Checking Approximate
Computations over the Reals

Sigal A* Manuel Blum! Bruno Codenotti?
Pete Gemmell
TR-92-030
May 1992

Abstract

This paper provides the first systematic investigation of checking approximate numeri-
cal computations, over subsets of the reals. In most cases, approximate checkingis more
challenging than exact checking. Problem conditioning, i.e., the measure of sensitivity
of the output to slight changes in the input, and the presence of approximation param-
eters foil the direct transformation of many exact checkers to the approximate setting.
We can extend exact checkers only if they have a very smooth dependence on the sensi-
tivity of the problem. Furthermore, approximate checking over the reals is complicated
by the lack of nice finite field properties such as the existence of a samplable distri-
bution which is invariant under addition or multiplication by a scalar. We overcome
the above problems by using such techniques as testing and checking over similar but
distinct distributions, using functions’ random and downward self-reducibility proper-
ties, and taking advantage of the small variance of the sum of independent identically
distributed random variables.

*Department of Computer Science, Princeton University, Princeton, NJ 08544-2087. Supported by
NSF PYI grant CCR-9057486 and a grant from MITL.

tComputer Science Division, UC Berkeley, Berkeley, CA 94720, and International Computer Sci-
ence Institute, Berkeley CA 94704. Supported by NSF grant CCR88-13632.

International Computer Science Institute, Berkeley, CA 94704, and IEI-CNR, Pisa (Italy). Par-
tially supported by the ”Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”. Subproject 2.
e-mail: brunoc@icsi.berkeley.edu

§Computer Science Division, UC Berkeley, Berkeley, CA 94720. Supported by GTE, Schlumberger
Fellowships, and by NSF grant CCR88-13632.

We provide checkers for a variety of approximate computations, including matrix
multiplication, linear system solution, matrix inversion, and computation of the de-
terminant. We also present an approximate version of Beigel’s trick and extend the
approximate linear self tester/corrector of [8] to more general computations including
trigonometric functions.

Our techniques are very general and we believe that they will have applications
to a broader class of problems such as the solution of Riccati and other matrix equa-
tions, computation of matrix functions, and several other polynomial and non-linear
computations.

We conjecture that the approximation parameters in our checkers are optimal. The
intuition behind this is that their ratio is proportional to the reciprocal of the distance
between the given instance and a singularity.

1 Introduction

The notion of program checking is due to Blum [2] and has been developed by [14, 3, 12].
In this paper we propose a framework within which to use the ideas of program checking
in the environment of numerical algorithms, where the computation is approximate,
due for example to the propagation of roundoff errors.

When dealing with approximations some certainties are lost. A mathematical struc-
ture is transformed into a more complicated one with weaker operators. We found
evidence of the hardness of approximations when looking at the task of designing ap-
proximate result checkers. The goal of approximate checking is to distinguish between
programs which produce small errors and those that produce large errors. In particu-
lar, one might distinguish small errors, caused by roundoff, from larger errors, due to
bugs or catastrophic propagation of roundoff.

Checking computations which do not produce exact results is a process which can be
very different from checking exact computations. There are at least two reasons. First,
approximate checking introduces a grey zone: there are two approximation parameters,
€; and €;,. We must almost surely pass all programs which are within €; of the correct
answer for all inputs, and we must almost surely fail programs not within €; of the
correct answer on the given instance. The task is to make ¢; and ¢; as close as possible.

Second, there is the issue of problem conditioning, i.e. the measure of how sensitive
the output is to slight changes in the input. A test whose exact fulfillment is necessary
and sufficient for an exact solution might not transfer nicely to the approximate case.
By this we mean that the test’s approximate fulfillment might not be necessary or
might not be sufficient for an approximate solution. One case where we encountered
this problem was in designing a checker for linear system solution. If z is the exact
solution to a linear system Az = b and £ is an estimate for z, then we do not necessarily
have that ||A(Z — z)|| is small iff ||Z — || is small.

QOur work provides a substantial improvement over the state of the art of approxi-
mate program checking. Previous results extended existing checkers for exact compu-
tations to the approximate setting [14, 8]. They all took advantage of properties of
finite groups. These previous approximate checkers were available only for generalized
univariate linear functions and polynomials over finite groups and three elementary
functions on floating point domains (exponential, logarithm, and quotient).

We provide approximate checkers for a variety of numerical problems in linear al-
gebra. By necessity most of these checkers are substantially different from the checkers
for the exact versions of the same problems.

e Matrix multiplication. We modify Freivald’s exact checker [7]. We use vec-
tors with entries from {—1,1} so as to minimize the distance between the two
approximation parameters.

¢ Linear system solution. After we show that the naive approach of plugging the
solution back into the system does not work, we provide a checker which is based
on contructing instances with known solution over one randomized distribution,

1

testing the program over this distribution, and than correcting over a randomized
distribution which is very close to the one we tested over.

e Matrix inversion. We take advantage of the fact that a nonsingular matrix
and its inverse satisfy a simple matrix equation. This allows us to use modified
Freivald’s checker for matrix multiplication.

o Computation of the determinant. We provide two checkers. One has general
application but relatively loose bounds. The other achieves better bounds, but
applies to matrices with special properties.

In addition, we provide checkers for generalized homomorphic functions, and some
trigonometric functions.

For lack of space, we did not put emphasis on the presentation of several other im-
portant results that will appear in greater detail only in the full paper. These include
an approximate version of Beigel’s trick [1], checkers for approximate parallel programs
and checkers for special cases such as linear algebra computations with Toeplitz, tri-
angular, and band matrices.

In the course of writing this paper, we noted that the checkers for numerical prob-
lems fall into three different categories:

1. We can take advantage of functions which are downward self-reducible by follow-
ing one line of the recursion toward a small instance and checking the program
on that instance. This is the case with the first determinant checker.

2. For functions f which are random self-reducible to problems of the same input
size and for which we are able to compute f(R) easily for random instances R,
we get both approximate self-testers and correctors. This is the case with the
linear system solution checker.

3. For some functions, f, such as matrix multiplication, we are able to take advan-
tage of a necessary and sufficient property of f that can be checked in low time
complexity.

The rest of this paper is organized as follows. In section 2 we give some definitions; in
section 3 we describe the model for approximate checking. In section 4 we describe the
approximate checkers; in section 5 we give some extensions and further results. Section
6 contains concluding remarks, and the appendix contains some proofs from section 4.

2 Definitions

Definition 1 (matriz norm) For any given norm || - || on vectors, its associated (op-
erator) norm on matrices, for any mairiz A, is defined as
Ax
41 = max L2 s jax. 1)
x#0 ||x| Ixl=1

In this paper, we will make use of the following norms:

1. The infinity vector norm, ||z||e = maz;|z;|;
2. The infinity matrix norm, || Al = maz; ¥ |ai;|.
The notation || - || stands for any norm.
Definition 2 (condition number) The function u(A), defined by
Al - |47 if A is nonsingular,
aay={ [T 1AT i

oo otherwise,
is called the condition number of A.

Definition 38 (“little-oh” property) The checkers must have a running time which is
asymptotically less than the running time of the program being checked, when each call
to the program counts as one step in the checker’s computation.

Definition 4 (approzimation) We say that a program P(6, €)-approximates the func-
tion f, if || P(z) — f(z)|| < € for all but a 6 fraction of the inputs.

Definition 5 (approzimate result checker) Let 0 < ¢ < €;. An (€1, €2)-approximate
result checker for a function f, under a given norm ||-|| (or || for real numbers), is a
probabilistic oracle program C|, which is used to check the quality of the approzimation
of any program that claims to approzimate f. This is done as follows. On a given
input £, Program P, and security parameter 3, C}D must behave as follows:

1. If P(z) is not within €; of f(z), in the sense that ||P(z)— f(z)|| > €2 (or |P(z)—
f(z)| > €2), then C’}?(a:) outputs “FAIL P”, with probability at least 1 — f3.

2. IfVy, Pl(y) is within e; of f(y), in the sense that ||P(y) — f(y)|| £ & (or |P(y) -
f(y)| £ e1), then Cf(m) outputs “PASS P(z)”, with probability at least 1 — B.

Definition 6 (approzrimate self-tester) Let 0 < 6 < 6, < 1. Let 0 < g < €. A
(61,89, €1, €2)-approximate self-tester for the function f, is a probabilistic oracle
program T; so that on a given program P, and security parameter 3, Tf must behave
as follows:

1. If P (61,€1)-approzimates f, then Tf outputs “PASS”, with probability at least
1-5. ' _
2. If P does not (6, €;)-approzimates f, then Tf outputs “FAIL”, with probability
at least 1 — 3.
Definition 7 (approzimate self-corrector) Let0 < 6 < 1. Let0 < €3 < €. A (6, €1, €2)-
approximate self-corrector for the function f, is a probabilistic oracle program Cy
that has the following property on a given input z, program P, and security parameter
B. If P (6, €1)-approzimates f, then C}D(x) is within €, of f(z), with probability at least
1-2.
Note that it is easy to obtain an approximate result checker from an approximate

self-tester combined with an approximate self-corrector.
Notation. We denote by z €y S the fact that z is an element of 5, uniformly chosen.

3

3 The Model

In this section we will define what we mean by computation over the reals, and by
checking this type of computation. We assume that the inputs to the program to be
checked are a set of real numbers. The output is one or more real number. This,
of course, includes the special case where the program’s computation is over a small
subset of the reals, e.g. the rationals or a set of fixed or floating point numbers. In
all previous work on checkers, it is assumed with loss of generality that the checker is
faultless. We continue using previous assumptions here, further assuming (with ”some”
loss of generality) that the checker’s computations have negligibly small error compared
to the program being checked. This is a reasonable assumption to make because: (1) the
checker does less total computation than does the program (the "little-oh” property);
(2) our checkers are very simple and built up by using very basic numerical primitives
so that we can use extended precision arithmetic to make the checker’s computation
exact or extremely accurate; (3) all checkers which we present would still be valid if
the errors which they introduce were small relative to that of the program.

For some of the linear algebra checkers, we ask the checker to sample from the
uniform distribution on a bounded set of vectors. In practice, the checker needs only
to sample from a set of vectors that can be written to some sufficiently good finite
precision.

Note that, in general, the program error can come from one of three sources: round-
off, bugs, or approximation (such as that associated with iterative methods, even when
using exact arithmetic).

4 Checkers for numerical computations

4.1 Matrix Multiplication

The importance of checking matrix multiplication algorithms follows from the existence
of asymptotically fast algorithms solving the problem in a rather complicated way (see,
e.g., [6]). Here we present a result checker for approximate matrix multiplication based
on Freivald’s idea [T7].

Recall that Freivald’s checker is based on the following property. If A, B and C
are n X n matrices, with (AB);; # Cj;, and r is an n-vector with 0,1 entries so that
ABr = Cr, then if 7 is the vector obtained from r by toggling the j-th bit, we have
that ABF # C7. We assume that the input is two n x n real matrices 4 and B and
the output P(A, B) of a program P claiming to approximate AB. The following is the
checker we propose:

Program Matrix Multiplication Approximate Check(A, B, P(A, B), ¢, 8)
Repeat log(}) times
Choose v €y {-1,1}"
Check |[P(A, BJv— A(Bv)|le £ ¢
If any of the checks fail then output FAIL P; otherwise output PASS P(A, B)

Theorem 1 The above protocol is an (%,+/ne)-approzimate checker for n x n matriz
multiplication, under the || - || norm.

Proof. We need to prove the following:

1. If |P(A, B) — AB||s > /e, then Pr[P fails | > 1 — 4.

2. If [|P(A,B) — AB||e < £, then Pr[P passes | > 1— 4.

1. Let e;; = (P(A, B)—AB); ;. There exists specific row g such that ©7, |es,;| > /ne.
In the worst case, ¥j € {1...n},|ei] = 7= Then, using Stirling’s approximation,
Priegi-10y[l Ziy vieisl > §v/ngz = §1 > §. The probability that P fails is more

1
than 1 — %log” =1-4.
2. We have 377, |eiy;| < 5. Then, with probability 1, | 0y vieis| <

£
3

4.2 Linear System Solution

Here we consider checking programs P(= Pj4) which claim to solve n x n linear systems
of the form Az = b where A is a real n x n nonsingular matrix and b is a real n-vector.
We denote by P(b) = P4(b) the output of the program on matrix A and vector 5. The
checker is also provided with a positive number v such that Vz,||Az|| > v||z||. This
number is related to the minimum singular value of A and it is a measure of how close A
is to a singularity (see [9]). We can either assume that v is given, or we may assume to
have a library (see [4]) containing a tested program for the singular value decomposition
of A which can be used to check v.* We note here that simply computing ||A(P(b))—b||
is not a satisfactory check because it may yield poor approximation parameters. This
is due to the fact that the value of ||A(P(b)) — b|| can be small and at the same time
the value of ||z — P(b)|| can be as large as ||A7!]| - ||A(P(b)) — b||.

Let D be the n dimensional cube of vectors, r =< z1,...,z, > with MM:’—I% <

By & Uﬂl:;o"v.‘:_ Define AD = {Az : z € D}. Our approximate checker requires that
the uniform distributions on AD, on which we test, and on b — AD, on which we check,
differ only very slightly. This is why we define D so that the sides of the box AD will
be large relative to b.

*A development of the library notion will be provided in the full paper.

5

Program Linear System Solution Approximate Check(P, A,b,v, P(b),¢, 5)
Approximate Self-Test
Repeat logy(3) times
choose y €y D and test ||P(Ay) — y||le £ 2¢
If any of the tests fail, then output FAIL P
Approximate Self-Check
Repeat logg(%) times
choose y €y D and check ||P(b) — (y + P(b— Ay))||- < 2¢
If any of the checks fail then output FAIL P; otherwise output PASS P(b)

Note that the above self-check can easily be converted into a self-corrector if the
approximate solution is computed as the componentwise median of y + P(b— Ay).

Theorem 2 The above protocol is an (¢,4¢)-approzimate checker for linear system
solution, under the || - || norm.

Proof. We need to prove the following:

1. IfVve ADUb— AD, ||P(v) — A™'|| £ € then Pr[P passes | > 1— f.

2. If || P(b) — Ab|| > 4€ then Pr[P passes | < .

1. First we show that b € AD. Note that ||A™}||e < 2 because Vz,7|z|| < |[Az|| =

Vy, [|472y]] < iyl (|47 blleo < Llbllee < 1= = A-'b € D = b € AD. There-
fore Yv € AD, ||P(v) — A~ || < € implies ||P(b) — A7')||oo < €. P with b will pass
both the approximate self-test and the approximate self-check with probability 1.

2. Assume that ||P(8) — A™1||e > 4e. If Pryg,an(||P(v) — A7 0|l £ 2¢] < 2/3

; logy
then Pr[P passes the approximate self-test | < %Dg% = % From now we assume that

Proeyan[||P(v) — A™'0||e < 2¢] > 2/3. Since [|b]|co is small relative to the length of
the sides of AD, which is an n-dimensional box centered at the origin in R", we know
that the uniform distributions on AD and b— AD differ only very slightly. Specifically,
the two sets AD and b — AD overlap in at least 90 percent of their hypervolume. So
we have: Prye,p-ap|||P(v) — A7'v||o < 2¢] > 1/2, from which Pro¢,p[||P(b— Az) —
A1 (b= Az)||e < 2¢] > 1/2 and Proe,p|||z + P(b— Az) — A7"b||es < 2¢] > 1/2. Thus,
we have Pr.c,p[||P(b) — (z + P(b— Az))||ec < 2¢] £1/2. So the probability that P

2
can pass the self-check part of the test is at most %105’ B g and the overall probability

P can pass the test is at most 5. m

4,3 Matrix Inversion

In this section we design a checker for programs P which output an approximation
to the inverse of a nonsingular n x n matrix A. We use the approximate version of

6

Freivald’s test to check that ||A(P(A))—I|| is small and from this, we make inferences
about ||P(A) = A7 |e.

Program Matrix Inversion Approximate Check(P, A, ¢, 3)
Compute A = ﬁ;

Call Matrix Multiplication Approximate Check(f;l, P(fi),f, 6, 5)
Output the output of the approximate matrix multiplication check

Theorem 3 The above protocol is an (£ l%)-app?"t:r:m':rrmtf: checker for matriz inver-

n?

sion, where v is as in section 4.2, under the || - || norm.

Proof. The proof is in the appendix. 0O

4.4 Computation of the Determinant

Kannan [10] shows a checker for the determinant when the program claims to compute
it exactly. We show under what conditions we can check programs that claim to
approximate the determinant, using a modification of his method. Let A be an n X
n nonsingular matrix, and let ¥ be as above. Let A;; be the matrix obtained by
removing the i** row and the j** column from the matrix A, and let a; be the :-
th row of A. Let P be a program claiming to approximate the determinant. Let
vp =< P(A11),—P(Az21) ;.. ,(=1)""'P(A,1) >T. The following is a checker for P,
with matrnix A.

Program Determinant Approximate Check(P, A, P(A),¢,)
Consistency test
Repeat O(log(%)) times:

For :=1,...,n, choose random) € {—1,1}

Let wl = ¥ Ma;

Test that |wlvp — A P(A)| < ¢|P(A)]
Recursive test

Let j be such that |P(A;;)| is maximal

Call Determinant Approximate Check(P, A4;,, P(A4;1),¢,0)
Output PASS P(A) iff all tests pass.

Theorem 4 The above protocol is an (e’n-Ta,25’n2“f'1}-approzimate checker for the
determinant, where €' = ¢|det(A)|.

Proof. The proof is in the appendix. O

|

4.5 Another Approximate Determinant Checker

In this section we consider ways to extend the self-tester and corrector for determinant
presented in [4] to programs which work over the reals and claim only to approximate
the determinant. The tester/corrector in [4] works as follows: on a program P and
an input matrix A, it picks a random nonsingular matrix M with known determinant
(using method of [13]) and it tests that P(M) = det(M); then it corrects, by computing

%ﬂl—MA} for 2 random matrix M.

Note that this tester/corrector requires the use of a matrix multiplication routine
which does not guarantee the little-oh property. However, they solve this by using
Freivald’s test and assuming that both the matrix multiplication and the determinant
are part of a library that is being checked. To adjust the method in [4] to checking
approximate computations of the determinant over the reals, we need to get around
two major problems. The first is that the method shown in [13] does not easily adapt to
uniformly generating matrices with known determinant over any simple subset of the
real matrices. The second problem is that if we test program P over matrices belonging
to distribution D, then the self-correction done over AD may not be valid. Our solution
is to precondition A by multiplying it by a matrix Q of known determinant. (@ can be
for example a lower triangular matrix, as in the case of Gauss-Seidel preconditioning
(see [9]).) We then choose a distribution D such that 3 prernxn |[Pranen[M = M| —
Prar,egan[M = M;]| is small.

The approximate self-tester and corrector is the following:

Program Determinant Approximate Self-Test and Correct(PF, A4, ¢, §)
Approximate Self-Test
Repeat O(log %) times
Choose M € D with known determinant

|[P(M)—det(M)|
and test that [det ()] <€

Output FAIL P if any of the tests fails.
Approximate Self-Correct
Repeat O(log%) times
Pick M € D with known
determinant and compute %

Output the median value.

Theorem 5 The above approzimate self-tester/corrector will successfully test and cor-
rect programs which output the determinant over D with relative error less than €, with
high probability.

v

4.6 Approximate Self-Testers for Generalized Group Homo-
morphisms

Gemmell et al. [8] show approximate self-testers for functions that generalize linear
functions on finite groups. We prefer to think of the property of the function as gen-
eralized homomorphism, rather than generalized linearity, because the group operators
in the domain and range are not necessarily addition. Gemmell et al. [8] show that
their tester works when the domain of the function is a finite abelian group, G and
the range, G3, is isomorphic to either Z, or Z. Although they do not state it explicitly,
their approximate tester also applies to the case where the range is any linear metric
space.] We extend their tester to the case when the domain is an infinite cyclic group
(Gi,0¢,) and we test over some finite subdomain. As with the tester in (8], the range
(G2, 05,) may be either a linear metric space or a space isomorphic to Z, for some n.
We use the following definitions:

Definition 8 For anya and b in a metric space Gq, we saya =5 b < ||laog,b7|| <
N .

Definition 9 A function f mapping a group (Gi,06,) to a group (Ga,0q,) is Ar-
approximately homomorphic if Va,b € Gy, f(a og, b) =4, f(a) og, f(b) og, E(a,b),
where the time complezity of computing E : Gy x G — G is asymptotically less than
that for computing f.

We call a function a homomorphism if it is 0-approximately homomorphic. Notice
that our definition of a homomorphic function encompasses a much larger class of
functions than the traditional definition. We make use of the following approximate
self-tester for generalized linear functions on domain G;. This self-tester is from [8].
For concreteness, they assume the domain G, is equal to Z,, although they point out
that, with simple modifications, the tester works for generalized homomorphisms over
finite abelian groups.

"By linear metric space, we mean Yz, ||z og, z|| = 2||z||.

9

Program Approximate General Homomorphism Self-Test(P, A, ¢, 3)
(over finite group G,)
Approximate Linearity Test
Repeat O(% log%) times
Pick random z,y € G; and test that P(zog, y) =a P(z)og, P(y) o, E(z,y)
Reject P if the test fails more than ¢/2 fraction of the time.
Approximate Neighborhood Tests
to be performed only if the range is isomorphic to Z,
Let a = |/m]
Repeat O(log%) times
Pick random z € D and test that
P(.’B Sle 1) =a P(I) 06, f(l)
P(z og, a) =a P(z) og, f(a)
Reject P if test fails more than 1/4th of the time.

Theorem 6 [8] The above protocol is an (e/12, (4k+1)y/€, =221 (143)A)-approzimate
self tester for f where f is a Aj—approzimate generalized homomorphism on domain

B

We convert the above approximate self-tester to an approximate self-tester for gen-
eralized homomorphisms over infinite cyclic groups. We test over a finite, evenly spaced
subset of the domain. We describe a tester for a A;-approximately linear function f
mapping (Z,+) to (Z,+). Note that the tester we describe applies to the more general
case of a function which maps any infinite cyclic group into any linear metric space;
for notation’s sake, we use Z as both the domain and the range. We will test on a
restricted subdomain {0,...,b— 1}. We assume we know both f(0) and f(—b). Note
that, once we prove that we can test on {0,...,b—1} then we can test on any arbitrary
finite set of evenly spaced points by shifting and scaling.

Given a Aj-approximately linear function f over Z such that Vz,y € Z, f(z +
y) =a, f(z) + f(y) + E(z,y), we define f’, a 2A;-approximately linear function over
(Zy,+3) such that Yz, € Z, f'(zs) = f(z), where Yz € {0,...,b — 1}, zs refers to
z’s representation modulo b and +; refers to addition modulo &. To see that f' is a
2A;-approximately linear function, note that Yzu, ys € Zs, f'(Ts +b ¥s) =24, f'(z) +
f'(ys) + E'(zs,9s), where E'(zy,yp) = E(z,y) if +y < b, and E'(zs,3) = E(z,y) +
E(z+y,-b)+ f(-b)ifz+y >0b.

In order to test f over the interval {0,....b— 1}, we simply test f’ over the domain
Zy.

10

Program Approximate General Homomorphism Self-Test(P, A, ¢, 8)
(Qver Z)
Call Approximate General Homomorphism (over Z,) Self-Test on f

Theorem 7 The above protocol ts an (€/12, (4k+1)./, —“AL , (143)A)-approzimate
self tester for f where f is a Ay— approzimate genemh,.ed homomorphism mapping
the integers into a linear metric space.

Observation. The abover tester also applies directly to homomorphisms on the ra-
tionals (under addition) as well as to homomorphisms mapping domains isomorphic to
(@,+). The subdomain that we test over is any finite set of evenly spaced points.

Corollary 8 The above tester is an (€/12,21,/¢,0,5)-approzimate self tester for the
quotient function over the integers: fr(z) =[] where R is any fized divisor.

4.7 An Approximate Self-tester/corrector for Trigonometric
Functions

Here we combine the ideas of [5] with the above extension of the approximate self-tester
of [8] to obtain an approximate self-tester and corrector for the functions sin and cos
over rational multiples of 7. Let D = {¥! : 0 <1 < 4k — 1} for some integer k.
Define the operator +' as follows: Vz = rl:E D, let z +' & = 22((1 4 3k)(moddk)).
The reason we want this latter deﬁnitlon is because we WIH be needing to compute
sin(z) = cos(z + ¥).

Let GL% be the group of 2 x 2 rotation matrices. In [5] the authors define the map
f:Q — GL% to be

—sin(z) cos(z)

Flz) = (cos(z) sin(zx)) |

f is a homomorphism between @ and GL%. If we define a metric for the range which is
invariant under matrix rotation operations, then the previous section on approximate
self-testers for generalized homomorphisms on infinite cyclic groups provides us with an
approximate self-tester for f over subdomain D. One metric we can use is: dist(A, B) =
.sup;l_,-{(AB‘l - I);J‘}.

We can use the approximate tester for f to achieve approximate self-testers for both
sin and cos by means of the trigonometric identity sin(z) = cos(z +).

The approximate self-tester we propose for cos works as follows: Given a program
P for cos, construct P'(z), a program for f(z):

TR € P(z +' %)
P(I)‘(—P(H’é”g) P(z))

The previous section gives an (€/12, (4¢ + 1)e, A/3,(1
tester for program P’ which claims to compute f:

5

& 2,.’_)./_\)-e’l.p1:»1'0}:ima.te self-

11

deal with this problem by checking the programs on suitable sets of random instances,
which should not give rise to huge roundoff errors, with high probability.

Finally, we want to point out that this paper lays a foundation for a library of
theoretically and practically efficient checkers for approximate computations.

Acknowledgment. We would like to thank W. Kahan and D. Randall for very
helpful conversations.

14

References

(1] R. Beigel. Personal communication to Manuel Blum; see [2].
[2] M. Blum. Designing Programs to Check their Work. ICSI TR-88-009, 1988S.

[3] M. Blum, S. Kannan. Designing Programs that Check their Work. In Proc. 21st
ACM Symposium on Theory of Computing, 1989.

[4] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications
to Numerical Problems. In Proc. 22nd ACM Symposium on Theory of Computing,
1990.

[5] R. Cleve, M. Luby. A Note on Self-Testing/Correcting Methods for Trigonometric
Functions. ICSI TR-90-032, July 1990.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sion. In Proc. 19th Annual ACM Symposium on Theory of Computing, pages 1-6,
Berkeley, CA, 1987.

[7] R. Freivalds. Fast probabilistic algorithms. Springer Verlag Lecture Notes in CS,
Vol. 74, 57-69, 1979.

[8] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan and A. Wigderson. Self-
Testing/Correcting for Polynomials and for Approximate Functions. In Proc. 23rd
ACM Symposium on Theory of Computing, 1991.

[9] G. H. Golub and C. F. van Loan. Matriz Computations. Johns Hopkins University
Press, Baltimore, Md, 1983.

[10] S. Kannan. Program Checkers for Algebraic Problems. ICSI TR-89-064, 1989.

[11] R. Kannan, A.K. Lenstra, L. Lovasz. Polynomial factorization snd nonrandom-
ness of bits of algebraic and some transcendental numbers. In Proc. 16th ACM
Symposium on Theory of Computing, 1984.

[12] R. Lipton. New Directions in Testing. In Distrib. Comput. and Cryptography, DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, pages
191-202, 1991.

[13] D. Randall. Efficient random Generation of Invertible Matrices. personal commu-
nication.

[14] R. Rubinfeld. A mathematical theory of Self-Checking, Self-Testing, and Self-
Correcting Programs. PhD Thesis, UC Berkeley, and ICSI TR-90-054, 1990.

15

A Appendix

Proof of Theorem 3
Proof. First, suppose that ||P(A) — A~/ < £. Then ||AP(A)-I||e = ||A(P(A) -
A™)|loo < ||A]loot < €. So P with A will pass with high probability.

Second, suppose that ||P(A) — A™!|e > ¥2¢ . Then ||AP(A) - I||os = ||A(P(A) -

Al = v¥2€ = /ne. So P with A will fail with high probability. O

Proof of Theorem 4
We prove Theorem 4 via two lemmas.

Lemma 12 If program P with n x n matriz A passes the checker, with a given €, with
probability > 1 — 3, then
|det(A) — P(A)
det(A)

| = O(n?y~1¢)

Proof. We denote by Adj(A) the adjoint matrix of A and by vy the vector
< P(A),0,...,0 >T. If P with A passes the consistency test with e, with high
probability, then
Vi |a;-vp — P(A)-[i =1)| < ¢P(A)|,
 therefore, || Avp—v4)|co < €|P(A)], from which ||A7* Avp— A" v4lee < €|P(A)|[|A7]cos
so that
llop = P(A) - (A™) oo < 1A |]oo - € [P(A)]

and
|lvp — Adj(A)" + (det(A) — P(A)) - (A7) oo S |47 |oo - €+ [P(A)].

Let j be such that |P(A;;)| is maximal. We have

det(A_,-,l)

Gt et(4) = PLAN] < 147 o - [PCA] + [(Adi(A))sa = P(Aio)]

Let B3, be the maximum (absolute value of) relative error with which P with an n X n
matrix can pass with probability at least 1 — 3. Then

”A_lllo:a g |P(A)|
|det(Aj,)]

Because the entries of A are chosen from [—1,1], we know that |det(A;1)| =
Q(L44l) We assume an upper bound of 2 on [|A7!||. and so we get:

|P(A)]
~ldet(A)]

Bn <

+ ﬁn—l

,gn S rg'n—l + O(??-E)

16

By solving the recurrence, and observing that ﬂﬂ%ﬁ < 2, we get that

Lemma 13 If program P (en~3/%)-approzimates the determinant, then P with A will
pass the consistency test with high probability.

Proof. If P e-approximates the determinant, we know that ||es|l < €, where ey is
an n-vector whose i-th entry is P(Ay) — det(Ai). If we now let D! be the n-vector
whose i-th entry is det(A;), and w, the n-vector < Det(A),0,...,0 >T we have
that

14-vp— A- D] < ||l - €

Since AD; = w,, and using the triangle inequality, we have that

| Ave — valleo < [1Aealloo + lloa = valloo < lAlloo €+ € < ([l +1) - ¢

Therefore, for random X; € {-1,1},7=1,...,n
[(Zidias) - vp = A P(A)| € Ve ([|A]leo +1)

with high probability.
Using ||A]|eo = O(n), we get:

[(Z:)ia;) - vp — Ay - P(A)| €02 ¢

Proof of Theorem 11

Proof. If Vy, Py(y) =¢-e, f2(y) then Yz, Pi(z) =, fi(z), and, in turn, P, with
r21(y) passes the test with high probability.

If P;(y) is not within €; + €2, of fa(y), then Py(z) is not within €z of fi(z) (since fa(y)
is guaranteed to be within €y of fi(rai(y)). This, in turn, means that P, with rz(y)
must fail, with high probability. a

17

