t};

(5) bi=max{bi, ..y bkyClye ey Cacky By e oy Bls Y1y ooy Ym—1};

(6) a :=lem(aq,...,a ,01,...,01);

(7N Ry :=UL {(bi+ja)mod a|0<j<afa;};

(8) Ry :=UL {(Bi+j @) mod a |0 < j < a/ai};

(9) if R, N Ry # 0 then output(false); end if;

(10) Ay = {n|n € val(S1),n < b};

(11) Az := {n|n € val(532),n < b};

(12) if A; N Ay = 0 then output(true) else output(false) end if;

(13)  (B): if () € 51 A () € S, then output(false) end if;
(14) 51:= 51— {(}
(15) 5z := 82— {{)};

(16) for all t € 5; do [all terms are supposed to have different variables]

(17) for all u € 5; do

(18) if ¢t and # do not contain a non-constant subterm of type nal then
(19) if ¢ and u can be unified then output(false);

(20) else output(irue); end if

(21) else replace each non-constant maximal subterm of type nat by
(22) a new variable z, and store the replaced terms in a substitution p;
(23) if t and u are unifiable then

(24) o = unify(t, u);

(25) for each [z/y] € o do

(26) if z and y are variables, and

(27) consistent(p(z), p(y)) then output(irue) end if;
(28) end for;

(29) output( false);

(30) end if;

(31) end if;

(32) end for;

(33) end for;

(34) output(true);

(35) B x C: for all t € 5| do [all terms are supposed to have different variables]
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(36) for all z € S; do

(37) if t and u do not contain a non-constant subterm of type nat then
(38) if ¢ and u can be unified then output(false);

(39) else output(irue); end if

(40) else replace each non-constant maximal subterm of type nat by
(41) a new variable z, and store the replaced terms in a substitution p;
(42) if t and u are unifiable then

(43) o := unify(t, u);

(44) for each [z/y] € o do

(45) if y is not a variable, or

(46) not consistent(p(z), p(y))

(47) then output(false) end if;

(48) end for;

(49) end if;

(50) end if;

(51) end for;

(52) end for;

(53) output(true);

(54) end case;
|

Lemma 3.18 (Correctness of Algorithm consistent) Algorithm consistent terminates and out-
puts true, iff val(S;) N val(S;) = 0.

Proof: The termination is obvious. Consider now the case where §; and §; contain term of type
nat:

Suppose val(S5;) N val(S;) # @. Because both §; and 52 contain only linear or constant terms, it
must hold for an ng, a, k, and {:

{s|s € val(51), s < no} N {s|s € val(S3), s < no}

k {
or 5 = U{n|n = b; mod a,n > ng}, S; = U{n|ﬂ = ¢; mod a,n > ng} where {b;,....,0i} N
i=1 =1
{c1,..-,cr}. In the first case, algorithm consistent outputs false because of line (12), in the second
case it also outputs false by line (9).

Suppose now, that the algorithm outputs {rue. Then we have RN Ry = P and Ay N Ay = @. Then
we have by (5)-(8) and (10)-(11)

k

S5 = AU U{n|n =b+ja; moda, 1 <j<aja;, n>b}
i=1
{

S = AU U{n|n =fi+ja,moda, 1 <j<aja, n>b}

i=1

Because RiNRy =0, A\N Ay =@, and by definition A;N Ry = P and AyUR; =0, it is §;N.5, = .
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Consider now the case where the terms in S} and S; are of type (B) for some B. Suppose the
algorithm outputs false. Then one of the following two cases occur:

CASE 1: There are two terms t € Sy, and u € S2, none of them containing any non-constant
subterm of type nat, and ¢ and u can be unified. Let o be the most general unifier of ¢ and u. Then
it is

@ # val(o t) N val(ou) C val(t) N val(u) C val(Sy) N val(S2)

and therefore the intersection of the values of S; and S; cannot be empty.

CasE 2: Two terms ¢ € S; and u € S, contain non-constant subterms of type nat. Then by lines
(21)-(22) each such subterm of type nat is replaced by a new variable, and the substitution p can
recover its values. Let ¢’ and 4’ be these modified terms. The algorithm outputs false if ¢ and o’
can be unified, and for each pair [z/y] in the most general unifier o of ¢’ and v’ holds: if z and y
are variables, then consistent(p(z), p(v)) = false and hence val(p(z)) N val(p(y)) # @. Then:

0 # val(p(o(t'))) N val(p(e(u'))) C val(t) N val(u) C val(Sy) N val(Sz)

Suppose now val(S7) N val(S;) # B. Then there are two terms ¢t € Sy, u € S3 such that val(S,) N
val(S2) # 9. By definition of val, there must be an environment p such that p t = p u. Hence, p
is a unifier of ¢ and u. If neither ¢ nor u contain any non-constant subterm of type nat, then the
algorithm outputs false by line (19). Otherwise the by lines (21)-(22) modified terms ¢ and u’ can
also be unified. Let o be their most general unifier. Suppose now the algorithm would output irue.
Then there would be subterms on the same occurence, such that their values represent two disjoint
sets. But then val(t)Nval(u) = @ in contradiction to the assumption. Hence the algorithm outputs
also in this case false.

The cartesian product is proven analogously to vectors. |

Lemma 3.19 (Complexity of Algorithm consistent)
Let be Sl.:: {i],. . .,tn}, .5'2 = {ul,. ..,um}.

(a) If all t; and u; are of type nat then let b the largest number occuring in any of the t; and u;
and let a be the least common multiple of all coefficients of variables among the t; and u;.
The time complexily of algorithm consistent with inpul S, and S, is then

O((n+m) (elog((n+ m) a) + b log((n+ m) b)))

b If the t; and u; are vectors, let b be the largest natural number occuring in S, and Sy, v =
sz(t1) 4 -+ -+ sz(tn), and s = sz(wy ) + - -+ + sz(um). Then algorithm consistent with input 5y
and S, lerminates after

O(b*logh (m r 4 n s)) steps.

Proof:

(a) Lines (3)-(4) need as in the proof of lemma 3.16 O((n + m) log(n + m) steps. Line (5) can
be performed in O(n + m) steps. Using Euclids algorithm, line (6) can be performed in time
O((k + {)logb). Using 2-3-trees lines (7) - (9) can performed in O((k+1) a log((k+1) a))
steps and lines (10) - (12) can be performed in O((k +1) b log((k +1) b) steps. Summing up
these complexities yields the stated result.



(b) We consider here the case of vectors. The complexities in the case of cartesian products is
obtained similarly.

Using 2 — 3 — trees, the test in line (13) requires O(log n +log m) steps. Similarly, lines (14)-
(15) require O(log n + log m) steps. Define now r; = sz(t) and s, = sz(u). Consider now the
body of the loops in lines (18) - (31) for two particular terms ¢ and u. The test in line (18)
can be easily performed in time O(r;+ sx). According to [MM82], line (19) can be performed
in O(r¢+ s,) steps. Line (21) needs also O(r;+ 8,) time. Also lines (23)-(24) need that time.
In line (26), it can be seen by (a), that at most O(b?, logby,) steps are needed, where b,y
is the largest natural number occuring in b and u. Because the length of the substititution o
is certainly bounded by 7 + s,, the loop (25)—(27) requires at most O((r; + sy) b7, logby,.)
steps, and is therefore dominating in lines (18)-(31). Because

> D (re+su) b7, loghy, < bPlogh Y Y (ri+sy) =b*logh (mr+ns)
teS; ueS; tES] uES;

the time coplexity of algorithm consistent is in the case of vectors O(b%logb (m r + n s)).
H
The next algorithm minimizes a given set S, i.e. it removes terms as long as the value of the set is
not changed. Its application in algorithm symbolic_eval will lead to a smaller set of equations. Its

main idea is based on the following observation. If a set § contains to terms s and ¢ such that s
matches ¢ then s can be removed from S without changing the value of S.

Algorithm minimize

INPUT: A set S of terms.
QuTpPUT: A minimal subset S’ C S such that val(S) = val(5’)

(1) Vi=8 Ei=0 8 =8;
(2) forallteV do

(3) for all s € V - {t} do
(4) if ¢ matches s A =s matches t then E := EU {(s,1)}; end if;
(5) end for;

(6) end for;

(7) for all (s,t) € E do
(8) 8= —{s}
(9) end for;

(10) output 5’;

Lemma 3.20 (Correctness and Complexity of Algorithm minimize) Algorithm minimize
outputs after O(n* m) steps for each input set S with card(S) = n and m = maxes sz(1) a minimal
set S’ such that val(S') = val(S).

Proof: For the correctness define a relation

§ < | :& { matches s



It is well-known that this relation forms a partial order. Hence the loop (2)-(6) yield a graph where
two vertices are connected by an edge if they are ordered by <. Observe that the test in line (4)
and the exclusion of ¢ in line (3) excludes reflexive edges from G = (V, E). Thus G is a directed
acyclic graph. Because G is acyclic there are terms ¢ which do not precede any other term in G.
These terms are selected in the loop in lines (7)-(9). Thus for each s € § — S’ there is ¢ € S’ such
that s matches {. Hence the s in line (8) can be removed without changing the value of 5’.

Consider now the complexity. The test in line (4) costs O(max(sz(s), sz(t))) steps, which is O(m).
Furthermore line (4) is executed n? — n times, and thus lines (1)—(6) needs O(n? m) steps. Lines
(7)~(9) need O(k) steps where k is the number of elements in E. It is k < n?, and hence lines
(7)-(10) need time O(rn?). Altogether the algorithm needs time O(n% m). | |

The remaining algorithm used by symbolic_eval is the algorithm instantiate_condition. The input
of this algorithm is a condition C in disjunctive normal form and a tuple (z,...,z,) of variables
which is of type T} X --- X T,. It outputs a set § of symbolic terms with the following property:

Y(s1y.+.58n) € val(§): EVAL[C] @ 1 () [z1/81] - - [zn/5n] = true (3.1)
V(s1y..382) ETy X - X Ty, — val(§): EVAL[C] 0 1 () [z1/51] - - - [zn/sn] = false 2

Algorithm instantiate_condition

INPUT: A condition C in disjunctive normalform, containing only basic opera-
tions, and a tuple (z1,...,x,) of its variables.
OuTpPuT: A set S with property (3.1)

(1) assumeC =C; V-V Cg;

(2) if k > 1 then output(J~_, instantiate_condition(C;, (zy,...,%,))); end if;
(3) assumeC = Ly A---A Ly;

(4) if m > 1 then

(5) 51 := instantiate_condition(L1,(z1,...,24));

(6) 8, := instantiate_condition(La A -+« A Ly, (21,...,2%5));

(7) output(combine(S), 52)); [It is val(combine(Sy, S2)) = val(S,) N val(S,)]
(8) end if;

(9) case C of

(10) a;-m_,——l—b;(ag-x_,--f-bg:

(11) if a; < a, then

(12) if b; < by then output({(z;,...,2,)}) [condition always satisfied]

(13) else output{(z;,...,z;-1,2; + [(01 — b2)/(a2 —ay)] + 1,zj41,...,2,)}); end if;
(14) else if a; = a; then

(15) if by < b, then output({(zy,...,z,)}) else output(®); end if;

(16) else if b; < by then output({(zy,...,2j-1,¥,2;41,2:)]0 < y < [(by — b1)/(a) — a2)]});
(17) else output({); end if; end if;

(18) not a; - 2; + b < ay-z; + by

(19) if a; < a; then

(20) if b; < by then output(f);

(21) else output{(zy,..., -1, ¥, Zj41,---,Zn)|0 < y < |(by — b2) /(a2 — a1)]}); end if;
(22) else if a; = a; then

(23) if b; < b, then output(Q); else output({(z,...,z,)}); end if;

(24) else if b; < by then output({(z,,...,z;_1,2; + [(ba — by) /(e — az)], 341, 7,)});



else output({(z,,...,2,)}); end if; end 1f;
ak ij-}*---—l-ﬂl -z; 4+ ag = b $kj+°"+b1'$,'+bo=
if (ak,...,a0) = (b,...,b0) then output {(z1,...,2,)}; end if;
C := {z|z divides (ag — bo) A z > 0};
S:={zlzeCAarzF+---+ag=>br 2"+ -+ bo};
output {(z1,...,2j-1,2,Zj41,...,Zn)|2 € S}
not aj m’“j+~--+al sz +ap = by a:*j+“-+b1 - z; + bo:
if (ak,...,a0) = (bg,...,b0) then output @; end if;
C := {z|z divides (ap — bp) A z > 0};
S:={zlzr€CAhapz*+ ---+ag=bp 2=+ -+ bo};
if S = () then output {(z,,...,2,)}; end if;
output {(z1,...,2j-1,¥,Zj41,-- -, Zn) |y SAy <max S or y = z; + max S + 1};
mi(t): instentiate_condition(t = (), (Z1,...,Zn)
not mi(t): instantiate_condition(not t = (), (z1,...,Zx)
hd(t,) = t3: let | be a new variable;
(80, 51, .-, Sn) 1= instantiate_condition(t; = cons(tz,1),(l,21,...,2,));
output {(uy,...,u,)|3t; € S;,t0 € So : u; = [I/to)ti};
not hd(t;) = ta: let [ be a new variable;
(50, 51, .-, 8n) := instantiale_condition(not {; = cons(iz,1),({,21,...,24));
output {(uy,...,un)|3t; € Si,to € So: u; = [I/to)ti};
t1[i] = to: let ao,...,ai_1,! be new variables;
(S],...,Sn,Uu,...,Ug_1,5ﬂ+]) =
instantiale_condition(l; = cons(ag,. .., cons(aj—1, cons(tn, 1)) ---), (T1,...,Tn, o, .- -, i1, ));
output ([ag/ug] - - -[@i1/wiz1][{/tn+1]tk|tx € Sk,a; € Ujytasr € Sppalk=1,...,n);
not {,[i] = t5: let ag,...,a;_1,! be new variables;
(S], “eey Sn, Ug., veliy U{—lmsrt-l—l) =
instantiate_condition(not t; = cons(ao,..., cons(a.—1, cons(tn,{))---),(£1,...,Tn,4o,.. ., a,—1,0));
output ([ag/up] - - [ai—y/ui—1)[{/tns1]tk|te € Skya; € Uj tagr € Spalk =1,...,n);
ti(t;) = tz: let a be a new variable;
(So, S1,...,8,) := instantiale_condition(t, = cons(a,t3),(a,z1,...,2,));
output {(uy,...,u,)|3t; € S;,t0 € So: u; = [a/to]t;};
not ti(t;) = ta: let a be a new variable;
(So, S1,...,8,) := instantiate_condition(not t; = cons(a,tz),(a,ry,...,T,));
output {(uy,...,u,)|3; € Si,lo € So : u; = [aftg]t;};
cons(ty,t2) = {): output (@,...,0);
not cons(t,ty) = (): output (z,,...,z,);
cons(ay,ly) = cons(aq, ly): instantiate_condition(ay; = ax A ly = Iy, (x1,...,2,));
not cons(a;,l;) = cons(ay,ly): instantiate_condition(~a; = az V ~ly = Iy, (21,...,25));
).t = lp: assume | is a k-tuple where 1 < k;
let ag,...,ai—1,a;41,...,ax be new variables;
(S g Faslygss vsiflictedipri s Ag) =
inslanliale_condition(t; = (ay,...,qi_y,lo, @Gip1,-. ., ag), (), ..., Ln, a0, .., @iy, gy @));
output ({[ag/uo) - -[@i=1/wiz1])[aisr/uisr] - [ax/wk)tn|tm € Spyuj € Aj}m = 1,...,n);
not ¢{.t = {3: assume {, is a k-tuple where ¢ < k;
let ag,...,ai—1,8i41,...,a; be new variables;
(S],....,S,“A],...,At'_[,Aj_i_],...,Ak) =

instantiale_condition(—t) = (ay,. .., (S FRRETN S T3S MU 1) Y - TR T 1) PAVRDRNNY' 3G DAY FAS SRS 4% | I
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(70) output ({[ao/uo] - -[@i—1/ui-1])[@i+1/Ui41] -+ - [@k/Uk]tm|tm € Sm,u; € Aj}m =1,...,n);
k

(71) (t1y-..rtk) = (81,...,8k): instantiate_condition (/\ 4 = 8, (2 .,xn));

i=1
(72) not (ty,...,tx) = (s1,...,5k): instantiate_condition (Vt =15t = s;, (e e ,.’cn})‘,
(73) end case;

We complete this section with the algorithm combine. This algorithm computes the intersection of
two sets and is derived from algorithm consistent which checks whether the intersection of two sets
is empty or not.

Algorithm combine

INPUT: Two sets 51 = {t1,---,t,}, and S = {uy,..., U, } such that each sub-
term of type nat is either constant or linear in its variables, and each ¢;
and u; are of the same type A.

OutpuT: A set S such that val(S) = val(5;) N val(S2)

(1) if 51 = {a} a is a variable then output S3; end if;
(2) if §; = {a} a is a variable then output Si; end if;
(3) case A of

(4) nat: assume §) = {¢; -n+ bl <t <k}U{e1,...,cn-k};
(5) assume Sy = {a; - n+ Fi|1 < <IJU {71,y Ym—t};
(6) bis= e {liyy. o By Bty Brsns BlaFusss v Pt 13
(7) a:=lem(ay, ..., ak,a,...,0p);

(8) Ry := UL {(b; 4+ j a;) mod a |0 < j < a/a;};

(9) Ry := UL {(Bi+ i) mod a |0 < j < afe};

(10) R:= R, N Ry :

(11) Ay := {n|n € val(51),n < b};

(12) As = {n|n € val(53),n < b};

(13) A= AN Ay

(14) output AU {a n + ble € R};

(15) (B): if () € S1A{) € 52 then S := {{)} else § := {); end if;
(16) S1:=85-{0h

(17) S2:= 52 - {{)};

(18) for all { € 5; do

(19) for all u € 57 do

(20) if ¢t and u do not contain a non-constant subterm of type nat then
(21) if  and u can be unified then

(22) o = unify(t,u);

(23) S := S U {at};; end if;

(24) else replace cach non-constant maximal subterm of type nal by
(25) a new variable z, and store the replaced terms in a substitution p;
(26) if t and u are unifiable then

(27) o := unify(t,u); ' := ot;

(28) for each [z/y] € o do
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(29) if z and y are variables then

(30) §' = {[y/ultlt € S',u € combine({p(z)}, {p(¥)})};
(31) end for;

(32) Si=8u5"%

(33) end if;

(34) end if;

(35) end for;

(36) end for;

(37) output S;

(38) BxC:5:=0;

(39) for all t € 5, do

(40) for all « € 5, do

(41) if ¢ and u do not contain a non-constant subterm of type nat then
(42) if £ and u can be unified then

(43) o = unify(t,u); S := SU{ot}; end if

(44) else replace each non-constant maximal subterm of type nat by
(45) a new variable z, and store the replaced terms in a substitution p;
(46) if ¢ and u are unifiable then

(47) o = unify(t, u); S’ := {ot};

(48) for each [z/y] € ¢ do

(49) if y is not a variable then

(50) §':= {[y/ultlt € §',u € combine({p(z)}, {p(IN};
(51) end for;

(52) 5 =51 5

(53) end if;

(54) end if;

(55) end for;

(56) end for;

(57) output §;

(58) end case;

The correctness proof is similar to algorithm consistent. The proof for naturals is nearly the same,
and the proof in the case of lists uses the fact that if ¢ is the most general unifier of two terms
s and t then val(ot) = val(s) N val(t). Hence the proof in this case is also almost the same as in
algorithm consistent. We omit therefore the proof of correctness for algorithm combine.

For the time complexity of algorithm combine, observe that the only change to algorithm consistent
is maintaining the set $ and §’ in the case of cartesian products, and computing the output in
the case of natural numbers. In the case ol naturals, compared to algorithm consistent there
is an additional union operation, and a compuatation of second set. This second set costs O(a)
computations. Thus the complexity of algorithm combine is the same as the complexity of algorithm
consistenl in the case of natural numbers.

In the case of vectors, we have n - m unions in line (23) and (32), where n = card(S;) and m =
card(S;). Using 2-3-trecs, this operations cost according to [AHU74, page 163] O(n m(log n+log m)
steps. All the other operations cost altogether the same as algorithm conststent. Observe that for
large sets S7 and S; we have n m (logn +logm) < (m r 4+ n s) where r = 52(5)) and s = s2(.5;).
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Therefore

Lemma 3.21 (Correctness and Complexity of Algorithm combine) Letbe S; = {t1,...,1n}
and 3 = {uy,...,un}.

(a) If allt; and u; are of type nat, then let b the largest number occuring in 51 and 53, and a be
the least common multiple of the coefficients of variables among the t; and u;. Then, after
O((n+ m) (alog((n+ m) a) + b log((n + m) b))) steps, algorithm combine(S,, S2) outputs a
set S, such that val(S) = val(S;) N val(S2).

(b) If all t; and u; are vectors (or cartesian products, respectiveley), let b be the largest natural
number occuring in S1 and Sz, r = sz(t1)+- -+ sz(tn), and s = sz(uy)+ - - -+ s2(um). Then,
after at most O(b%logb m r+n s) steps, algorithm combine(S1, ) outputs a set S such that
val(S) = val(S§1) N val(S2).

We are now ready to prove the partial correctness of algorithm instantiate_condition, and to compute
its time complexity.

Lemma 3.22 (Partial Correctness of Algorithm instantiate_condition) If algorithm instanti-
ate_condition terminates on a condition C and a tuple of variables (z1,...,z,), then it outputs a
set S satisfying (3.1).

Proof: We prove the lemma by induction on the number of recursive calls of instantiate_condition.

Base CAsEe: 0 recursive calls. These cases are the cases of lines (10), (18), (26), (34), (75) and
(76). It is therefore sufficient just to consider the variable z; involved in these cases. All the other
variables

play no role.

(a) a1 z+b; < ag xj+bg: If a; < ay then (a) is equivalent to n > |(b —by)/(az—a;)] + 1. lence,
in this case instantiate_condition outputs the correct result. Similarly, if a; > ag, then (a) is
equivalent to n < [(by—b,)/(az—a;)] — 1. This is never satisfied if b, < by, and therefore, the
output is also correct in this case. Finally, if a; = a,, then the condition is true iff b; < bs.
Thus the output is also correct in this case. The negation of (a) is proven analogously.

(b) (a1 z; + b1) mod ap = by. If by > ay, then this condition is never true. lence the algorithm is
correct in this case. Consider now the case ged(a;,a2) > 1. Then there is a natural number
g such that ¢ @; = 0 mod a3, and therefore ¢ by = ¢ b, mod a,. This is the case if, and only
if ged(b, — by, a2) = ¢q. Hence, the algorithm outputs in lines (29) and (30) the correct result.

Now let ¢ and d defined as in line (31), and ged(a;,az) = 1. Then (b) is equivalent to
n = ¢ (b — b)) mod a;, and it outputs therefore also in line (32) the correct result. The
negation of (b) is proven analogously.

(c) cons(ty,t2) = (): This case is never true, hence the output is correct. The negation of (c) is
proven analogously.

INpDUCTIVE CASE: There are more than k recursive calls of instantiate_condition. Here, the cases

of lines (42), (49), (56), (57), (58), (61), (65), (69), (72), (75), (76), (T7), (T8), (79), (83), (87), and
(88) have to be considered.
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(a) (a1 -zj+b1) mod ¢; = (az - z; + b2) mod cp: Let ¢, dy and dp defined as in lines (5), (51),
and (52), respectively. Then it holds for all 0 < ¢ < max(c;,¢2):

(ﬂ.1 Cdotzj+b1) mod ¢; =14 d; a1 Ij+d1 h=diimod ec& (d1 a; z,+d; b1) mod ¢ = (d1 t) mod ¢
(az cdotz;+ b2) mod c2 =i & d2 a2 1+ da by =da i mod ¢ & (d2 02 25 + d2 b2) mod ¢ = (d2 i) mod ¢

Hence the condition is equivalent to that in the recursive call in line (47). By induction
hypothesis, the algorithm returns the correct result. The negation of (a) is proven analogously.

(b) mt(t). This condition is equivalent to the condition ¢t = (), and the correctness follows from
the induction hypothesis. The negation if proven analogously.

(¢) hd(t;) = t2. This condition is equivalent to the condition ¢; = cons(ts,!) for some [. Then the
induction hypothesis applied on line (59) implies:

EVAL[t) = cons(t2,)] @ [I/to] - - -[xn/tn] = true & (lo,...,tn) € val(Sp) X - -+ X val(Sy)
Thus:
EVAL[hd(t1) = t3] O[z1/u1] -+ - [zn/un] = true & (w1,...,un) € val(5)

where S is the output defined in line (60). The negation of (c) is proven analogously.
(d) t1[i] = t; and its negation are proven similar to case (c).
(e) tl(t1) = 5 and its negation are proven similar to case (c).

(f) cons(ay,l;) = cons(ay,ls) is equivalent to a; = a2 A l; = I;. Hence the induction hypothesis
imply the correctness.

(g) t1.1 =t and its negation are proven similar to case (c).

(h) (t1,..-,tk) = (81,--.,8k) is equivalent to 8, = t; A --- A s = t, and therefore the induction
hypothesis implies the correctness.

The termination follows from the following lemma:

Lemma 3.23 (Time Complexity of Algorithm instantiate_condition) Let
T 8y
C=V AL
i=1 ;=1

be a condilion in disjunctive normal form and let p = 3y + -+ + s, be the number of literals in C.
Furthermore let m be the mazimal natural number occuring in condition C' (m = 2, if there s no
such mazimal number or the mazimal number is less than 2), k be the marimal number of tls, hds,
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and (+)[i] occuring in a literal L, and let q be the mazimal number of cons and (-,-) occuring in a
literal L. Then algorithm instantiate_condition(C,(zy,...,&,)) terminates after

2.p-20a+km)/2 o

O (p logm m 9(p: 1,6%((g+ k m)/2,m,n + k m)))

steps, where g(q,m,n) is defined by the recurrence®:

g(0,m,n) = n

g(gymyn) = m* g(q—1,m,n)le=tmn)
Proof: See appendix B |
The following corollary summarizes the results of appendix B:
Corollary 3.24 (Complexity Results of Alogrithm instantiate_condition) If k is the maxi-
mal subterm size, when if -then -else: is not counted, and the let abbreviations are expanded, in

a set of equations E, and m is the mazimal natural number occuring in E, then we have for any
condition C occuring in E, and tuples (z,...,%,) of variables:

(a) The running time of algorithm instantiate_condition(C, (z1,...,z,)) is:

0 (k logm m**2™ ™ 4290k 1,62 (m + 1) k/2,m, (m+ 1) k/2))

k-a(m+1)kf3 9“-‘: 1‘g2k([m+ 1} k/?,mr(m + 1) k/Q))

k.o(m+1)k /2

(b) sz(instantiate_condition(C,(zy,...,zn))) < m

(c) card(instantiate_condition(C,(z1,...,%5))) <M

(d) The mazimal size of term in instantiate_condition(C, (z1,...,2,)) 18:
g(k, 1, g% ((m+ 1) k/2,m,(m + 1) k/2))
where g(q, m,n) is defined as in lemma 3.23.

Finally, the correctness and complexity results of algorithm symbolic_eval are proven based on the
above lemmas and corollaries.

Theorem 3.25 (Correctness of Algorithm symbolic_eval) Let be E' = symbolic_evaluation( E).
Then for eacht € EXPR, n € N, p € LOCAL, and p € ENV it holds:

EVAI[t) Enpp=EVAIL[t] E' npop
Proof: We show that one iteration of loop 1 doesn’t change the semantics, i.e. if £ is changed to F
and £’ to F' by one execution of the body of loop 1, then for any t € EXPR,n e N,pe LOCAL,
and p e ENV:

EVAL[t]] EUE npp=EVALIL] FUF npp

2Observe that for fixed m and n: A(2,9) < g(q, m, n) < A(3,¢) where A(i,7) is Ackermanns function
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From this and the termination (proven in theorem 3.26), follows the correctness of algorithm sym-
bolic_evaluation, because at the beginning is E' = @ and at the end is £ = 0.

Consider now the selected equation of line (4):
e:= LHS =1if C then E, else F,

It is immediate that lines (13) and (19) do not change the semantics of E U E'.
Consider now the equations:

F, = {oLHS =0aE|loc=[z1/s1] [zn/3s],(515.+.,:) € 51}
F2 = {G'LHS = 0'5210 = [11/31] ---[z“/sn],(sl,...,sn) € 52}

where §; and S are the sets obtaine in line (21) and (22), respectively. We know form the condition
in line (18) that they describe disjoint sets of terms. It is FUF' = (E—e)U E'U F; U F>. We
show now by induction on the number of EVAL steps to evaluate ¢, that for any { € EXPR, n € N,
p€ LOCAL,and p' € ENV:

EVAL[t] EUE npp = EVAL[t] FUF npp'
The only interesting case to consider is if the equation e is applicable. Thus the base case is trivial,
and many of the induction cases are trivial, because equations in (EU E")N(F U F') are applied.
If e is applicable, then ther is a substitution ¢’ such that ¢'LH S = t, and one application of EVAL
yields:

EVAL[if C then E, else E;] EUE npo'p
Cask 1: EVAL[C] 01()o’p’ = true. Then we have immediately that:

EVALIC] EU E' n p o'p' = true
and after applying the rule for conditionals, that

EVAL[t] EUE ' npp' = EVAL[E,] EUE ' npa'p

By lemmas 3.22 and Im:minim we know that thereis a ¢ € {[z1/s1] - -[zn/sn]l(51,-- -1 5n) € Si}
!

and a 7 € ENV such that ¢'p’ = rap’. Hence

EVAL[t) FUF' npp' =

= {oLHS = oFis applicable, 7t = o LH 5}
EVAL[gE\] FUF npTp

= {See above remarko’p’ = Top’}
EVAL[E\] FUF' n pa'p

= {inductionhypothesis}
EVAL[E\] EUE npa'p

= {see above} EVAL[{] EUE np)p
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CAse 2: EVAIL[C] 91()a’p’ = false. Analgously to case 1 using lemmas 3.22, Im:minim and
corollary 3.17. |

Finally we give the time complexity.

Theorem 3.26 (Time Complexity of Algorithm symbolic_evaluate) Let E be a set of equa-
tions, k and m be defined as in corollay 3.24. Further let g(q,m,n) be the function defined in
lemma 3.23, and define G(q,n) = g(q,1,n) log g(q,m,n). Let n be the length of E (i.e. the
number of symbols in E). Then symbolic_evaluation(E) requires at most

9] ('R mz-k-Z(m‘f'l)kf?-l-l }.Ogm 9k 2(m+1}k!26(k,g2k((m + 1} k/?,m, (m+ 1) k/?)))
time steps.

Proof: It is easy to see, that the body of loop 1 is executed at most O(n) times, lines (4)-(11)
cost O(k) and line (15) cost at most O(2¥). From corollary 3.24 we conclude that line (16) costs

O (k logm m*+2 ™42 gk 1,02 ((m + 1) k/2,m, (m + 1) k/2))
We can also conclude form corollary 3.24 and 3.17, that line (17) costs
O (m* ™2 Jogm 9k 2K Gk, g ((m + 1) k/2,m, (m + 1) k/2)))

The running time of loops 2 and 3 is O(sz(.51)) and O(sz(S2)) where Sy and S, are the sets defined
lines (21) and (22), respectively. Hence the running times of these loops are dominated by the
running time of line (17). One execution of a loop body costs therefore time

0 (m“'?"””“”“ logm 2-k - 27042 Gk, g ((m + 1) k/2,m, (m+ 1) k/z)])

Together with the fact that this body is executed n times, the theorem is proven. |

Observe (from appendix B) that these estimates are grossly pessimistic. The high complexity arises
also from the fact that the term ot where o is the most general unifier of ¢ and u, is bounded by "
where r = sz(t). This could happen, but only in very special cases. We conjecture that the running
time is usuually polynomial in the above defined k¥ and m. Furhtermore if £ and m are constant
compared to n, the length of the program, the overall running time is still linear in the length of
the program. The result shows that not the length of the program, but a difficult structure of the
program make symbolic evaluation difficult.

3.1.4 Derivation of Recurrences

Finally, recurrences are obtained from the equations derived in the pervious subsection. On each
argument position, one of the complexity measures lg, sz, or ll; is applied, depending on the struc-
ture of the equations. For each argument position, a new argument is introduced, containing the
length, size, or level-length of the corresponding argument. Finally, irrelevant argument positions
are removed by a slight extension of algorithm irrelevant_position (this extension is left to the
reader). Observe, that in contrast to previous work [Weg75, Zim90a, Zim90b] conditional recur-
rences contain some more variables, needed to obtain a worst-case complexity. The correctness of
this step is given by the [ollowing condition:



For each term f(¢1,...,1x) where f is defined by E, for each p € ENV, p € LOCAL,
and n € N holds:

EVAL[f(t1,...,t:)] EUTL n p p= EVAL[f(tiy,- .., tis, Mi(t1),-.., Mi(tx))] RUIL 2 p p (3.2)

Here R and M are the recurrences and complexity measures for the arguments obtained
by this step, (f:,,...,t;) is a (possibly empty) sublist of t;,...,t, and f/i = M; € M,
where f/i = M; means that argument position f/i is mapped by measure M; onto
natural numbers. For each f(uy,...,u,,v1,...,v%) = RHS € R holds: if z is a variable
occuring in RHS and occuring in a u;, then the only place where z can occur is in a
condition or in a function call to II. This is the same place where function calls to II
can be.

Algorithm create_recurrences
INPUT: A set of equations F, and a program II.
QuTrPuT: A set of recurrences R, and measures M satisfying (3.2)

[e—y

. (M, R) := derive_mappings(E);

2. R := derive_recurrences(E, M);

[}

. (R, M) := remove_free_vars(R);

4. I := irrelevant_positions(R);

w

. R := remove_irr_pos(R, I);

=]

. output R and M ¥ M’

The algorithm irrelevani_positions is just a slight modification from that of subsection 3.1.2. Algo-
rithm remove_irr_pos is loop 2 of algorithm normalize in subsection 3.1.2. Hence it remains to find
the adequate mappings and if they are found the derivation of the recurrences, given the fact that
the adequate mappings are already provided.

We start with defining algorithm derive_recurrences. The algorithm runs in two phases. First each
function f of arity k is enhanced to a function with arity 2-k, where the argument on position k41
is p(t;) when t; is the i — th argument of f and f/t = p in M. Then expressions like g(z) where
1 is a measure and z is a variable are replaced by a new variable. Moreover the resulting set of
equations should satisly (3.2) where ¢;, = ¢; forall j =1,...,k.

Observe that for the resulting equation system most of the arguments in the first half of a function
f become irrelevant. Only the argument positions remain relevant, if they are important for the
value of a condition in a conditonal equation.

Algorithm derive_recurrences
INPUT: A set of equations F and a measure set M.
OurpuT: A set of equations R such (3.2) is satisfied where always t;, =¢; forall j =1,...,%.
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(1) R:=0;

(2) for each LHS = RHS € E do

(3) assume LHS = f(ty,...,1);

(4) assume f/1 = py,..., f/k = pur € M;
(5) LHS' := f(t1,+- sty pa(t1)s - - o r(t));
(6) simplify LH S’ according to rule 10

(7) repeat

(8) simplify RH S according to rule 10
(9) simplify RH S according to rule 11
(10) RHS':= RECUR[RHS]| M

(11) until rule 11 and rule 10 are not applicable

(12) R:=RU{LHS' =RHS};

(13)end for;

(14) for each variable z occuring in R do

(15) for each measure y occuring in R

(16) let n be a new variable;

(17) store the pair (p(z), n) in a look-up table A;
(18) end for;

(19)end for;

(20)scan through R and replace each occurences of g'(y) by A[p'(y)];
(21) output R;

The transformation scheme RECURJ[:] M is given in figure 3.6. It adds new parameters to each
function call according to M. The rules 10 just apply simplification rules for the measures:

Rule 10 (Simplification of Terms with Measures)

lg(cons(A, L)) lg({}) lg(t(L)) lg(X)
1+ ig(L) 0 g(L) -1 X

if X is of type nat

i (cons( A, L)) 1 (())
L4+ e (A) + Uk (L) 0

sz(cons(A, L)) sz({))
1+ s2(A)+ sz(L) 0

lg(forall £L <7 < R do in parallel7 (7))
R-L

Hpyq(forall £ <7 < R do in parallelT (7))
R—-L+ SR Uy (T(T)

sz(forall £L <7 < R do in parallel7 (7))
R =L+ Y1eg s2(T(T)
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RECURJif C then T; elseT;] M = if C then RECUR[T;] M elseRECUR[T:] M

RECUR[g(t1,.... k)] M =
g(t1, ..., bk, 1 (RECUR[H] M),. .., ux(RECUR[] M) ifgfi=pie M1 <i<k
g(RECUR[4] M,...,RECUR[t] M) if g is a basic operation on nat
g1, ..., t) otherwise

RECUR[forall | < i < r do in parallel {(i)] M = forall ! < i < r do in parallel #(1)

RECUR([select ! < ¢ < r in parallel from {(i)] M = select I <i < r in parallel from t(s)

RECUR[modify e:(i), | <t < r to ez(i) from ea] M = modify (i), | <1 < r to ex(i) from ey

Figure 3.6: The Transformation RECUR

M(select £ <7 < R in parallel from T(T))
m&x¥=£ M(I)

lg(modify £,(Z), L <I <R to &(T) from &3)
lg(&s3)

i1 (modify £,(Z), £L <T <R to £(Z) from &)
Hks1(Es) + Lrer Uk(E2(T)) — Uk(E5[E2T)))

sz(modify £(T), £L <T < R to £(T) from &3)
s2(€3) + Li=r s2(E(T)) — s2(E5[E(T)))

The rule 11 replaces each call of u(f(---)) by p-f, which is available in E. Therefore it makes R
closed under its defined functions.

Rule 11

M(F(P))

lg, sz, Ul IT
M_E(P) M e {lg,sz, U} F €

Lemma 3.27 (Correctness of Algorithm derive_recurrences) If M is a correct output of algo-
rithm derive_mappings(E), then algorithm derive_recurrences(F, M) oulpuls a recurrence system
R satisfying (3.2) where s = k for any function f.

Proof: We prove the following, stronger result:

Forany t € EXPR,n € N,p€ LOCAL, and p € ENV holds:
EVAL[t] EUll n pp= EVAL[t'] RUIl n p ap (3.3)

where t’ is obtained by t by first applying lines (7)-(11) to ¢, and then line (20), and
[n/u(p(z))] € o & (u(z),n) € A
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The correctness is a special case of (3.3). The only difference between the correctness and case 5 is
that in case 5 internal variables of algorithm derive_recurrences are used to express the same fact.
The stronger claim (3.3) is proven by induction over the structure of . In the proof we omit the
parameter # and p because they play no role.

CAsE 1: t = z is a variable. Then ¢t = ¢’ and (3.3) follows immediately.

CaSE 2: t = p(z) where z is a variable. Then t' = n where n is a new variable, and by lines
(14)—(19), (p(z),n) € A. Thus:

EVAL[n] RUIl op = o(n) = p(p(z)) = EVAL[u(z)] EUTL p

Case 3: t = g(t1,...,tx) where g is an arithmetic operation. Then by RECUR[] M, ¢’ =
g(t},...,1;) and the (3.3) follows immediately from the induction hypothesis.

Case 4: t = g(uy,...,ux) where fun g(z; : 1,...,2x : 7%) : 7 = B € Il. Then g/t ¢ M for
any 1 < i < k. Then by transformation RECURJ[-] M, ¢ = . Moreover rules 10 and rules 11
cannot be applied, because in this case none of the u; cannot contain any function call to E (or
R). The same holds for B, because ¢ was a function in II. Thus ¢’ = ¢ also after line (20). Hence
the induction hypothesis proves (3.3).

Case 5: t = g(uy,...,ux) where g is defined by E. Let g/i = p; € M for i =
v; = (#i;(x;))'. Then by the definition of RECUR[-] M, t' = g(t1,. .y UmyV1y- sV
the u; do not contain any call to a function defined by E. Hence:

..,k and

1y
). Moreover

EVAL[w;] EUTNl p= EVAL[u;] RUITl p= EVAL[u;] RUTI ap
From the induction hypothesis follows that

EVAL[v;] RUTIl op = EVAL[u;(v;)] EUTllp
Let LHS = RHS € E such that there is a & with:

gLHS = g(EVAL[w;] EUTl p,..., EVALJux] EUTI p)

Consider now the corresponding LHS' = RHS' € R. Then this rule is by line (6) applicable to t'.
Let o' such that:

a' LHS' = g(EVAL[w] RUll ap, ..., EVAL[ug] RUN ap, EVAL[v,] RUIl op,..., EVAL[vi] RUIL op)

Hence o' = 5@ because the evaluation of the u; depend only on p, and contain by lines (14)-(20)
different variables than the v;. By induction hypothesis we have

EVAL[RHS] EUl 6p = EVAL[RHS'] RUTI 66p

where [n/u(ap(z))] € 6 & (u(z),n) € A. Hence, it remains to prove that @ = do. Consider a
variable n, where (u(z),n) € A. If 6(n) = L, then o(n) = L. Thus the only possibility that
&(n) # ao(n) is if 6(n) # L. But then n is defined by LIS and therefore by definition of 4,
a(n) = p(ap(z) where (pu(z),n) € A, contradicting the assumption of its undefinedness. Hence,
oo(n) is defined, iff 6(n) is defined. Consider now the following cases:

First case: a(n) = ¢t and d(n) = L. It must be (u(z),n) € A. Therefore a(n) = u(p(z))
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(otherwise z would occur in LHS and LHS, and therefore n in LHS’ by the correctness of algorithm
derive_mappings). By the definition of ¢ it is also o(n) = p(z).

Second case: &(n) =t # L. Then Go(n) = ¢. Let (u(z),n) € A. Because in this case z occurs in
LHS and the correctness of algorithm derivve_mappings, n occurs in LHS'. Hence &(n) = p(a(z)) =
&(n).

CASE 6 t = if C then t; else t;. Then by transformation RECUR, t' = if C then ?] else t;.
The induction hypothesis and the correctness of algorithm derive_recurrences prove (3.3). CASE 7
t is not one of the above cases. Then it is a parallel operator. The same arguments as in cases 4 or
6 prove (3.3) [

Lemma 3.28 ( Complexity of Algorithm derive_recurrences)
Algorithm derive_recurrences(E, M) terminates after O(k -n) steps where k is the mazimal nesting
depth in E, and n is the number of symbols in E (or the length of E)

Proof: It is immediate to see that the operations in the loop of lines (14)-(19) can be performed
in O(k n) . The look-up table can be implemented as an array because it is possible to determine k
and the number of variables in advance by a simple scan through E. This scan requires just O(n)
time. Line (20) is also a scan through £ and requires therefore time O(n).

Consider now the loop of lines (7)-(11). Each execution of the body requires time O(r) where 7
is the length of RHS. Furthermore the loop is executed at most k times, because in iteration 2
rule 11 is applied only to terms on nesting depth i. Hence the cost of loop (7)-(11)is O(k - r).
Moreover lines (3)—(6) require time proportional to the length of LHS. Thus summing this up for
all equations lead for the loop of lines (2)—(13) to a time proportional to O(k n). |

Now we turn to the algorithm derive_mappings. The idea behind this algorithm is to try to get
adequate mappings first with all argument positions lg. A mapping is adequate if apart from
conditions, when these mappings are applied to each argument positions and lines (14)-(20) are
applied to the resulting equation system, it is closed. More specifically, if an RHS contains free
variables or symbols not defined by E, then these variables in symbols occur only in conditions. If
this property is not satisfied by applying M, then the level of the mappings on argument positions
contradicting it are increased by 1. If the maximal possible level is achieved, then sz is chosen.

Algorithm derive_mappings
INPUT: A set of equations E
OuTpPuT: A set of mappings M, and set of equations R, such that if LHS = RHS € R
contains free variables or undefined function symbols, these occur only in

conditions.
(1) M :={f]i=Ilg| f defined by E and f/i is argument position };
(2) R:=0;
(3) repeat
(4) for each LIS = RHS € E do
(5) assume LIS = f(ty,...,t), fli=p € M, 1 <i<k;
(6) LHS' = f(pa(tr), - i(th));
(7) simplify LHS' according to rule 10;
(8) repeat
(9) simplify RHS according to rule 10;
(10) simplify RIIS according to rule 11;
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RECUR[if C then T; elseT3] M =if C then RECUR[T1] M elseRECUR[T:] M

RECUR[y(ts,...,. t)] M =
g(p1 (RECURJ[H] M),...,ux(RECUR[t:] M) ifg/i=peM,1<i<k
g(RECUR[:] M,...,RECUR[#] M) if g is a basic operation on nat
gty ..., te) otherwise

RECUR([forall | < i < r do in parallel ¢(i)] M = forall | <i < r do in parallel (1)

RECUR/[select ! <i < r in parallel from {(i)] M =select { < i < r in parallel from t()

RECUR[modify (i), | <i<r to ez(i) from e3] M = modify ei(i), ! <i < r to ez(i) from e;

Figure 3.7: The Transformation RECUR

(11) RHS := RECUR[RHS] M;

(12) until rule 11 and rule 10 are not applicable;

(13) R:= RU{LHS' = RHS);

(14) if RHS contains a free variable z or unknown function symbol

(15) occuring not in a condition then

(16) for i =1,...,k where t; contains z do

(17) if f/li=Igthen M := (M —{f/i=Ig})U{f/i=U,}; end if;
(18) if f/i=1then M :=(M - {ffi=1})U{f/i=lis1}; end if;
(19) R :=0;

(20) end for;

(21) end if;

(22) end for;

(23) until M does not change [equivalently: 7 # (]

(24) Replace each f/i = ll; with maximal level by f/i = sz;
(25) output M and R;

The transformation RECUR[:] M is similar to figure 3.6 and defined by figure 3.7. It may be the
case that some variables representing lg(z) for variables = occur free in K. This can only occur
the case when lg was explicitely used in the program. In this case the corresponding argument
position is abstracted with two different mappings. For an example see the adaptive prefix sum
algorithm in the following section. Algorithm remove_free_vars covers this situation. It adds in R
the new arguments, and puts in M’ the new mappings. All this can be achieved in time O(n) by
three scans through the program. First it selects the free variables together with their positions
(can be obtained from A used in algorithm derive_recurrences) then it adds the corresponding
parameter in each program, and updates A. Finally the replacements as in step (20) of algorithm
derive_recurrences are made.

Lemma 3.29 (Correctness of Algorithm derive_mappings) Algorithm derive.mappings is cor-
rect.
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Proof: If M doesn’t change, then R # (). Hence the correctness of algorithm derive_recurrences
follows from its termination (because then the condition in line (14) is never satisfied). Let m be
the maximal nesting depth in E. f/i = sz for each argument positions would lead to recurrences as
shown in [Zim90a]. If the loop of lines (4)-(22) is repeated then at least one I is changed to llk41.
But for each argument position this can happen at most m times. Hence the algorithm terminates.
|

Corollary 3.30 (Complexity of Algorithm derive_mappings) If n is the number of symbols in
E and k is the mazimal nesting depth in E, then algorithm derive_mappings(E) terminates after
O(k---n) steps.

Proof: One execution of the loop of lines (4)-(22) cost time O(n), because it scans one times
_through E. If the k-th iteration does not succeed, then all f/i = ll; are set to f/i = llx41. Thus
the loop of lines (3)—(23) require time O(k n). Line (24) is certainly executable in time O(n). W

For this step we have therefore by lemmas 3.27, 3.29, 3.6, 3.7, corollaries 3.28, 3.30, and the obvious
fact that algorithm irrelevant_positions and loop 2 in algorithm normalize cost time O(n):

Theorem 3.31 (Correctness and Complexity of Algorithm create_recurrences) Letn be the
number of symbols in E and k the mazimal nesting depth of E. Then create_recurrences( E) oulputs
after O(n - k) steps a system of recurrences satisfying (3.2).

3.1.5 Summary

We have now shown, that the method in this section derives correctly a system of recurrences
describing the desired complexity C'. Moreover for each correctly typed program II, this algorithm
terminates (in the worst case after a huge number of steps).

Theorem 3.32 (Correctness of Algorithm translate) Algorithm translate(Il,C') oulputs a sys-
tem of recurrences R and measures M such that for each closed t € EXPR:

C[t]1 1 € < EVAL[(TC[t])] RUTI ¢

where R contains symbols nol defined by R only at conditions or al argumenl posilions whose
variables occur only in condition, and t’ is obtained from t w.r.t. M as in the proof of lemma 3.27.

The proof of this theorem follows directly from the correctness of the algorithms remove_incomplete-
ness, lransform, symbolic_eval, and creale_recurrences.

From the corresponding complexity results, together with a few simple observations, we get:

Theorem 3.33 (Time Complexity of Algorithm transform) Let n be the size of the program
II, k its mazimal nesting depth, and m the largest natural number occuring in Il (m = 1 if no
such number appears). Then algorithm transform(I1) terminates after O( f(n,k,m) steps where
f(k,m,n) is defined by:

e f(k,m,n)=n-h(k,m)-g(k, ],gzk{(m + 1) k/2,m, (m+1) k/2)) - G’[k,gzk[(m + 1) k/2,m (m 4 1) k/2))
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. h(k,m) = k* exp(2 log(m) k 20"+DF2 4 1) log(m) k 2(m+1¥/2
e g(g,m,n) is defined by the recurrence

g(0,m,n) = n

g(@s"”#“) = mzw g(q - 1,m, n)g{q—l,m,n)

° G(g,n) = g(g,1,n)logg(q,1,n)

Proof: The size of II' is less or equal k n. Its nesting depth does not increase compared to II. It
is easy to see that algorithm translate yields the size O(n) for Iy and size O(k n) for II;, if 2 > 0.
Furthermore the maximal nesting depth is not increased. Hence II” has size O(n k%) and maximal
nesting depth k. Algorithm normalize does not change any of these bounds. The maximal natural
number occuring in II is only important in conditions, and there it is not changed by any of these
algorithms. Then by theorem 3.26 the size of E is at most

O(n - h(k,m) - G(k,g* ((m + 1) k/2,m, (m + 1) k/2))
Furthermore, by lemma B.2, the maximal nesting depth increases to
g(k,1,¢" ((m + 1) k/2,m, (m +1) k/2))

Thus by create_recurrences(E) needs the stated time, which even dominates the time needed for
the execution of symbolic_eval(11"). &

The complexity result of algorithm transform shows that the difficulty in analyzing the complexity
of the program is not its length but its structure. This matches the practical experience. An
algorithm based purely on structural induction can be analyzed very fast, while analyzing programs
like quicksort requires already a few minutes on a SUN 4. However all the estimates here are grossly
pessimistic (arising in fact from the exponential upper bound for the output size of unification).
Usualy this does not happen very often, but cannot be excluded. A more refined analysis of
algorithm transform seems very difficult to manage. In fact one has to find bounds on the fact that
the output size of a unification is exponential. We conjecture that this cannot be happcn always.
If it would, we could really have a program with these bounds. In most of the practical cases m
and k can be assumed to be constant compared to the size of the program, and therefore algorithm
transform is linear in the size of the program in most practical cases.

For the solution of recurrences we refer to [Zim90a]. If they are solved with generating functions,
techniques from [FV90, F587, Fla88, FSZ91, Zim91] can be used. The solution of particular recur-
rences is discussed in the example sections. Also dealing with difficulties (as e.g. pointer jumping
in [Zim90b]) are discussed with the particular example. One big difference between parallel and
sequential algorithms is, that in the sequential case, the recurrences have “arithmetic” character,
while in the parallel case they have “geometric” character.

3.2 Basic Examples

We mainly introduce here some basic examples used in further analysis examples. The first example
is basic pointer jumping, while the second is prefix sum computation. Here we use an adaptive and
a non-adaptive algorithm. For discussion of these algorithms see [GR88] For each of the analysis,
we assume that the basic complexities are one, thus counting the number of EVA Ls.
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3.2.1 Pointer Jumping

The idea behind this algorithm is to determine the distance of each element in a list to its end.
For this purpose, we define a vector p containing adresses. This vector has the property that the
graph G = ({0,...,lg(p) — 1}, {(3,p[2])|0 < i < lg(p)} is a chain ending at cycle of length 1. The
idea behind pointer jumping is to set initialize a vector dist of the same length as p all elements
but the last to 1 (the last element is set to 0), and jump, i.e. one sets in parallel p[i] to p[p[il]
and adds the corresponding values in dist. The algorithm is repeated until the array p does not
change. This algorithm terminates because the length of the longest chains halves at each iteration.
If each chain defined by p has length 1 then it remains stable. The program is:

fun rank(p:<nat>):<nat> =
let dist = forall 0 <= i < 1g(p) do in parallel
if p[i] = i then 0 else 1
in repeat(p,dist)

fun repeat(p:<nat>,dist:<nat>):<nat> =
let n = 1g(p) in
let d = forall 0 <= i < n do in parallel
if p[i] <> pl[p[il] then dist[i] + dist[p[il]
else dist[i]
in let p’ = forall 0 <= i < n do in parallel
if p[i] <> p[pl[il] then p[p[il]] else p[il]
in if p=p’ then d else repeat(p’,d)

Here, algorithm remove_incompleteness leaves the program unchanged, because rule 1 is not ap-
plicable. The maximal nesting depth of the program is I, hence from the output measures it is
sufficient to analyze the lg of the list. Then analysis w.r.t. size yields the same as lg in this case
and is therefore omitted. However keep in mind, that an automatic analysis will also produce these
functions. The program II in algorithm transform will become:

fun time_rank(p:<nat>):<nat> = 13 +
time_repeat(p,forall 0 <= i < 1g(p) do in parallel if p[il=i then O else 1)

fun time_repeat(p:<nat>,dist:<mat>):<natd> =
if p = forall 0 <= i < 1lg(p) do in parallel
if p[i] <> p[p[il] then p[p[il] else p[i]
then 53
else 55 +
time_repeat(forall 0 <= i < 1lg(p) do in parallel
if p[i] <> p[pl[il] then p[p[il] else p[il,
forall 0 <= i < 1g(p) do in parallel
if p[i] <> p[plil] then dist[i] + dist[p[il]
else dist[i])

fun length_rank(p:<nat>):nat =
length_repeat(p,forall 0 <= i < 1g(p) do in parallel if p[i]=i then O else 1)
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fun length_repeat(p:<nat>,dist:<nat>):nat =
if p = forall 0 <= i < 1g(p) do in parallel
if p[i] <> p[p[il] then p[p[il] else p[il
then 1g(p)
else length_repeat(forall 0 <= i < 1lg(p) do in parallel
if p[i] <> p[p[il]] then p[p[il] else p[il,
forall 0 <= i < 1g(p) do in parallel
if p[i]l <> p[p[il] then dist[i] + dist[p[i]] else p[il)

Rule 6 is not applicable to this program. Algorithm irrelevant_positions applied to the above
program yields {time _repeat/2,length repeat/2}. Again rule 9 is not applicable. Hence the
normalized program II” will be:

fun time_rank(p:<nat>):<nat> = 13 + time_repeat(p)

fun time_repeat(p:<nat>):<nat> =
if p = forall 0 <= i < 1g(p) do in parallel
if p[i] <> p[pl[il] then plpl[il] else pl[il
then 53
else 55 + time_repeat(forall 0 <= i < 1g(p) do in parallel
if p[il <> p[p[il] then plpl[il]l else p[il)

fun length_rank(p:<nat>):nat = length_repeat(p)

fun length_repeat(p:<nat>):nat =
if p = forall 0 <= i < 1g(p) do in parallel
if p[i] <> p[p[il] then p[p[il] else p[il
then 1g(p)
else length_repeat(forall 0 <= i < 1g(p) do in parallel
if p[i] <> p[p[il] then p[p[i]] else p[il)

In algorithm symbolic_evaluation the first and third equation are directly in E by (1). For the
second and fourth function, the property of line (11) is satisfied (i.e. the condition contains term
p[i] and i is not constant). Hence the equation system E will be:

time_rank(p) = 13 + time_repeat(p)

time_repeat(p) =
if p = forall 0 <= i < 1g(p) do in parallel
if p[i] <> plpl[il] then pl[p[il] else p[il
then 53
else 55 + time_repeat(forall O <= i < 1g(p) do in parallel
if p[i] <> p[pl[il] then p[pl[i]] else p[il)

length_rank(p) = length_repeat(p)
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length_repeat(p) =
if p = forall 0 <= i < 1g(p) do in parallel
if p[i] <> p[pl[il] then p[p[il] else p[i]
then 1g(p)
else length_repeat(forall 0 <= i < 1lg(p) do in parallel
if p[i] <> p[p[il] then p[p[il] else p[il)

Algorithm derive_mappings applied to these equation yields the set of mappings
M = {time_rank/1 = lg,time_repeat/1 = lg, length rank/1 = lg,length_repeat/l = lg}

With these mappings algorithm derive_recurrences derives:
time_rank(p,n) = 13 + time_repeat(p,n)
time_repeat(p,n) =

if p = forall 0 <= i < n do in parallel

if p[i] <> p[p[il]l then p[p[il] else p[il]
then 53
else 55 + time_repeat(forall 0 <= i < n do in parallel

if p[i] <> p[p[il] then p[p[i]l] else p[i],n)

length_rank(p,n) = length_repeat(p,n)

length_repeat(p,n)
if p = forall 0 <= i < n do in parallel
if p[i]l <> p[p[il] then p[pl[il] else p[il
then n
else length_repeat(forall 0 <= i < n do in parallel

if p[i] <> p[p[il] then p[p[il] else p[il,n)

The set of irrelevant positions of these equations is empty and hence this is the final recurrence
system. In this case this system is difficult to solve, because it is unclear whether the conditional
recurrence time_repeat and length repeat have a solution. Here we must get an interactive
support of the user in order to solve these two recurrences. They are well defined because initially
the vector p has the above discussed structure. In general it is easy to see, that these recurrences
may for certain p be undefined [Zim90b]. The user has to add the general observation, that the
length of the longest chain is halfed, it is initially lg(p), and the terminating case is equivalent to
the fact that the length of the longest chain in p is 1. Thus he has to transform the recurrences
into:

time_rank(p,n) = 13 + time_repeat(p,n,n)

time_repeat(p,n,1) = 53
time_repeat(p,n,m)
55 + time_repeat(forall 0 <= i < n do in parallel

if p[i] <> p[p[i]] then p[pl[il] else p[il,n,m/2)
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length_rank(p,n) = length_repeat(p,n,n)

length_repeat(p,n,1)
length_repeat(p,n,m) =
length_repeat(forall 0 <= i < n do in parallel
if p[i] <> p[p[il] then p[p[il] else p[il,n,m/2)

n

Now, algorithm irrelevant_positions can be applied again yielding that the positions time_rank/1,
time_repeat/1, length rank/1, and length repeat/1 are irrelevant. Thus the recurrence system

time_rank(n) = 13 + time_repeat(n,n)

53
55 + time_repeat(n,m/2)

time_repeat(n,1)
time_repeat(n,m)

length_rank(n) = length_repeat(n,n)

length_repeat(n,1) = n
length_repeat(n,m) = length_repeat(n,m/2)

has to be solved. By an enhancement of Maples rsolve this recurrence system yields the solution:

Semi-Automatic Theorem 3.34 (Complexity of rank) Algorithm rank(p) has time complez-
ity

time_rank(n) = 66 + 55 log, n
and its output length is

length rank(n) = n
where n = lg(p)

Even it this not a good example for the automatic complexity analysis, the semi-automatic way, i.e.
the automatic derivation of the recurrences is still possible. It is easier for the user to support the
solution of the recurrences than to give this information already at the beginning. Probably at this
place some heuristics play an important role to determine the number of iterations. For example
the heuristic that when p[i] is set to p[p[..p[i]..]] (p is iterated ¢ times, where ¢ is constant),
the system could propose the user with the hint that a chain of length m is reduced to length
m/fe. Providing more examples could suggest heuristics to support the user in solving recurrences,
if the algebra system is not powerful to solve it automatically. The difficulty in this example is the
use of vector access for addressing elements in a vector (i.e. it contains expressions like p[p[il]
and dist[p[il]. Hence, the communication is daia-dependent’. In most of algorithms with data-
dependent communications, it is difficult to solve the obtained recurrence system automatically.

3 v s 4 %) " i x
This notion was due to Klaus-Jorn Lange, private communication
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They have usually a similar flavour than the recurrence system in this example. When a program
does not contain expressions like t[s[i]] then the communication is independent of the contents
of the vector. In this case we speak about data-independent communication. Algorithms with
data-independent communications are usually easier to analyze automatically. The next example
is a program with data-independent communication.

3.2.2 Prefix Sums

This technique is also a standard design principle for parallel algorithms. The task is, given an
input vector {ag,...,a,-1), compute a vector (Sg,...,8,—1) where 8; = ag +---+ a;. The idea is
to compute in parallel the sum a; + a;4; for all even i, then apply the function recursively to this
vector, and adjust the result, i.e. all s; where i is odd can be found on position (i — 1)/2 in the
result of the recursive call. If ¢ is odd then the value a;4; has to be subtracted from the value at
position /2 of the result of the recursive call. For simplicity we assume that the length of a is an
integral power of 2. For a more complete discussion see [GR88, AkI89].

fun prefix_sum(a:<nat>):<nat> =

if mt(a) then <>

else if mt(tl(a)) then a

else let n = 1g(a)/2 in
let a’ forall 0 <=i < n do in parallel a[2#i] + a[2%i+1] in
let s’ = prefix_sum(a’) in
forall 0 <= i < 2*n do in parallel

if i mod 2 = 0 then s’[i/2] - a[i+1] else s’[(i-1)/2]

Algorithm remove_incompleteness does not change this program, because rule 1 is not applicable.
All vectors involved are of lenght 1, hence the output length and output size coincide, and the
output level length for k& > 2 need not to be computed. By algorithm translate, 11 will be the
following program:

fun time_prefix_sum(a:<nat>):nat =
if mt(a) then 4
else if mt(tl(a)) then 8
else 55 + time_prefix_sum(forall O <= i < 1g(a)/2 do in parallel a[2*i] + a[2+i+1])

fun length_prefix_sum(a:<nat>):nat =
if mt(a) then 0
else if mt(tl(a)) then lg(a)
else 1g(a)

The algorithm normalize leaves this program unchanged, because rule 6 is not applicable, there are
no irrelevant argument positions, and rule 9 is also not applicable. Algorithm symbolic_evaluation
transforms the above program into the following set of equations:

time_prefix_sum(<>) = 4
time_prefix_sum(<c>) = 8
time_prefix_sum(cons{cl,cons(c2,a))) =
55 + time_prefix_sum(forall 0 <= i < 1lg(a)/2+1 do in parallel
cons(c1,cons(c2,a))[2*i] + cons(ci,cons(c2,a))[2*i + 1])
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length_prefix_sum(<>) = 0
length_prefix_sum(<c>) = 1
length_prefix_sum(cons(c1,cons(c2,a))) = 1g(a) + 2

Algorithm derive_mappings yields time_prefix sums/l = lg and length prefix sum/1 = lg. Thus de-
rive_recurrences transforms the above equations into

time_prefix_sum(<>,0) = 4
time_prefix_sum(<c>,1) = 8
time_prefix_sum(cons(ci,cons(c2,a)),n+2) =
56 + time_prefix_sum(forall 0 <= i < n/2+1 do in parallel
cons(cl,cons(c2,a)) [2%i] + cons(cl,cons(c2,a))[2%i + 1],n/2+1)

length_prefix_sum(<>,0) = 0
length_prefix sum(<c>,1) = 1
length_prefix_sum(cons(ci,cons(c2,a)),n+2) = n + 2

In this system the argument positions time_prefix_sum/1 and length_prefix_sum/1 are irrelevant.
Thus after their removal, the output of algorithm transform is the following recurrence system:

time_prefix_sum(0) = 4
time_prefix_sum(1) = 8
time_prefix_sum(n+2) = 55 + time_prefix_sum(n/2+1)
length_prefix_sum(0) =
length_prefix_sum(1) =
length_prefix_sum(n+2)

n - o

n+2

This system can be solved by using standard methods (as e.g. implemented in Maple), and we
obtain

Automatic Theorem 3.35 (Complexity of Prefix Sums) The time complezily of the program
prefix_sum(a) is:

4 ifn=0
55 logy(n) + 8 otherwise

time_prefix_sum(n) = {
and the output length of prefix_sum(a) is:

length_prefix_sum(n) = n
where n = lg(a).
Thus this program can be analyzed completely automatic. This program uses also n processors if
its input is of length n. It is also possible to analyze an adaptive version of the prefix sums, i.e. the

number of processors allowed to use is an additional parameter of this function. Here, first sums of
small pieces (of size n/p) are computed sequentialy (in parallel using p processors). Then the prefix
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sum of this reduced vector can be computed by the above algorithm (because then prefix sum
needs only p processors). Finally an adjustment has to be done for the n/p pieces. This can also
be done sequentialy using only p processors to evaluate each piece of n/p in parallel. We assume
here again for simplicity that both p and n are integral powers of 2.

fun adapt_prefix_sum(a:<nat>,p:nat):<natd> =
let n = 1g(a) in
let al = forall 0 <= i < p do in parallel sum(a,i*n/p,n/p) in
let s = prefix_sum(al) in
let a2 = forall 0 <= i < p do in parallel adjust(a,s,i,i*n/p,n/p) in
flat(a2) '

fun sum(a:<nat>,l:nat,m:nat):nat =
if m=0 then O
else a[l] + sum(a,l+1,m-1)

fun adjust(a:<nat>,s:<nat>,i:nat,l:nat,m:nat):<nat> =
if m=0 then <> 2
else if m=1 then <s[i]>
else let k = adjust(a,s,i,1+1,m-1) in
cons(hd(k)-al[l],k)

fun flat(a:<<nat>>) : <nat>
if mt(a) then <>
else if mt(tl(a)) then hd(a)
else flat(forall O <= i < 1g(a)/2 do a[2+i] o a[2%i+1])

The function prefix sum is as above. Rule 1 is not applicable. Hence remove_incompleteness
leaves the program unchanged. Observe that for each function only its output length makes sense,
because the are just plain vectors. For function sum none of the output measures need to be

analyzed, because it is already of type nat. Thus the program 1T is:

fun time_adapt_prefix_sum(a:<nat>,p:nat):nat =
42 + max(0<=i<p,time_sum(a,i*lg(a)/p,1g(a)/p))
+ time_prefix_sum(forall 0 <= i < p do in parallel sum(a,i*lg(a)/p,1g(a)/p))
+ max(0<=i<p,time_adjust(a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,i*lg(a)/p,1g(a)/p)),i,i*1g(a)/p,1g(a)/p})
+ time_flat(forall 0 <= i < p do in parallel
adjust (a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,i*lg(a)/p,1g(a)/p)),i,i*lg(a)/p,1g(a)/p))

fun time_sum(a:<nat>,l:nat,m:nat):nat =
if m=0 then 5
else 16 + time_sum(a,l+1,m-1)

fun time_adjust(a:<nat>,s:<nat>,i:nat,l:nat,m:nat):nat =
if m=0 then 5
else if m=1 then 11
else 28 + time_adjust(a,s,i,l+1,m-1)

fun time_flat(a:<<nat>>):nat =
1f mt(a) then 4
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else if mt(tl(a)) then 9
else 26 + time_flat(forall 0 <= i < 1lg(a)/2 do a[2+i] o a[2xi+1])

fun length_adapt_prefix_sum{a:<nat>,p:nat):nat =
length_flat(forall 0 <= i < p do in parallel
adjust(a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,i*1g(a)/p,1g(a)/p)),i,i*1g(a) /p,1g(a)/p))

fun length_adjust(a:<nat>,s:<nat>,i:nat,l:nat,m:nat):nat =
if m=0 then 0
else if m=1 then 1
else 1 + length_adjust(a,s,i,l+1,m-1)

fun length_flat(a:<<nat>>):nat =
if mt(a) then 0
else if mt(tl(a)) then lg(hd(a))
else length_flat(forall 0 <= i < 1lg(a)/2 do a[2#i] o a[2+i+1])

The functions time_prefix_sum and length prefix_sum are omitted, because these are already
discussed above. Below, we do not explicitely mention the results of the particular step arising form
prefix sum. Now for the execution of algorithm keep in mind that rule 6 is not applicable, that
algorithm irrelevant_positions delivers the irrelevant positions time_adjust/i and length_adjust/:
for i = 1,2,3,4, and time_sum/i for ¢ = 1,2. Again rule 9 is again not applicable. Hence after
normalize the program II"” is:

fun time_adapt_prefix_sum(a:<nat>,p:nat):nat =
42 + time_sum(lg(a)/p)) + time_adjust(lg(a)/p))
+ time_prefir_sum(forall 0 <= i < p do in parallel sum{a,ixlg{a)/p,lg(a)/p))
+ time_flat(forall 0 <= i < p do in parallel
adjust(a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,i*lg(a)/p,1g(a)/p)),.i,i*1g(a)/p,1g(a)/p))

fun time_sum(m:nat):nat =
if m=0 then 5
else 16 + time_sum(m-1)

fun time_adjust{m:nat) :nat =
if m=0 then 5
else if m=1 then 11
else 28 + time_adjust(m-1)

fun time_flat (a:<<nat>>):nat =
if mt(a) then 4
else if mt(tl(a)) then 9
else 26 + time_flat(forall 0 <= i < 1g(a)/2 do a[2*i] o a[2*i+1])

fun length_adapt_prefix_sum(a:<nat>,p:nat):nat =
length_flat(forall 0 <= i < p do in parallel
adjust(a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,i*lg(a)/p,1g(a)/p)),i,i*1g(a)/p,1g(a)/p))

fun length_adjust(m:nat):nat =
if m=0 then 0
else if m=1 then 1
else 1 + length_adjust(m-1)

fun length_flat(a:<<nat>>):nat =
if mt(a) then 0

81



else if mt(tl(a)) then lg(hd(a))
else length_flat(forall 0 <= i < 1lg(a)/2 do a[2#i] o a[2#i+1])

An application of algorithm symbolic_evaluation onto this program yields:

time_adapt_prefix_sum(a,p) = 42 + time_sum(lg(a)/p)) + time_adjust(lg(a)/p))
+ time_prefix_sum(forall 0 <= i < p do in parallel sum(a,ix*lg(a)/p,1g(a)/p))
+ time_flat{forall 0 <= i < p do in parallel
adjust(a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,i»lg(a)/p,1g(a)/p)),i,i*lg(a)/p,1g(a)/p))

time_sum(0) = 5
time_sum(m+1l) = 16 + time_sum(m)

time_adjust(0) = 4
time_adjust(1) = 11
time_adjust(m+2) = 28 + time_adjust(m+1)

time_flat(<>) = 4
time_flat(<c>) = 9
time_flat{cons{(cl,cons(c2,a))) =
26 + time_flat(forall 0 <= i < lg(a)/2+1 do cons(cl,cons(c2,a))[2*i] o cons(cl1,cons(c2,a)) [2*i+1])

length_adapt_prefix_sum(a,p) =
length_flat(forall 0 <= i < p do in parallel
adjust(a,prefix_sum(forall 0 <= i < p do in parallel
sum(a,islg(a)/p,1g(a)/p)),i,i*1g(a)/p,1g(a)/p))

length_adjust(0) = 0
length_adjust(1) = 1
length_adjust(m+2) = 1 + length_adjust(m+1)

length_flat(<>) = 0
length_flat(<c>) = 1g(c)
length_flat{cona(cl,cons(c2,a))) =
length_flat(forall 0 <= i < 1g(a)/2+1 do cons(cl,cons(c2,a))[2*i] o cons(cl,cons(c2,a)) [2*i+1])

Now algorithm derive_mappings delivers with the exception for length flat/l for each argu-
ment position lg, while for the other it delivers ll; which is equivalent to sz Thus algorithm
create_recurrences delivers the following recurrence system:

time_adapt_prefix_sum(n,p) = 42 + time_sum(n/p) + time_adjust{n/p)
+ time_prefix_sum(p) + time_flat(p)

time_sum(0)

=5
time_sum(m+1) =

16 + time_sum(m)

time_adjust(0) = 4
time_adjust(1i) = 11
time_adjust{m+2) = 28 + time_adjust(m+1)

time_flat(0)
time_flat(1)
time_flat(n+2)

4
9

I

26 + time_flat(n/2+1)
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length_adapt_prefix_sum(n,p) = length_flat(n,p*length_adjust(n/p))

un
N - o

length_adjust(0)
length_adjust(1)
length_adjust(m+2) = 1 + length_adjust(m+1)
length_f1at(0,0) = 0

length_flat(i,n) = n

length_flat(n+2,2+n1 + n2 ) = length_flat(n/2+1,2+n1 + n2)

where the last equation was obtained by simplfiying the sum arising from the parallel statement.
It is immediate to obtain the following solutions via standard methods:

time_sum(m) = 5416 m
time_adjust(m) = 28 m—17+210™

i 4 ifm=20
time_flat(m) { 26 log,(m)+9 otherwise

length adjust(m) = m
length flat(n,m) =m

Together with the previous results we obtain therefore automatically:

Automatic Theorem 3.36 (Complexity of Adaptive Prefix Sums) The time complezity of
algorithm adapt_prefix_sum(a,p) is:

time_adaptive prefix_sum(n, p) = 44 % + 26 log,(n/p) + 55 logy(p) + 33 + 21 0"~
and its output length is:
length_adaptive prefix_sum(n,p)=n

where n = lg(a).
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Chapter 4

Batchers Sorting Algorithms

Two simple (an in practice the most efficient) parallel sorting algorithms are analyzed. These
algorithms were first introduced by Batcher [Bat68]. Both algorithms are discussed in [GR88], the
odd-even-sort is also discussed in [AklI89], while the second algortihm bitonic sort is also discussed
in [KR90]. Both bitonic-sort and odd-even sort are based on merging algorithms. These algorithms
using n processors and time O(log® n) to sort a vector of n elements. Hence they are not optimal.
Optimal algorithms are for example the AKS sorting network [AKS83] and Cole’s algorithm [Col88].
Both of these algorithms are also discussed in [GR88]. The AKS sorting has huge constants, so
that it cannot be used for practical applications. Cole’s algorithm seems more practical, but its
implementiation would require a huge program, so that we do not discuss it here. We picturize
sorting networks by a compare exchange module:

Yy——7—min(z, y)

max(z,y)

4.1 0Odd-Even-Sorting

The basic idea behind this sorting algorithm is the following merge algorithm. If the two vectors
to be merged have length one then the result is an ordered vector of length containing the two
elements of the input vector. If the input vectors have length n split both of them into two vectors
of length n/2 consisting of elements on its odd and even positions, respectively. Then, recursively
merge in parallel the two vectors obtained from the odd positions (this vector is called odd) and the
two vectors obtained from the even positions (this vector is called even). Then the smallest element
is the smallest element of the even positions, and the largest element is the largest element of the
odd positions. Then for the odd positions ¢ of the odd vector they need only to be compared with
position 7 — 1 in the even vector. In figure 4.1 an odd-even sorting network is picturized together
with an example. Positions 0 — 3 and 4 — 7 represent the two vectors to be merged.

The program in PARFL is as follows:
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03 1 1 1
15 2 2 2
b 4 3 3
38 6 5 4
41 3 4 5
52 5 6 6
64 7 7 7
; 76 8 8 8

Figure 4.1: Odd-Even Merge for Eight Elements

fun odd_even_sort(s:<nat>):<nat> =

if mt(s) then <>

else if mt(tl(s)) then s

else let n = 1g(s) in
let s1 = forall Q0 <
let 82 = forall 0 <
let 88 = <81,82> in
let ss’ = forall 0 <= i < 2 do in parallel odd_even_sort(ss[i]) in
odd_even_merge(ss’[0],ss’[1])

i < n/2 do in parallel s[i] in
i < n/2 do in parallel s[n/2+i] in

fun odd_even_merge(s:<nat>,s’:<nat>):<nat> =
if 1g(s)=1 then <min(hd(s),hd(s’)),max(hd(s),hd(s’))>
else let n = 1lg(s) in
let e = forall O <= i < n/2 do in parallel s[2*i] in
let e’ = forall 0 <= i < n/2 do in parallel s’[2*i] in
let o = forall 0 <= i < n/2 do in parallel s[2*i+1] in
OJ
r

let = forall 0 <= i < n/2 do in parallel s’[2%i+1] in
let = <@,0> in
let r’ = <a’,0'> in
let ss = forall 0 <= i < 2 do in parallel odd_even_merge(r[i],r’[i]) in
forall 0 <= i < 2#%n do in parallel
if i=0 then ss[0][0]
else if i=2*n-1 then ss[1] [n-1]
else if i mod 2 = 1 then min(ss[0][(i+1)/2],ss[1]1[(i-1)/2])
else max(ss[0][i/2],ss[1][i/2-1])



Algorithm remove_incompleteness leaves this program unchanged, because rule 1 is not applicable.
The program uses just plain vectors, thus the only measure on the output is lg (and equals therefore

to sz). Hence, the program II will be

fun time_odd_even_sort(s:<nat>) :nat =
if mt(s) then 4
else if mt(t1l(s)) then 8
else 54 + max(time_odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[il),
time_odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[1g(s)/2+il))
+ time_odd_even_merge(odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[il),
odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[lg(s)/2+i]))

fun tine_odd_even_nerge(s:<nat>,s’:<nat>):nat =
if 1g(s)=1 then 21
else 124 + max(time_odd_even_merge(forall 0 <= i < 1g(e)/2 do in parallel s[2#i],
forall 0 <= i < 1g(s)/2 do in parallel s’[2#%i]),
time_odd_even_merge(forall 0 <= i < 1g(s)/2 do in parallel s[2#i+1],
forall 0 <= i < 1g(s)/2 do in parallel s’[2#i]+1))

fun length_odd_even_sort(s:<mat>):nat =
if mt(s) then 0
else if mt(tl(s)) then 1g(s)
else 1en5th_odd_even_merge(odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[il),
odd_even_sort (forall 0 <= i < 1g(s)/2 do in parallel s[1g(s)/2+il))

fun length_odd_even_merge(s:<nat>,s’:<nat>):nat = if 1g(s) = 1 then 2 else 2%1g(s)

Rule 6 is not applicable. The irrelevant positions determined by algorithm irrelevant_position
are time_odd_even merge/2 and length odd evenmerge/2. Rule 9 is not applicable. Therefore
algorithm normalize outputs the following program:

fun time_odd_even_sort(s:<nat>):nat =
if mt(s) then 4
else if mt(tl(s)) then 8
else 54 + max(time_odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[il),
time_odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel a[lg(s)/2+i]))
+ time_odd_even_merge(odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[i]))

fun tine_odd_even_-erge(s:<n£f>):nat =
if 1g(s)=1 then 21
else 124 + max(time_odd_even_merge(forall 0 <= i < 1g(2)/2 do in parallel s[2*i])
time_odd_even_merge(forall 0 <= i < 1g(s)/2 do in parallel s[2+i+1]))

fun length_oddheven_sort(3:(nat>):nat =
if mt(s) then 0
else if mt(tl(s)) then 1lg(s)
else length_odd_even_merge(odd_even_sort(forall 0 <= i < 1g(s)/2 do in parallel s[il))

fun length_odd_even_merge(s:<nat>):nat = if 1g(s) = 1 then 2 else 2*1g(s)
Algorithm symbolic_evaluation delivers then the following systems of equations:

time_odd_even_sort(<>) = 4
time_odd_even_sort{<c>) = 8
time_odd_even_sort{cons{cl,cons(c2,s))) =
54 + mar(time_odd_even_sort(forall 0 <= i < 1g(s)/2 + 1 do in parallel cons(cl,cons(c2,s8))[i]),
time_odd_even_sort(forall 0 <= i < 1g(s)/2 + 1 do in parallel s[1g(s)/2+11))
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+ time_odd_even_merge{odd_even_sort(forall 0 <= i < 1g(s)/2 + 1 do in parallel
cons(cl,cons(c2,8))[i]))

time_odd_even_merge(<c>) = 21
time_odd_even_merge(cons(cl,cons(c2,8))) =
124 + max(time_odd_even_merge(forall 0 <= i < 1g(a)/2+1 do in parallel
cons(cl,cons(c2,8)) [2#i])
time_odd_even_merge(forall 0 <= i < 1g(s)/2+1 do in parallel
cons(cl,cona(c2,8)) [2+i+1]))

length_odd_even_sort(<>) = 0
length_odd_even_sort(<c>) = 1
length_odd_even_sort(cona(ci,cona(c2,8))) =
length_odd_even_merge(odd_even_sort(forall 0 <= i < 1g(s)/2+1 do in parallel
cons(ci,conn(c2,8)) [i]))

length_odd_even_merge(<c>) = 2
length_odd_even_merge(cons(cl,cona(c2,s))) = 2+1g(s) + 4

Algorithm derive_mappings gives for each argument position the mapping lg. Thus algorithm
create_recurrences outputs:

time_odd_even_sort(0)

time_odd_even_sort(l)

time_odd_even_sort{n+2)
54 + time_odd_even_sort(n/2+1)

+ time_odd_even_merge(length_odd_even_sort(n/2+1))

4
8

time_odd_even_merge(1) = 21
time_odd_even_merge(n+2) = 124 + time_odd_even_merge(n/2+1)

1]
I - O

length_odd_even_sort(0)
length_odd_even_sort(1)
length_odd_even_sort(n+2) = length_odd_even_merge(length_odd_even_sort(n/2+1))
length_odd_even_merge(1)

=2
length_odd_even_merge(n+2) =

2%n + 4

Thus they have the solutions (obtained automatically by Computer Algebra):

length_odd_evenmerge(n) = 2n
length_odd_even_sort(n) = =n
time_odd_evenmerge(n) = 124 logy(n)+ 21
; _ 0 ifn=20
e { 62 log2(n) + 13 logy(n) + 8 otherwise
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Hence we have

Automatic Theorem 4.1 (Complexity of Odd-Even Sort) The worst case time complezity
of the ezecution of odd_even_sort(s) is:

0 ifn=0

bamsodd.evensorting = { 62 logZ(n) + 13 ' log,(n) + 8 otherwise

and its oulput length is at most
length_odd even sort(n) =n
where n = lg(s).

When we apply algorithm transform with measure proc i.e. counting the number of processors used
by the program, then it outputs the system of recurrences:

proc_odd_even_sort(0) = 1
proc_odd_even_sort(1) = 1
proc_odd_even_sort(n+2) = max(n/2+1,2%proc_odd_even_sort(n/2+1),proc_odd_even_merge(n/2+1))

nn

proc_odd_even_merge(1l) = 1
proc_odd_even_merge(n+2) = mar(2#n+4,2*proc_odd_even_merge(n/2+1))

These kind of recurrences can be solved, by solving it with each argument of the maximum operator
seperately, and taking the maximum solution. Thus:

Automatic Theorem 4.2 (Processor Complexity of Odd-Even Merge) The execution of
program odd_even merge(s) requires at most the following number of processors:

1 ifn=0
procoddcvensori(n) = { n j;herwise

where n = lg(s).

4.2 Bitonic Sorting

The merge step of bitonic sort has as input only one vector, where the first hall and second half
of the vector is already ordered. The first half is interleaved with the second half, and then the
elements are pairwise compared with the second half. Then the process is recursively applied to
the first and the second half on the resulting vector. For a sorting network for eight elements sce
figure 4.2. Observe here its regularity compared to odd-even-merge. The second half is presented
in opposite order.

The following program does the task (for simplicity we assume that n is an integral power of two):
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G3 3 2 1
15 4 1 2
BT 2 3 3
F4

28 1 4 4
o

76 6 6 5
4 5 5 6
52 7 7 7
41 8 8 8

Figure 4.2: A Bitonic Sorting Network

fun bitonic_sort(v:<natd):<nat>

if 1g(v) <= 1 then v

else let n = 1g(v) in
let vi = forall 0 <= i < n/2 do in parallel v[i] in
let v2 = forall n/2 <= i < n do in parallel v[i] in
lot w = <v1,v2> in
let wi = forall 0 <= i < 2 do in parallel bitonic_sort(w[il)
let w2 = forall 0 <= i < n/2 do in parallel w[1][n/2-1-i]
bitonic_merge(wi[0] o w2)

fun bitonic_merge(v:<nat>):<nat> =

if 1g(v) = 1 then v

else let n = 1g(v) in
let w1 = forall 0 <= i < n/2 do in parallel min(v[i],v[n/2+i]) in
let w2 = forall 0 <= i < n/2 do in parallel max(v[i],v[n/2+i]) in
let w = <wil,w2> in
let v’ = forall 0 <= i < 2 do in parallel bitonic_merge(w[i]) in
v’ [0] o v’[1]

Again, rule 1 is not applicable and therefore algorithm remove_incompleteness leaves the program
unchanged. Also the maximal output level of vector is 1. Hence it is sufficient to analyze just the

output length. The program I is then:

fun time_bitonic_sort(v:<nat>):nat =
if 1g(v) <=1 then 6
else 64 + max(time_bitonic_sort(forall 0 <= i < 1g(v)/2 do in parallel v[il),
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time_bitonic_sort(forall 1g(v)/2 <= i < 1g(v) do in parallel v[il))
+ time_bitonic_merge(
bitonic_sort(forall 0 <= i < 1g(v)/2 do in parallel v[i]) o
forall 0 <= i < 1g(v)/2 do in parallel
bitonic_sort(forall 1g(v)/2 <= i < 1g(v) do in parallel v[il)[1g(v)/2-1-i1)

fun time_bitonic_merge(v:<nat>):nat =
if 1g(v)=1 then 5
else 58 + max{time_bitonic_merge(forall 0 <= i < 1g(v)/2 do in parallel min(v[i],v[n/2+i]),
time_bitonic_merge(forall 0 <= i < 1g(v)/2 do in parallel max(v[i],v[n/2+il))

fun length_bitonic_sort(v:<nat>):nat =
if 1g(v)<=1 then 1g(v) else
length_bitonic_merge(
bitonic_sort (forall 0 <= i < 1g(v)/2 do in parallel v[il) o
forall 0 <= i < 1g(¥)/2 do in parallel
bitonic_sort(forall 1g(v)/2 <= i < 1g(v) do in parallel v[il) [1g(v)/2-1-i])

fun length_bitonic_merge(v:<nat>):nat =
if 1g(v)=1 then 1lg(v) else
length_bitonic_merge(forall 0 <= i < 1g(v)/2 do in parallel min(v[i],v[n/2+i]) +
length_bitonic_merge(forall 0 <= i < 1g(v)/2 do in parallel max(v[i],v[n/2+i])

Rule 6 and rule 9 are not applicable. Also algorithm irrelevant_positions does not find an irrel-
evant argument position. Hence algorithm normalize leaves this program unchanged. Algorithm
symbolic_evaluation yields then the following equations:

time_bitonic_sort(<>) = 6
time_bitonic_sort(<c>) = 6
time_bitonic_sort(cons(cl,cons(c2,v})) = 64 +
max(time_bitonic_sort(forall 0 <= i < 1g(v)/2+1 do in parallel cons(cl,cons(c2,v))[i]),
time_bitonic_sort(forall 1g(v)/2+1<=i<1g(v}+2 do in parallel cons(c1,cons{c2,v))[i]))
+ time_bitonic_merge( '
bitonic_sort(forall 0<=i<1g(v)/2+1 do in parallel cons(ci,cona(c2,v))[i]) o
forall 0<=i<1g(v)/2 do in parallel
bitonic_sort(forall 1g(v)/2+1<=i<1lg(v)+2 do in parallel
cons(c1,cons(c2,v))[1]) [1g(v) /2~-i])

time_bitonic_merge(<c>) = 5
time_bitonic_merge(cons(ci,cons(c2,v))) = 58 +
max(time_bitonic_merge(forall 0<=i<lg(v)/2+1 do in parallel
min(cons(ci,cona(c2,v)) [i],cons(c1,cons(c2,v)) [n/2+i]),
time_bitonic_merge(forall 0<=i<1g{(v)/2 do in parallel
max(cons(cl,cona(c2,v))[i],cons(c1,cons(c2,¥)) [n/2+i]))

length_bitonic_sort(<>) = 0
length_bitonic_sort(<c>) = 1
length_bitonic_sort(cons(ci,cons(c2,v))) =
length_bitonic_merge(
bitonic_sort(forall 0 <= i < 1g(v)/2+1 do in parallel cons(cl,cons(c2,v))[i]) o
forall 0<=i<1g(v)/2+1 do in parallel
bitonic_sort(forall 1g(v)+1/2<=i<1g(v)+2 do in parallel cons(ci,cons(c2,v))[i]) [1g(v)/2-i])

length_bitonic_merge(<c>) = 1
lenght _bitonic_merge(cons{cl,cons(c2,v))) =
length_bitonic_merge(
forall 0 <= i < 1g(v)/2+1 do in parallel
min{cons(cl,cona(c2,v)) [i],cons(cl,cona(c2,v)) [n/2+i]) +
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length_bitonic_merge(
forall 0 <= i < 1g(v)/2+1 do in parallel
max(cons(cl,cons(c2,v))[il,cone(cl,cons(c2,¥) ) [n/2+i])))

Now, algorithm derive_mappings derives for each argument position the mapping lg. Hence algo-
rithm create_recurrences outputs the following system of recurrences.

time_bitonic_sort(0) =

time_bitonic_sort(1) =

time_bitonic_sort(n+2) = 64 + time_bitonic_sort(n/2+1) +
time_bitonic_merge(length_bitonic_sort(n/2+1) + n/2 + 1)

n oo

time_bitonic_merge(1)

=5
time_bitonic_merge(n+2) =

58 + time_bitonic_merge(n/2+1)

n
n -~ o

length_bitonic_sort(0)
length_bitonic_sort(1)
length_bitonic_sort(n+2)

length_bitonic_merge(length_bitonic_sort(n/2+1) + n/2 + 1)

length_bitonic_merge(1)

=1
length_bitonic_merge(n+2) =

2 * length_bitonic_merge(n/2+1)

This recurrence system can be solved automatically, because they are standard. Thus:

Automatic Theorem 4.3 (Complexity of Bitonic Sorting) The time complezity of program
bitonic_sort(v) is at most

6 ifn=0

tine:bitenic.sort(n) = { 29 log2(n) + 102 log, n + 6 otherwise

and its oulput length is at most
length bitonic_sort(n) =n

where n = lg(v).
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Chapter 5

Algorithms on Graphs

This chapter contains selected examples from parallel algorithms on graphs. Most of these algo-
rithms are based on descriptions of [GR88] and [KR90]. Usually, algorithms on graphs can only
be analyzed semi-automatically unless powerful heuristics are developed, because their communi-
cation is data dependent. Hence this chapter serves also as an open problem section to determine
the difficulties in solving recurrences obtained from these algorithms.

5.1 Algorithms based on the Euler-Tour Technique

The Euler-Tour technique is based on finding an Euler tour on trees. In general an Euler tour on
a directed graph is a closed path visiting each edge. When we consider trees, each tree edge is
replaced by two antiparallel edges. The program is based on the algorithm in [KR90], and runs in
parallel constant time using O(n) processors. The origin of this technique is by Tarjan and Vishkin
[TV85]. In [KR90], the following is assumed: first the tree is given by adjacency lists. Second there
is for each edge a pointer to its antiparallel edge. A version of this technique not requiring such
information is in [GR88]. Then the algorithm runs in constant time. In order to keep the spirit of
this method, we represent a graph as follows: the adjacency lists are defined by two vectors e and
p where p[i] points to the successor of e[i]. The adjacency lists are represented as in the pointer
jumping example. They need not to be consequetive in p. Then the addresses of the first elements
of each adjacency list are given by a vector v, where v[i] contains the index of the first element in
the adjacency list of vertex i. Finally, the vector cr contains the addresses of the antiparallel edges,
i.e. cr[i] contains the address of the antiparallel edge of e[i]. The basic idea of the algorithm
is the following. First make the lists circular (this is easily achieved in constant time, because
e[cr[i]] contains the source of an edge, by v[e[cr[i]]1], the address of the first element of the
adjacency list containing e[i] can be found, and the end of an adjacency list is equivalent to the
condition p[il=i). Then an Euler tour can be obtained by setting the successor of edge (i,7) the
the successor of edge (j,4) in the circular lists. The resulting list is a circular Euler tour. Hence
the program is as follows:

fun euler_tour_on_trees(v:<nat>,e:<nat>,p:<nat>,cr:<nat>) = <pat x nat> x <nat> =
let n = 1g(v) in
let circ = forall 0 <= i < 2*n-2 do in parallel
if plil = i then v[elcr[i]]] else p[il
in (forall 0 <= i < 2%n-2 do in parallel (e[il,elcr[ill),
forall 0 <= i < 2#n-2 do in parallel plcr[i]])
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The following example is from [GR88]. We translate it into our representation.

0
3
2
5
4 6
Let us assume the following representation:
|0 1 2 3 4 5 6
v[5 1 10 8 9 4 2
|0 1 2 3 4 56 7 8 9 10 11
el3 3 51 2 3 6 5 0 5 5 4
pl11 1 2 7 0 5 6 7 3 9 10 6
cc|7 3 6 1 10 8 2 0 5 11 4 9
During the computation the following vectors are created.
| 0 1 2 3 4 5 6 7 8 9 10 11

circ 11 1 2 7 0 5 4 8 3 9 10 6
result.1 | (5,3) (1,3) (6,5) (3,1) (5,2) (0,3) (5,6) (3,5) (3,0) (4,5) (2,5) (5:4)
result.? 8 7 4 1 10 3 2 11 5 6 0 9

The result represents the following circular list:

(5,3) = (3,0) = (0,3) = (3,1) = (1,3) — (3,5) — (5,4) = (4,5) — (5,6) — (6,5) — (5,2) =
(2,5) = (5,3)

The analysis process yields automatically:

Automatic Theorem 5.1 (Complexity of Euler Tour on Trees) The time complezily of pro-
gram euler_tour on trees(v,e,p,cr) is at most

time_euler_tour_on_trees = 57
its output length is at most:

length euler_tour on_trees(n) =2 n — 2
its output size is at most:

size_euler_tour_on_trees(n)=6 n—6
and the number of processors used is al most

proc_euler_tour.on_trees(n)=2n—2
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where n = lg(v).

Now we turn to applications [GR88, KR90]. First, a tree can be rooted at vertex ¢ if the circular
list is broken at edge (i,5). The tour represents then a depth first traversal. Then it makes sense
to determine the father relation. The father relation can be obtained as follows. First rank the the
list representing an Euler-Tour. Then i is a father of j if the rank of edge (4, j) is greater than that
of (j,4), because edge (i,j) comes then before edge (j,i) in the depth-first traversal of the tree.
Consider the above example and suppose that the Euler-Tour is broken at edge (5, 3) (i.e. 5 is the
root of the tree). For example the rank of edge (5,3) is 11 while that of edge (3,5) is 6. Hence
vertex 5 is father of 3. The program is therefore as follows (r is the desired root):

fun father(v:<nat>,e:<nat>,p:<nat>,cr:<nat>,r:nat):<nat> =
let tour = euler_tour_on_trees(v,e,p,cr) in
let n = 1g(v) in
let pl = forall 0 <= i < 2*n-2 do in parallel
if tour.2[i] = v[r] then i else tour.2[i]
in \* p1 is now a list starting at v[r] *\
let rnk = rank(pl) in -
modify v[e[il]l, 0 <= i < 2¥n -2 to
if rnk[i] > rnk[cr[i]l] then e[cr[il] else skip
from v

A recurrence system is obtained automatically. The complexity of list ranking can only be obtained
semi-automatically. We get then together with automatic theorem 5.1:

Semi-Automatic .Theorem 5.2 The execution time of program father(v,e,p,cr) is at most
time_father(n) = 55 log, n + 239

its output length is al most
length father(n)=n

and it needs al most
proc_father(n) =2+n —2

processors, where n = lg(v).

Observe, that the above program is executable on a CREW PRAM, because in the modify statement
no write conflict can occur.

The next application is to determine the number of descencands of each node. If ry is the rank
of edge (i, father(t)) and ry is the edge of (father(i),i) then (rz — ry 4+ 1)/2 is the number of
descendands of vertex z. For example the rank of edge (3,5) is 6, that of (5,3) is 11. Hence, the
number of descendands is 3 (this number includes the vertex itssell). The correctness of this step
follows also from the fact, that the culer-tour starting at r is a depth first traversal of the tree,
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because then the difference represents the number of edges visited during the traversal, which is
precisely one more than the double of number of proper descendands of node i. Thus the algorithm
is similar to above. It is more efficient not to call function father, but using instead the equivalent
test rank(father(i),i) > rank(i, father(i)).

fun nd(v:<nat>,e:<nat>,p:<nat>,cr:<nat>,r:nat):<nat> =
let tour = euler_tour_on_trees(v,e,p,cr) in
let n = 1g(v) in
let pl1 = forall 0 <= i < 2%n-2 do in parallel
in \* p1 is now a list starting at v[r] »\
if tour.2[i] = v[r] then i else tour.2[i]
let rnk = rank(pi) in
modify v[e[i]]l, 0 <= i < 2*n -2 to
if rnk[i] > rnk[cr[i]] then (rnk([i] - rnk[cr[il]] + 1)/2 else skip
from v

This function runs for the same reason as father on a CREW PRAM. The analysis is because of
the call of pointer jumping semi-automatic:

Semi-Automatic Theorem 5.3 The ezecution time of program nd(v,e,p,cr) is al most
time_nd(n) = 55 logy n + 247

its output length is at most
length nd(n) =n

and it needs at most
procnd(n) =2+n—2

processors, where n = lg(v).

It is also easy to determine a preorder and postorder numbering of the vertices. If just the edges
from father to the sons are counted then their position yields an “inverse preorder” i.e. the preorder
of vertex ¢ is n — k where k is the rank of the edge (j,1) where (7, 1) is an edge from father to son.
The program uses pointer jumping just with a different initialization, namely all father son edges
are initialized with 1 and the others with 0.

fun pre(v:<nat>,e:<nat>,p:<nat>,cr:<nat>,r:nat):<nat> =

let tour = euler_tour_on_trees(v,e,p,cr) in
let n = 1g(v) in
let p1 = forall O <= i < 2*n-2 do in parallel
in \* pl is now a list starting at v[r] *\

let rnk = rank(pi) in

let fs = forall 0 <= i < 2%n-2 do in parallel

if rnk[i] > rnk[cr[i]] then 1 else O
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in \* fs[i] is 1 iff it is a father son edge *\
let fsrnk = repeat(p,fs) in
modify v[e[i]] 0 <= i < 2%n - 2 to
if e[i] = r then O else if fs[i] = 1 then n - fsrnk[i] else skip
from v

In the analysis of repeat(p,d) we derived in the previous chapter semi-automatically that the time
complexity is time _repeat(n) = 55log, n + 53 where n = lg(p). Hence the complexity results are

Semi-Automatic Theorem 5,4 The ezecution time of program pre(v,e,p,cr) is al most
time_pre(n) = 110 log, n + 365

its output length is at most
length pre(n) =n

and it needs at most
procpre(n) =2*n—2

processors, where n = lg(v).

~ The post-order numbering can be obtained analogouly, weighting the son-father edges to 1 and the
father-son edges to 0. Finally it can be determined whether node i is ancestor of node j. This is
the case iff pre(i) < pre(j) < pre(i) + nd(i). This program uses max(n?,2 n — 2) processors.

fun anc(v:<nat>,e:<nat>,p:<nat>,cr:<nat>,r:nat):<<nat>> =
let tour = euler_tour_on_trees(v,e,p,cr) in
let n = 1g(v) in
let p1l = forall 0 <= i < 2*n-2 do in parallel
in \* pl is now a list starting at v[r] *\
let rnk = rank(pi) in
let fs = forall 0 <= i < 2%n-2 do in parallel
if rnk[i] > rnk[cr[i]l] then 1 else O
in \* fs[i] is 1 iff it is a father son edge *\
let fsrnk = repeat(p,fs) in
let pre = modify v[e[i]] 0 <= i < 2%n - 2 to
if e[i] = r then O else if fs[i] = 1 then n - fsrnk[i] else skip

in let nd = modify v[e[i]], 0 <= i < 2#*n -2 to
if fs[il=1 then (rnk[i] - rnk[cr[i]] + 1)/2 else skip
from v
in forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
pre[i] <= pre[j] and pre[j] < prel[i] + nd[i]
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Hence, its complexities can also derived semi-automatically:
Semi-Automatic Theorem 5.5 The ezecution time of program anc(v,e,p,cr) is at most
time_anc(n) = 110 log, n + 422
its output length is at most
length anc(n)=n
its output size 15 at most
size_anc(n) = n?
and it needs at most
proc.anc(n) = max(n?,2 n —2)
processors, where n = lg(v).

If we use a heuristic for pointer-jumping (e.g. the heuristic discussed in the previous chapter) then
these algorithms could be analyzed automatically.

5.2 All Pair Shortest Paths

The problem is described as follows: Given a weighted graph G' = (V, E,W), represented by a
weight matrix W defined as follows:

Wii. 5] = w(t,7) if there is an edge with weight w(¢,7)in G
BI=Y 42 max(; jyer w(i,j) otherwise

where n = |V|. The output is a weight-matrix W’ s.t. W[i, j] is the shortest path between vertices
i and j. The program below is based on the description of [GR88] and first published by Kucera
[Kucs2).

fun shortest_path(w:<<nat>>):<<nat>> =
let w’ = it_shortest_paths(w) in
let n = 1g(w) in
forall 0<=i<n do in parallel
forall 0<=j<n do in parallel
if i=j then 0 else w’[i][j]

fun it_shortest_path(w:<<nat>>):<<nat>> =
let n=1g(w) in
let w2 = forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
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forall 0 <= k < n do in parallel w[i] [k] + w[k][j]
in let w’ = forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
vmin(cons (w[i] [j],w2[i]1[j1)
in if w=w’ then w ;
else it_shortest_paths(w’)

fun vmin(x:<nat>):nat =
if mt(t1l(x)) then hd(x) _
else vmin(forall 0 <= i < 1g(x)/2 do in parallel min(x[2¥i],x[2*i+1])

Now we want to analyze the time complexity of the function shortest_path. Rule 1 is not applica-
ble. Therefore algorithm remove_incompleteness leaves the program unchanged. Now, the output
length as well as the output size may important because each function (besides vmin) outputs
vectors of vectors. We then the following program IT:

fun time_shortest_path(w:<<nat>>):nat =
22 + time_it_shortest_path{(w)

fun time_it_shortest_path(w:<<nat>>):nat =
if w = forall 0 <= i < 1g(w) do in parallel
forall 0 <= j < 1lg(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1lg(w) do in parallel
wlil[kx] + wlk][j1))
then 49 + time_vmin(cons(w[i]J[j],forall 0 <= k < 1lg(w) do in parallel
wlil[x] + wlk1[31))
else 50 + time_wvmin(cons(w[i][j],forall 0 <= k < 1g(w) do in parallel
+ time_it_shortest_path(
forall 0 <= i < 1lg(w) do in parallel
forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wlil[k] + w[k1[j1))

fun time_wvmin(x:<nat>):nat =
if mt(tl(x)) then 6
else 24 + time_wvmin(forall 0 <= i < 1g(x)/2 do in parallel min(x[2*i],x[2*i+1])

fun length_shortest_path(w:<<nat>>):nat = 1lg(w)

fun length_it_shortest_path(w:<<nat>>):<nat> =
if w = forall 0 <= i < 1g(w) do in parallel
forall 0 <= j < 1lg(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wlil[k] + w[k][j1))
then 1lg(w)
elsa length_it_shortest_path(
forall 0 <= i < 1g(w) do in parallel

98



forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1lg(w) do in parallel
wlil k] + w(k][j1))

fun size_shortest_path(w:<<nat>>):nat = lg(w) * 1lg(w)

fun size_it_shortest_path(w:<<nat>>):<nat> =
if w = forall O <= i < 1g(w) do in parallel
forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wli] (k] + w(k][j1))

then sz(w)
else size_it_shortest_path(

forall 0 <= i < 1g(w) do in parallel

forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wlil [k] + w[k][j1))

Now, rule 6 is not applicable. Furthermore algorithm irrelevant_position outputs the empty set.
Hence each argument position is relevant. Finally, rule 9 is also not applicable. Hence algorithm
normalize leaves this program unchanged. Algorithm symbolic_eval leaves with the exception of
time_vmin all functions unchanged, because the condition

w = forall 0 <= i < 1g(w) do in parallel
forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel

contains a function call. Thus the resulting equation system is now:
time_shortest_path(w) = 22 + time_it_shortest_path(w)

time_it_shortest_path(w) =
if w = forall 0 <= i < 1g(w) do in parallel
forall O <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wlil (k] + w(k][j1))
then 49 + time_vmin(cons(w[i][j],forall 0 <= k < 1lg(w) do in parallel
wli]l (k] + w[k]1[j1))
else 50 + time_vmin(cons(w[i][j],forall 0 <= k < 1lg(w) do in parallel
+ time_it_shortest_path(
forall 0 <= i < 1lg(w) do in parallel
forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i][j],forall 0 <= k < 1lg(w) do in parallel
wli] (k] + w[k][j1))

time_vmin(<c>) = 6
time_vmin(cons(cl,cons(c2,x))) =
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24 + time_vmin(forall 0 <= i < 1g(x)/2+1 do in parallel
min(cons(ci,cons(c2,x)) [2*i],cons(cl,cons(c2,x)) [2%i+1])

length_shortest_path(w) = 1g(w)

length_it_shortest_path(w) =
if w = forall 0 <= i < 1lg(w) do in parallel
forall 0 <= j < 1g(w) do in parallsl
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wlil (k] + w(k1[jl))

then 1g(w)
else length_it_shortest_path(

forall 0 <= i < 1lg(w) do in parallel

forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1g(w) do in parallel
wlil (k] + wlk1[j]1))

size_shortest_path(w) = 1g(w) * lg(w)

size_it_shortest_path(w) =
if w = forall 0 <= i < 1g(w) do in parallel
forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i] [j],forall 0 <= k < 1lg(w) do in parallel
wlil (k] + w(k][j1))

then sz(w)
else size_it_shortest_path(

forall 0 <= i < 1g(w) do in parallel

forall 0 <= j < 1g(w) do in parallel
vmin(cons(w[i][j],forall 0 <= k < 1lg(w) do in parallel
wlil[k] + wlk][j1))

By algorithm derive_mappings all the mappings are lg, and in size_shortest_paths it is sz
In line (3) of algorithm create_recurrence additionaly, a parameter with lg is added. The algo-
rithm irrelevant_positions discovers that the first argument position of time_it_shortest_path,
length it_shortest_path, size_it_shortest_path, and time_shortest_path is relevant. Thus
the resulting recurrence system is:

time_shortest_path(w,n) = 22 + time_it_shortest_path(w,n)

time_it_shortest_path(w,n) =
if w = forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
vmin{cons(w[i] [j],forall O <= k < n do in parallel
wlil (k] + wlk1[j1))
then 49 + time_vmin(n+1)
else 50 + time_vmin(n+1)
+ time_it_shortest_path(
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forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
vmin(cons(w[i][j],forall 0 <= k < n do in parallel
wlil[k] + w[k]1[j]),n)

time_wvmin(1) = 6
time_wvmin(n+2) = 24 + time_vmin(n/2+1)

length_shortest_path(n) = n

length_it_shortest_path(w,n) =

if w = forall 0 <= i < n do in parallel

forall 0 <= j < n do in parallel

. vmin(cons(w[i] [j],forall 0 <= k < n do in parallel

wlil (k] + w[k1031))
then n
else length_it_shortest_path(
forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
vmin(cons(w[i][j],forall 0 <= k < n do in parallel
wlil (k] + wlk]1[jl1))

size_shortest_path(n) = n * n

size_it_shortest_path(w,m,n) =
if w = forall 0 <= i < n do in parallel
forall 0 <= j < n do in parallel
vmin(cons(w[i] [j],forall 0 <= k < n do in parallel
wlil[x] + k1 [51))

then m
else size_it_shortest_path(

forall 0 <= i < n do in parallel

forall 0 <= j < n do in parallel
vmin(cons(w[i] [j],forall 0 <= k < n do in parallel
wlil (k] + w[k][j]),m,n)

For solving the recurrences for x_it_shortest_path, x € {size, time, length}, we have now similar
problems than in pointer jumping. Here we have operations on matrices, an addition & = min and
a multiplication ® = 4. This operations on matrices are defined by classical matrix addition
and multiplication. With these operations the effect of the change in the first argument positions
of the functions x_it_shortest_path is described by M ® M ® M. Define now an operation
MON=M@M®N.If Misan Xn matrix, then M™ = M™*! = ... where the power is based
on ®. This property is easy to prove by induction. The change in the first argument position is
from M to M ©® M. Hence [log, n] recursive calls are necessary. This can be described adding
an additional argument position, initially it has the value lg(w), and then at each recursive call its
value is halfed. The condition

w = forall 0 <= i < 1g(w) do in parallel

101



forall 0 <= j < 1lg(w) do in parallel
vmin(cons(w[i][j],forall 0 <= k < 1lg(w) do in parallel

become now equivalent to the test wether this additional parameter is 1.

What was done by this definition? We defined a structure (2, ®, ®) which is algebraically a semir-
ing. Then we have a measure m on this structure (here it was the dimension of the matrices). The
next step was defining a binary operation ® based on @ and ® and showing that for a function f
over natural numbers M @ ---® M is idempotent w.r.t. ®. Furthermore the operation © is based
F(m(M)) times

on the program, such that the argument W changes to W ® W, and the terminating condition is
W = W @ W. Then we were able to conclude that after log, f(m(M)) iterations, the terminating
condition become true. Hence adding a new parameter g representing f(m(M)) halfing this at each
recursive step, initializing it with f(m(M)) and replacing the terminating condition by the equiv-
alent condition ¢ = 1 leads to a ordinary recurrence. We call such a structure a parallel iteration
scheme and require the user to provide such a scheme to support data-dependent communication.
Further research should obtain automatically from a program such iteration schemes.

Here we obtain then (after eliminating further irrelevant argument positions) the following recur-
rence system (which can then be solved by computer algebra systems).

time_shortest_path(n) = 22 + time_it_shortest_path(n,n)

49 + time_vmin(n+1)
50 + time_vmin(n+1) + time_it_shortest_path(n,q/2)

time_it_shortest_path(n,1)
time_it_shortest_path(n,q)

time_vmin(1) = 6
time_vmin(n+2) = 24 + time_vmin(n/2+1)

length_shortest_path(n) = n

length_it_shortest_path(n,1) = n
length_it_shortest_path(n,q) = length_it_shortest_path(n,q/2)

size_shortest_path(n) = n * n

size_it_shortest_path(m,1) = m
size_it_shortest_path(m,q) = size_it_shortest_path(m,q/2)

We get then
Semi-Automatic Theorem 5.6 The time complerity of shortest_path(w) is:
time_shortest_path(n) = 24 log,(n + 1)logy(n) + 24 logy(n + 1) 4+ 50logy(n) + 71
or equivalently by using the Taylor development of log,(n)
time_shortest_path(n) = 24 log3(n) 4+ 74log, n + 71 4+ O(log® n/n)

where n = lg(w).

102



5.3 Finding Connected Components

We follow this section the algorithm described by Hirschberg, Chandra, and Sarvate [HCS79]. A
discussion of this algorithm can also be found in [GR88]. Let G = (V, E) be a graph. A connected
component of G is maximal subgraph C = (U, F) where U C V and F = {(i,j) € E|i,j € U}
such that there is for each ¢ and j a path between i and j in U. The idea behind the algorithm is
component merging. Initially each vertex is assumed to be its own component. Then the following
process is iterated: If there is q vertex in one component, and another vertex in another component,
such that there is an edge between these two vertices, then merge these components into a single
component. In [HCS79] a vector D is used to describe the components. At the end D(7) contains
the smallest vertex number of the connected component it belongs to. The graph is represented by
a symmetric adjacency matrix (A[Z, j] = true & (i,7) € E). Their algorithm is as follows (n = |V]):
Algorithm Connected Components

(1) forall 0 <=i < n do in parallel D(i):=1

(2) repeat

(3) forall 0 <=1i < n do in parallel

(4) § = {DU)IAG,§) = true A D(3) £ D(i)};

(5) if S = 0 then C(i) := D(i) else C(i) := min(S);
(6) forall 0 <=1 < n do in parallel

(7) T:={C(HIDG)=iAC() # i}

(8) if T = @ then C(7) := D(i) else C(7) := min(T);

(9) forall 0 <=1¢ < n do in parallel D(i):= C(i);

(10) repeat

(11) C(i) = C(C));

(12)  until C does not change

(13) forall 0 <=1 < n do in parallel D(¢) := min(C(7), D(7));
(14) until D does not change

The algorithm detects in line (3)—(5) whether there are two vertices in different components con-
nected by an edge. The resulting vector C(z) contains in this case the lowest component to which
D(i) is connected and leaves D(i) unchanged if the component D(i) is not connected to another
component. In vector C the value of two vertices j and k with the same component number in
D may differ. They are set to their minimal value in C in lines (6)-(8). Hence, after line (9) the
if ¢ and j were in the same components at line (3), they are also in the same components after
line (9). In [HCS79] is shown that the vector C interpreted as a pointer structure, has nearly a
tree structure: there is are only loops of length 2 in C, and all other paths lead to one of the
nodes in that loop. All the vertices in this tree belong to the same component. Thus performing
pointer jumping in lines (10)-(12) on vector C let all vertices point to a root (which is one of the
vertices in a loop of length 2. Observe that this root need not to be the smallest vertex number
in the component. This is adjusted in line (13). The algorithm is best understood by performing
an example. In this example we index the arrays C and D by the iteration number, the C', and D
after line (k) is indexed by an upper index. The example is from [GR88]:
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The algorithm produces the following states.

01 2 3 456 7 8
Do [0 1 2 3 4 5 6 7 8
Ci 13 2100 215 5
cC¢13 2 100 2 15 5
DYy|3 2100 215 5
¢l2lo 1 2 33 12 2 2
Do 110 0 1 1 1 1
c:lo 11 110 1 11
&g|1 01 060 1 1 1 1
Dyl1 010011 11
c¥lo 10 1100 0 0
D|0 00 00 0O OO

If we interprete these vectors as pointers and draw a graph G(v) = ({0,...,8}, {(i,2[i])[0 < i < 8})
associated to a vector v then the states are:
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The program in PARFL is as follows:

fun connected_components(a:<<bool>>):<nat> =
it_cc(a,forall 0 <= i < 1g(a) do in parallel i)

fun it_cc(a:<<bool>>,d:<nat>):<nat> =

let n = 1g(a) in
let t = forall 0<=j<n do in parallel
forall 0<=i<n do in parallel
if a[il[j] and d[il<>d[j] then d[j] else n

in let t1 = forall 0<=j<n do in parallel wmin(t[j])
in let ¢l = forall 0<=j<n do in parallel

if t1[j]=n then d[j] else ti[j]
in let t2 = forall 0<=j<n do in parallel

forall 0<=i<n do in parallel

if d[j]l=1i and ci1[j]<>i then ci[j] else n

in let t3 = forall 0<=j<n do in parallel vmin(t2[j])
in let c2 = forall 0<=j<n do in parallel

if t3[jl=n then d[j] else t3[j]
in let c = repeat(c2)
in let d’= forall 0<=j<n do in parallel min(c[jl,c2[c[j1])
in if d=d’ then d else it_cc(a,d?)

fun repeat(c:<nat>):<nat> =
let c’= forall 0<=i<lg(c) do in parallel c[c[i]] in
if c=c’ then c else repeat(c’)

fun vmin(x:<nat>):nat =
if mt(t1(x)) then hd(x)
else vmin(forall 0<=i<1g(x)/2) do in parallel min(x[2*i],x[2#i+1])

Rule 1 is not applicable, and hence algorithm remove_incompletenessleaves the program unchanged.
For expressing Il we abbreviate t, t1, c1, t2, t3, c2, ¢, and d’ as in the program above by the let
expression. This is just for clarity. In the automatic complexity analysis they are really expanded.
Then 1T is:

fun time_connected_components(a:<<bool>>):nat =
7 + time_it_cc(a,forall 0 <= i < 1lg(a) do in parallel i)

fun time_it_cc(a:<<bool>>,d:<nat>):nat =
if d=d’ then
122 + max(0<=j<1lg(a),time_vmin(t[j]))
+ max(0<=j<1lg(a),time_vmin(t2[j])) + time_repeat(c2)
alse '
124 + max(0<=j<1lg(a),time_vmin(t[j]))
+ max(0<=j<1lg(a),time_vmin(t2[j])) + time_repeat(c2)
+ time_it_cc(a,d?’)
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fun time_repeat(c:<nat>):nat =
if c=forall 0<=i<lg(c) do in parallel c[c[i]] then 15
else 16 + time_repeat(forall 0<=i<lg(c) do in parallel c[c[i]])

fun time_vmin(x:<nat>):nat =
if mt(t1l(x)) then 6
else 22 + time_vmin(forall 0<=i<lg(x)/2) do in parallel min(x[2*i],x[2*i+1])

fun length_connected_components(a:<<bool>>):nat =
length_it_cc(a,forall 0 <= i < 1g(a) do in parallel i)

fun length_it_cc(a:<<bool>>,d:<natd):nat =
if d=d’ then 1g(d) else length_it_cc(a,d’)

fun length_repeat(c:<nat>):nat =
if c=forall 0<=i<lg(c) do in parallel c[c[i]] then 1g(c)
else length_repeat(forall 0<=i<1g(c) do in parallel c[c[il])

Algorithm normalize leaves the above program unchanged. In algorithm symbolic_evaluation, the
only function which can be evaluated symbolically is vmin. Hence the equation system is:

time_connected_components(a) =
7 + time_it_cc(a,forall 0 <= i < 1lg(a) do in parallel i)

time_it_cc(a,d) =
if d=d’ then 122 + max(0<=j<lg(a),time_vmin(t[j1))
+ max(0<=j<1g(a),time_vmin(t2[j])) + time_repeat(c2)
else 124 + max(0<=j<1g(a),time_vmin(t[j]))
+ max(0<=j<1g(a),time_vmin(t2[j])) + time_repeat(c2)
+ time_it_cc(a,d?)

time_repeat(c) = if c=forall 0<=i<lg(c) do in parallel c[c[i]] then 15
else 16 + time_repeat(forall 0<=i<lg(c) do in parallel c[c[il])

time_vmin(<c>) = 6
time_vmin(cons(ci,cons(c2,x))) =
22 + time_vmin(forall 0<=i<1g(x)/2+1 do in parallel
min(cong(cl,cons(c2,x)) [2*i] ,cons(cl,cons(c2,x)) [2*i+1])

length_connected_components(a) =
length_it_cc(a,forall 0 <= i < 1g(a) do in parallel i)

length_it_cc(a,d) = if d=d’ then 1g(d) else length_it_cc(a,d’)
length_repeat(c) =

if c=forall 0<=i<lg(c) do in parallel c[c[i]] then 1g(c)
else length_repeat(forall 0<=i<lg(c) do in parallel c[c[il])
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Now, algorithm create_recurrences outputs the following system of recurrences (each mapping is

lg):

time_connacted_components(a,n) =
7 + time_it_cc(a,forall 0 <= i < n do in parallel i,n)

time_it_cc(a,d,n) =
if d=d’ then 122 + 2*time_vmin(n) + time_repeat(c2,n)
else 124 + 2+time_vmin(n) + time_repeat(c2,n) + time_it_cc(a,d’,n)

time_repeat(c,n) = if c=forall 0<=i<n do in parallel c[c[i]] then 15
else 16 + time_repeat(forall 0<=i<n do in parallel c[c[il],n)

time_vmin(1)

=6
time_vmin(n+2) =

22 + time_vmin(n/2+1)

length_connected_components(a,n) =
length_it_cc(a,forall 0 <= i < n do in parallel i,n)

length_it_cc(a,d,n) = if d=d’ then n else length_it_cc(a,d’,n)

length_repeat(c,n) =
if c=forall 0<=i<n do in parallel c[c[il] then n
else length_repeat(forall 0<=i<n do in parallel c[c[i]],n)

The recurrences for x_repeat and x_it_cc cannot be solved without help of the user. Even if we
had already a heuristic for the function repeat we do it within a parallel iteration scheme. In this
case this a monoid (€,,-) where!

2, = {c: Ny Nyu|(Ny, {(¢,¢(i))|i € Nn}) contains at most cylces of length 2}

The operation - is function camposition. It is easy to see that ¢ is idempotent and that ¢’ = cé.
Hence log, n recursive calls are necessary to reach idempotency. The iteration scheme of it_cc is
more complicated. Here we give a non-deterministic scheme (i.e. it contains a computation as given
by the program, but it may contain more computations), and show that the fixpoint is achieved
for any computation after log, n steps. We define a generalized G = (V, /) where V C 2Nn is a
partition of N, i.e. the parallel iteration scheme is a monoid (®,,-) with:

®, = {(V, E)| V is a partition of N, }

The partition V reflects the component merging. In one stage the size of V is at least reduced by
a factor of two. It is possible to merge m components by pairwise union into m/2 components.
Sometimes the algorithm merge even more components, but this is the minimum. The operation -
is based on the following partial order: :

ViEV,:eVCeVidDeV,: CCD

'N,={0,...,n—1)}
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The bottom element is L, = {{0},...,{n — 1} (which is also the intialization). The top element is
T, ={N,}. Let V1UV; be the least upper bound of V; and V;. The merging of components w.r.t.
E can be described non-deterministically by the following operation:

VIE={CiUCy|C1,Co€ VAJi€(Cy,jECy: (l,j) € E}
The elements C; and C, are chosen s.t. V/E are also a partition. Observe, that not the minimal
neighbours were merged but just one neighbour. The effect of one iteration can now be described
by G := (V/E, E). In order to find the operation - we define for Gy = (V4, E1) and G2 = (V3, E»)
that

G1-Gy = (Vi UV,)/E,E)

Then L7 is idempotent w.r.t. E and in each iteration G := G?. Hence the body of it_cc terminates
after at most log, n recursive calls. Hence the final recurrence system is:

time_connected_components(n) = 7 + time_it_cc(n,n)

time_it_cc(n,1)
time_it_cc(n,m)

122 + 2*time_vmin(n) + time_repeat(n)
124 + 2%time_vmin(n) + time_repeat(n) + time_it_cc(n,m/2)

15
16 + time_repeat(m/2)

time_repeat (1)
time_repeat(m)

(o)}

time_vmin(1l) =
time_vmin(n+2)

22 + time_vmin(n/2+1)

length_connected_components(n) = length_it_cc(n,n)

length_it_cc(n,1)
length_it_cc(n,m)

n
length_it_cc(n,m/2)

length_repeat(n,1) = n
length_repeat(n,m) = length_repeat(n,m/2)

Hence
Semi-Automatic Theorem 5.7 The time complezity of connected_components(a) is at most

time_connected_components(n) = 60 logZ(n) + 211 log,(n) + 156

where n = Ig(a).
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Appendix A

Discussion of Algorithm
remove_incompleteness

Here we prove the termination of algorithm remove_incompleteness, and obtain then its complex-
ity. The main part in this proof is lemma A.5 which connects correctly typed programs to the
impossibility of some programs. In fact, this connection will ensure the termination of algorithm
remove_incompleteness.

We start first with the easy termination proofs:

Lemma A.l1 (Termination of Loop 1) Loop 1 terminates. After its termination Il does not
contain any expression of the form u(g(---)) where u is a basic operation and g € II, and the set A
contains new functions to be created.

Proof: The number of redeces of rule 1 is decreased by one after one execution of the body of loop
1. Hence, loop 1 terminates. Furthermore, after its termination there is no redex of rule 1 and
therefore R cannot contain a basic operation. If an expression u(f(---)) is transformed, then p_f
is added to the set A, if p_f is not already defined. Thus the set A contains the new functions to
be created by loop 2. |

For the termination proof of loop 2, we prove first the termination of the loops inside loop 2.
Lemma A.2 (Termination of Loop 2.1) Loop 2.1 terminates on each set I' of top-level mutu-

ally recursive functions. After its termination, each top-level expression of the function bodies of
F are of the form

w(g(---)), where g € F, and u # U is a basic operation
or g(---), where g € F', or p(h(---)) and h & F (u is a basic operation).

Proof: Observe first, that loops 2.1.1 and 2.1.2 terminate, because the number of redeces of rules 4

and 5 inside a function body of F and II, respectively, decreases by one after each execution of the
bodies.

After execution of loop 2.1.1 on B, there is no top-level expression of the form ti(g(---)), where
g € F. This loop 2.1.1. is executed for each f € F. Therefore there is no function body of ' with
a top-level expression of the form t(g(---)), where g € F'. |
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Lemma A.3 (Termination of Loop 2.2) Loop 2.2 terminates, and after its termination on B’,
there is no subexpression of the following forms

o u(if - then - else-), p basic operation.

o u(let- = -in-), u basic operation.

p(forall - do in parallel-), x4 basic operation.

p(select - in parallel from-), u basic operation.

p(modify - to - from-), p # access basic operation.
in B’

Proof: The number of redeces of rule 3 is reduces by one after one executtion of the body of loop
2.2. After its termination B’ contains no redex of rule 3. Hence the second result. |

Lemma A .4 (Termination of Loop 2.3) Loop 2.3 terminates and after its termination, no ez-
pression of the form u(g(--+)) occur. The set A contains new functions to be created.

Proof: The number of redeces of rule 5 decreases by one after one execution of the body of loop
2.3. Therefore loop 2.3 terminates, and after its termination there is no redex of rule 5. If a new
function has to be created it is added to A in the if-statement. K

We prove now, that a situation like in the example discussed after algorithm remove_incompleteness
cannot occur with any from tl different basic operation:

Lemma A.5 (Correctly Typed Programs) Let 11 be a correctly typed program, and let
F = {fi,...,fr} be a set of top-level mutually recursive functions. Then any top-level expres-
sion in a body of f € F is a subezpression of an ezpression of the form p (- (pr(g(-++))--+), where
either any p; = tl or g ¢ F.

Proof: Suppose, that there is a body of a function f € F which has a top-level expression inside
an expression of the form v(---(vi(g(--))--) where g € I and one v_i = hd. With out loss of
generality let be f = f; and g = f,. Define furthermore p;y = vy 0---01,. Let fi,..., fr without
loss of generality be a top-level calling sequence, i.e. f; contains a call j;( fiz1(--+)) on a top-level
position and fr contains a call ur(fi(---)) on a top-level positions. Furthermore, let the types of
the f; be of the form A; — B;. Because the pu; are compositions of basic operations their types are
of the form

pi {"EY'— E

where r; > 1 because p; contains one hd operation. The output type of fi;; must be the input
type of p;, and on the other hand the output type of f; must be the output type of ji;. Therefore
we obtain the equation system

B;=F;, 1 <3<k, Bi+1 = (r' E{)r‘, 1<i<k,B = (TkEk)r*
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This equation system leads to an equation E; = ("E;)", where » > 1. But there is no type E;
satisfying this equation.

The contradicitions for the other basic operations are derived in a similar way. B8

From lemma A.2 and lemma A.5 we immediatly obtain:

Corollary A.6 (Property after Loop 2.1) Let F' be the set of top-level mutually recursive func-
tions before loop 2.1. Then all top-level expressions are of the form fi(---), if fi € F.

Now all the technical properties are prepared for the proof of termination of loop 2. We suppose
without loss of generality, that mutually recursive functions are processed together. By corollary A.6
while transforming a function f, new functions can only be added to A if the corresponding is not
in not in the top-level mutually recursive closure of f. We therefore consider the top-level graph
reduced to its strongly connected components. It is well-known that this reduced graph is acyclic.
Therefore during execution of loop 2, a point is reached where no new functions are added to A.
Hence we know together with lemmas A.2, A.3, and A.4:

Lemma A.7 (Termination of Loop 2) Loop 2 of algorithm remove_incompleteness {erminates.

Together with lemma A.1, this proves the termination of algorithm remove_incompleteness.

We turn now to the discussion of the time complexity of algorithm remove_incompleteness. Let n
be the length of the program Il U R (i.e. the number of symbols occuring in Il U R), and k be the
maximal nesting depth w.r.t basic oeperations of an expression py(...(px(f(---))---). We know
from corollary A.6, that for each f € II, new functions py_f, ..., pt1-...-pk_f are created. Let m be
the number of basic operations (here m = 4), and [ be the number of functions in II. Then at most
k m* | new functions are created, i.e. the resulting program has length O(k m* n). This lenght is
obviously propotional to the running time of algorithm remove_incompleteness. Hence we have:

Lemma A.8 (Time Complexity of Algorithm remove_incompleteness) If n is the length of
MU R, k is the mazimal nesting depth of basic operations in Il, and m s the number of basic

operations, the running time of algorithm remove_incompleteness is O(k m* n).

Observe that m is a constant, and that in practice & is also constant. Therefore in practice, the
running time of this algorithm is linear in its input size.
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Appendix B

The Complexity of Algorithm
instantiate_condition

In order to compute the complexity in lemma 3.23 we have to prove several lemmas about the.
output cardinalities and size of the sets involved. We start with simplifying algorithm combine for
the case where all the leading coefficients of linear terms equal to 1. In this case, lines (4)—-(14) can
be replaced by outputS; N §;. But if » < m this costs just time O(n logm). Also line (50) just
requires constant time. Then we obtain easily from the proof of lemma 3.21:

Corollary B.1 (Time Complexity of combine in Special Case) Let be S| = {t;...,t,} and
Sz = {u1,...,un} such that each subterm of type nat is either constant or linear with leading
coefficient 1. Withoul loss of generality suppose n < m. Then

(a) If allt; and u; are of type nat, then algorithm combine(S,S;) needs time O(n logm).

(b) If t; and u; are vectors (or tuples, respectively) then algorithm combine(Sy,S,) needs time
O(m r + n s) where r = 52(5,) and s = s52(5,).

For the output cardinality we have:
Lemma B.2 (Output Cardinaliyt of combine) If n = card(S;) and m = card(S;). Then
card(combine(.Sy, 52)) < n m

Proof: In the case of natural numbers, it is easy to see that: card(combine(Sy,S2)) < min(n,m) <
n-m. Otherwise, in line (43), at most one element is added whenever it is executed. From line (50)
it also follows that card(S') < 1 because in this case card(combine({p(z)}.{p(y)})) < 1. llence line
(52) also adds at most one element. In each execution of lines (41)-(54), at most one of lines (43)
and (52) are executed. Because lines (41)-(54) are executed n m times, we have proven the claim.

Lemma B.3 (Output Size of combine) Definen = card(S;), m = card(S;), and r = max{sz({)|t €
Sy U S,}. Then:

sz(combine(Sy,57)) < nm "
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Proof: Define first for two terms ¢ and u that r = sz(t), s = sz(u), and & to be the most general
unifier of ¢t and u. Without loss of generality let be r > s. Then it is well-known that

sz(ot) < (%)8 <

Thus for any term t € combine(S51,52), it is sz(t) < . This together with lemma B.2 yields the
stated claim. | |

We consider now algorithm instantiate_condition. From now we define for any condition C in DNF
p to be the number of literals in C, k to be the maximal number of operations in {hd, tl, (-).7,(-)[¢]}
in a literal of C, ¢ to be the maximal number of operations in {cons, (:,+)} in a literal of C', and m
to be the largest natural number occuring in C (m = 1 if there is no natural number). The first
complexity we consider is the output cardinality of instantiate_condition(C,(zy,...,2,)):

Lemma B.4 (Output Cardinality of instantiate_condition) The output cardinality of instanti-
ate_condition is:

card(instantiate.condition(C, (a1, .., za))) < mP 2" ™"

Proof: Define C(k,q, m) = card(instantiate_condition(L,(zy,...,z,))) where L is a literal. If
k =0 and g = 0, then line (16) (or line (21)) dominate, with an output cardinality of m. Thus

C(0,0,m)<m

The value k decreases in the recursive calls in lines (40), (43), (47), (51), (55), (57), (65), and (69).
Each of these operations increase ¢. If we make the (reasonable) assumption, that C(k,q, m) is
non-decreasing! in each of its arguments. Then lines (66) and (70) dominate the others. Observe
further, that the output cardinality of in these lines equals to the output cardinality of the recursive
calls in lines (65) and (69) respectively. In lines (65) and (69), the number of new variables increases
at most by m. Hence:

C(k,q,m)<C(k—-1,g4+m,m)

When g decreases, consider first line (61). There are two recursive calls, both of them with at
most q — 2 operations in {cons,(-,-)}. Because line (61) requires a combination, we obtain with
lemma B.2: -

C(k,q,m) < ¢*(k,q,m)
Line (62) involves just a union of two sets and is therefore dominated by the output cardinality of

line (61). Lines (71) and (72) are dealt analogously. Thus, the incquations

C(0,0,m) < m
C(ks q'vm) S C(k - I,Q‘I' mﬁ?n)
C(k,qg,m) < C*k,q-2,m)

1 . . - . -
The claim is in fact a non-decreasing function

114



Thus
C(k,q,m) < C(0,a+ k-m,m) < CVZ" " (0,0,m) < m¥™"

In lines (3)-(7) at most all p literals are combined, hence

+ k-
card(instantiate_condition(C, (z1,...,2,))) < CP(k,q,m) < mP VY

The output size of instantiate_condition is growing extremely fast:
Lemma B.5 (Output Size of instantiate_condition) The output size of instantiate_condition is:

sz(instantiate_condition(C, (z1,...,25))) < mPVE" 9(p, l,gzk((q +km)/2,m,n+ k m))

where the function g(q, m,n) is defined by the recurrence

g(0,m,n) = n

Q(Q'!ma n) = mzq g(q— l,m’ n)g(q—l.mm

Proof: The organization of this proof is similar to the proof of lemma B.4. We define first:
S(k,q,m,n) := max{sz(t)|t € instantiate_condition(L,(zy,...,2s))}
where L is a literal. Clearly, if k = ¢ = 0, then 5(0,0,m,n) < n. If k is decreased then the recursive
calls in lines (40), (43), (47), (51), (55), (57), (65), and (69) have to be considered. If they output a
maximal term size .S, the maximal term size in the output of these cases is bounded by S2. Again,
by the assumption that S(g,k, m,n) is non-decreasing in its arguments, we obtain
5(g,k,m,n) < §%(g, k,m,n)
If ¢ is decrease, then S(k, q,n,m)is dominated by the output in line (61), because in this case, two
sets are combined, both of them having a maximal terms size of at most S(k,q — 2, m,n). Hence
by lemma B.3:
S(k,q,m,n) < C*(k,q,m)- S(k,q - 2,n,m)3Fa-2mn)

We conclude first that S(k,q,n,m) < Szk({],q+ k-m,m,n+ k-m), and then with the definition
of g and considering the third equation with k = 0:

S(k,q,m,n) < yzk((q +km)/2,m,n+k m))
Now, at most p combines are performed, i.e. the maximum term size of the output it most
k
g9(p, 1,5(k,q,n,m)) < g(p, 1,9* ((q + k m)/2,m,n+ k m)))
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q+k-m
Because there are at most mPV2 terms in the output, the claim follows. |

We conjecture, that usually, the size of the output is polynomial in its parameters, but we know
from the results of the size of unification, that the size really explodes, even if probably not as
much as here stated, when the analysis is done more carefully. We have also from the proof:

Corollary B.8 (Maximal Term Size in instantiate_condition) The mazimal term size of in-
stantiate condition is given by:

max{sz(t)|t € instantiate_condition(C,(z1,...,%a))} < 9(p, l,gzk((q +km)/2,m,n+k m))

In order to get a feeling for the rate of growth of g, we state without proof that for fixed m and n:

A(2,q) £ g(g,m,n) < A(3,q)

where A(z,7) is Ackermann’s function.

We have now everything prepared for analyzing the time complexity of algorithm instantiate_condition.
Sets are supposed to be represented as 2-3-trees. We consider also first the running time T'(k, ¢, m,n)
for literals. Then it is immediate that in the case k = ¢ = 0 at most m insertions are performed
as it can be seen from the dominating lines (16) and (21). This requires time O(mlogm) and the
maximum term size is n. Therefore:

T(0,0,n,m) < ¢n m logm+ d where ¢ and d are suitable constants
If k is decreasing, then the case in lines (45)-(48) is dominating (or alternatively, lines (49)-(52),

lines (63)~(66), or lines (67)-(70)). The computation of the output in line (48) is the same as the
size of the output of line (46), (47). Hence:

+ k-m
T(k,q,m,n) < mv? gzk((q +k-m)/2,mn+k-m)+T(k-1,g+m,n+m,m)
When q is decreasing, consider line (61). This line dominates line (62) because it requires a combine

operation. Lines (71) and (72) are dealt analogously. The time for the two recursive calls is bounded
by 2 -T(k,q — 2,n,m), because both, a; = a; and {; = [3, contain at most ¢ — 2 operations in

+k-m
{cons,(-,-)}. Their output cardinality is by lemma B.2 bounded by mY?" " their maximal term
size is by lemma B.6 bounded by gzk((q + k m)/2,m,n+ k m)). Thus the combination time is:

+Em
O(m? logm mv?' ggk((q+k-m]/2,m,n+k-m)

Hence there is a constant é such that
4+km
T(k,q,m,n) < § m? logm mv?' ggk((q +k-m)/2,mn+k-m)+2T(k,qg—2,n,m)
Altogether, we get

+k-m
T(k,q,m,n) < k- mv?' gzk((q + k) 2,mn+k-m)+T0,g+km,n+km,m)
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T(0,q,n,m) < § ¢/2 29/? logm m"% g(g/2,m,n)+ 22 T(0,0,n,m)
The first term dominated the second hence:
T(k,q,m,n)=0(k mﬁq“‘mgzk((q +k-m)/2,m,n+ k-m))

Evaluating the p literals requires at most time O(p-T'(k, g, m,n)), and combining at most p literals
require at most time

Z_P_\/,E!Hk edotm}f2

O(p m*® logmm g(p,l,gﬁ((q-i- k-m)/2,m,n+ k-m))

which dominates the time for evaluating the p literals. Thus the time complexity of
instantiate_condition(C, (z1,...,2,)) is

2‘p‘\/§.q+k cdotm)f2

O(p m? logmm g(p, 1,g2k((q +k-m)/2,m,n+ k-m))
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