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Abstract

We study strategies for converting randomized algorithms of the Las Vegas type into ran-
domized algorithms with small tail probabilities.
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1 Introduction

Let A be a randomized algorithm of the Las Vegas type, i.e., A’s output
is always correct and A’s running time T4 is a random variable. Let Ey =
E[T4). Then prob(T4 > t) < Ey/t for all ¢ according to Markov’s inequality.
If no further information about the distribution of T4 is available, Markov’s
inequality is the best bound available for the tail probability. Consider now
the following modified algorithm. It runs A for ¢; = 2E, time units. If
A stops before the threshhold t, then the modified algorithm stops. If A
does not stop before time ¢;, then the modified algorithm restarts A and
runs it again for t, = 2£; time units but with new random choices. In this
way prob(Tmea = k2E) < 27* for all k € IN or prob(Tmeq > t) < 2 4/2E0]
for all ¢ € IR, where Toq is the running time of the modified algorithm.
The bound for the tail probability of the modified algorithm depends on the
sequence ty,1s, ... of threshholds chosen by the modified algorithm. What is
an optimal sequence?

Let us first state the problem in more abstract terms. Let X, X;, X5, ... be
independent nonnegative random variables with common distribution func-
tion f(z). Let ¥1,Y5,... be a sequence of nonnegative random variables (not
necessarily independent) and let g be the least ¢ such that X; < Y:. Define
random variable T by T = Y1 + Yo + ... + Y1 + Xi,. A strategy S is a
distribution function for the ¥’s. A strategy S together with a distribu-
tion f for the X;’s induces a distribution for the random variable T. Let
bs j(t) = prob(T > t) and let

bs(t, Eo) = sup{bs(t); f is a distribution with I zf(z)dx = By},

Le., prob(T 2 t) < bs(t, Eq) for all distributions f for X with E[X] = E,
and bs(t, Eo) is the smallest such value. A strategy S is called deterministic
if each ¥; can assume only a single value and probabilistic otherwise. Set
bs(t) = bs(t,1).

For example, the strategy mentioned in the first paragraph is determin-
istic. We have prob(Y; = 2E;) = 1 for all i and bs(t, Eg) < 2-1#/2E) <
20212 E0 . We show

Theorem 1 For all strategies S: bs(t) > e~ for all t > 0.

Theorem 2 There is a probabilistic strategy S with bs(t) < et~V for all
t>0.



Theorem 3 There is a deterministic strategy S with bs(t) < e~t+0(Vilogt)
forallt > 0.

Theorem 4 There are positive constants ¢; and c; and a deterministic strat-
egy S such that bs(t, E) < e~o/(EMEM)In(e2t) for g1l ¢ > 0 and E > 1.

Theorems 1, 2 and 3 imply that there are near-optimal probabilistic and
deterministic strategies for the case of a known value of Ey = E[X], i.e., for
the case where the strategy may depend on the value Ey. Note that, although
these theorems are stated for the case Eg = 1, simple scaling extends them to
all values of £y. Theorem 4 deals with the case of an unknown expectation
E[X]. Of course, a lower bound has to be assumed for E[X] to make the
question meaningful. We prove an exponential bound for the tail probability
but were not able to determine the optimal base of the exponential function.
All proofs are given in Section 2.

2 Proofs

2.1 The Proof of Theorem 1

We prove Theorem 1. Let f(x) = e™*. Then E[X] = [(°zf(z)dz = 1 and
prob(X > z) = [[° f(z)dz = e™®. A strategy S is defined by a probability
measure g on {3 = (IRy0), i.e., by a probability measure on the set of infinite
sequences of nonnegative reals.

Let ¢ € IR>o and let jy be the random variable defined by

it + Hagtsh ..+ ¥

Then
prob(T 2 t) = ) prob(T > t | jo = j)prob(jo = j).
521

Let Q; = {(3n,42,.- )i +...+y;-1 <t <yr+...+y;}. Then prob(jo =
7) = u8;. Also, an element (y;,y2,...) € Q; contributes to the event T > ¢ if
and only if X1 > y1, X7 2 y,...,Xjo1 2 yj,and X; 2> 6= (11 +.. A Yi-1),
i.e., it contributes to the event T > ¢ with probability e~. Thus prob(T >
t|jo=j)=e"" and hence prob(T > t) = e*. This proves Theorem 1.



2.2 The proof of Theorem 2

We prove Theorem 2. We first define a strategy S. The random variables
Y1,Ys, ... are independent with common density function g(y) = e7¥. Let f
be any distribution with [§° 2 f(z)dz = 1 and let b(t) = bs s(t) for all . We
will show b(t) < 1fort < 1and b(t) <e-e'fort > 1. Consider some fixed t.
Let ¢ = prob(X > t) be the probability that X exceeds the threshhold ¢, and
for all z with 0 <z <t let A(z) = prob(X > z | X < t) be the conditional
probability that X > z given that X < ¢. Then

1 - gt
l—q

m=EX|X <t = [ hz)de <

since
1=E[X]=(1-q)E[X | X <{]+¢E[X | X >t]> (1 -q¢m+ qt.
Also,

BEE) = yle~t 4 f; e=?b(t — z)dz) + (1 = q) /Ot e~%b(t — z)h(z)dz.

This can be seen as follows. Define random variable ' by Yo+. ..+ Y, 1+ X;,
fig>22and by T =01if ig = 1. If X; > ¢ the event T > ¢ occurs iff either
Y) > tor Y] assumes a value x between 0 and ¢t and T > t—z. If X; < t then
the event T' > t occurs iff ¥| assumes a value 2 between 0 and ¢, X; > ¥}
and T' > t — 2. Next observe that prob(T" >t -z | X; 2 Y1) = b(¢ — 2)
since the random variables X;, X5,....}], Y5, ... are independent. Make the
substitution Q(¢) = e*b(t). Then

QW) = g1+ [ Q-2)de) +(1 - ) [ Q(t - 2)h(z)d=

We will show that Qi) < efort > 1 and Q(t) < ¢ for ¢ < 1. The case
t < lisimmediate. ['or ¢ > 1 it suffices to plug this inequality into the right-
hand-side and show that it holds for the left-hand-side. The right-hand-side
1s bounded above by

gl +et=1)+ (1l =—qglem < qgte+e(l —gqt) <e.

This completes the proof.



2.3 The Proof of Theorem 3

We prove Theorem 3. For any integers n and : with 1 £z £ n define

[ e R

R R T e T Y bl

Note that Zl<,<ﬂ i(n) = n. Let s(n) be the sequence t;(n), fg( )yeeeatn(n)
and let the strategy S be obtained by concatenating together s(1), 8(2],8(8)s 555
For 1 € ¢ < nlet pi(n) = prob(X > t;i(n)). The following Lemma is crucial

for the analysis of strategy S.

Lemma 1 For all integers n, [[cic, piln) < Z.

nﬂ

Proof: Let t5(n) =0 and pyy1(n) = 0. Then
1=E[X] > ) (pi(n) = pisa(n))ti(n)

1<i<n

= 3 w)Em) — tia(n))
1<:i<n

= Y pin)/n—i+1).
1<i<n

Let 7 = (P1,D2,.-..Pn) € R" be the n-tuple which maximizes the product
function P(p1,pa, - -, Pn) = [li<ica Pi subject to the constraint 3y ¢;<n pi/(n—
1+ 1) £ 1. Clearly, ¥1<i<a Pi/(n—i+1)—1=0. Let g(P1,P2y e vy Pn) =
Yi<icn i/ (n—i+1)—1. The Lagrange multiplier rule [Erw64, Theorem 66]
implies the existence of a constant A such that

apP dg
A5y =0

C)p;( P) apl{p)
for all ¢, i.e., P(p)/pi = A/(n =i+ 1) or j; = C(n—1+1) for some constant
C. The constraint g(7) = 0 11111)11{*5 C = 1/n. Thus [licica piln) £ P(P) =
nl/n®. i

We now bound bs(¢). Consider a ¢ that lies between the binomial co-
efficients (”';1) and (“;’2) and let ty = (";l). Since Liqick tilk) = &,
we have T cicren tilk) = to £ t and therefore bs(t) < [licicken pi(k) £
[lick<n L'/L“ By Stirling’s approximation [Kn73, page 111], L'/Ak < V2rke ¥ (k+
1)/k and hence bs(t) < (2rn)™%e~(n + 1) < =0 (Vilegt)  completing the
proof.



2.4 The Proof of Theorem 4

We prove Theorem 4. We first define the strategy S. For integers i and
j let my; = |e7'/i%]. Let S; be the sequence consisting of m;; copies of
e!, followed by my; copies of e?, followed by ma; copies of €3,... Let S be
obtained by catenating Sy, S, ... We now bound prob(T > t) for t € R. Let
ip € IN be such that e°=? < By = E[X] < €*7!, set M; = T;5, myje, and
let jo be such that Dicio Mi St < Ticion M;.
Lemma 2 (a) jo > In(6t(c — 1)/r%?

(b) prob(T > 1) < e~ Lssin ™,

(c) ks, Mgy 2 ———-l~—-—EO{fn 1‘80}2 — In(est).
Proof:

(a) Note first that M; = ¥;my;e' < T, ¢//1* = n%¢’ /6 and hence ¥_;¢;, M; <
Ticio ™€ [6 < w2+ /(6(e — 1)). Thus t < n?e®*2/(6(e — 1)) and
therefore jo > In(6i(e — 1)/(7%e?)).

(b) It follows from the definition of S and jg that the event T' > t implies
the occurrence of 3=, m,; events of the form X > e’. But prob(X >
) < 1/e according to Markov's inequality and the fact that E[X] <

g1,
(c)
ei=io
Z Mig; = Z { ) |
1<5<o 1<i<io 0
g s .
> 5 ) d—j
‘o ISiSJo
> Bl '
- 125‘0‘“ (e—1) —o
6t(e — 1)/(7%€?) =1 6t(e —1)
> - In
iageioti(e — 1) Aes
C;i
> —_— ] t
—  Eu(ln Ey)? n(et)
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for some constants ¢; and ¢,. Here, the first inequality follows from the
definition of m;;, the fourth inequality follows from part (a), and the
last inequality follows from the fact that Eq > e®~2.

|

Theorem 4 is now a direct consequence of parts (b) and (c) of the preceding
Lemma.
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