The NC Equivalence of
Integer Linear Programming
and Euclidean GCD

Victor Pan
TR-92-041

December 1992



1 ok cepad WL

o b AT TEOTT ) ctRes |k rans |

Do paphdfonl bis

iiad ooy

=

i3

W



The NC Equivalence of Integer Linear
Programming and Euclidean GCD

David Shallcross * Victor Pan !
December 16, 1992

Summary

We show NC-reduction of integer linear programming with two variables to
the evaluation of the remainder sequence arising in the application of the
Euclidean algorithm to two positive integers. Due to the previous result of
Deng, this implies NC-equivalence of both of these problems, whose mem-
bership in NC, as well as P-completeness, remain unresolved open problems.

1 Introduction

Consider k-ILP (the integer linear programming problem with k variables,
for a fixed k) and EUGCD (the problem of computing the Euclidean re-
mainder sequence, defined by the Euclidean algorithm for two integers and
ending with their greatest common divisor, gcd). Both of these major com-
putational problems belong to the class P, that is, can be solved in poly-
nomial time, specifically, in sequential Boolean time O(k®IlogI) for k-ILP
([6),(7),[11]) and O(I?) for EUGCD ([1], [10]), where I denotes the input size
(length).

Both of these problems are quite special in the study of paralle]l com-
putational complexity: k-ILP, for any fixed k > 2, and EUGCD are among
the relatively few major computational problems in P that so far have suc-
cessfully resisted numerous attempts to prove their P-completeness or their
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membership in NC. (We recall, from [5] chapter 7, [9], and [4], that NC
is a class of computational problems whose solution uses O((log I)?) time
and O(I?) processors, for any fixed d independent of the input size J. NC-
reduction and NC-equivalence are defined as the reduction and the equiv-
alence (defined as the reduction in both directions) of two computational
problems to each other under the above restriction on the time and proces-
sor bounds. A P-complete problem is one whose solution can be used as an
oracle in order to solve in NC any other problem in P.)

k-ILP and EUGCD turn out to be closely related (via NC-reductions
and NC-equivalence) to several other major computational problems, such
as GCD (computing the ged of two integers), SGCD (solution of the set
equation mZ + nZ = dZ), expanding the continued fraction for the ratio
of two integers, computing the sequence of their convergents, and reduction
of a lattice of k dimensions, for a fixed k (see [2],[3] and Figure 1). For
all these problems, we do not know if any of them is P-complete or if any
of them is in NC, and the current research is directed towards establishing
NC-reductions among them.

Deng in [2],[3] showed several such reductions, most notably from EU-
GCD to Opt-2-ILP, the (stronger) optimization version of 2-ILP (see Defini-
tion 1). (In Figure 1, we use 2-ILP and k-ILP for the feasibility integer linear
programs.) The NC-reduction into the opposite direction, from Opt-2-ILP
to EUGCD, turned out to be more elusive. Yu Lin-Kriz and Victor Pan in
[13] established NC-equivalence between Opt-2-ILP and the problem they
called REU, thus abbreviating relative EUGCD. REU amounts to solving
both EUGCD and EUMOD?*, the special case of MOD*, where MOD¥* de-
notes the problem of computing MOD*(c, by, ...,b,) = (...((c mod b;) mod b,)...) mod b,,,
for any set of natural numbers ¢, by, by, ..., by, whereas EUMOD* is the same
problem where by > by, bjy2 = b; mod b;44,{ = 1,2,...,n — 2, that is, in the
input set for EUMOD?*, the values b3, ..., b, have been generated as the
successive remainders computed by the Euclidean algorithm for b; and b,.

Although MOD* is a P-complete problem [8], we do not know if EU-
MOD* is in NC or if it is P-complete, so that the works [2], [3] and [13]
still left establishing NC-equivalence between Opt-2-ILP and EUGCD as a
research challenge. [13] proposed to try to reduce EUMOD* to EUGCD in
NC, which would resolve the issue, but this has not worked so far.

In the present paper, we instead relied on applying a sequence of appro-
priate dissections and unimodular transformations of triangles, a method
previously used by [14] to count the number of integer points in a polygon.
We showed that, used correctly, these techniques are powerful enough to ar-



rive at the desired NC-reduction of Opt-2-ILP to EUGCD, which completed
the long awaited proof of NC-equivalence of these two problems.

2 Preliminaries

Hereafter, Z, Q, and R, as usual, denote the sets of integers, rationals, and
reals, respectively. For (column) vectors a, b, ¢, ... from Z? and Q?, we will
let (a1, 4a3), (b1,b2), (c1,¢2), ... denote the pairs of their coordinates. |z] and
[z] denote the two integers closest to a rational z such that |z] < z < [z].
EUGCD denotes the computational problem which requires, for an input
pair ag, a; of positive integers, to compute a sequence of integers as, a3, ...,

@n+2 such that

a; :
Qi+2 = @i — Gi41 l.—J y1=0,1,..,n, @41 > Gny2 = 0. (1)
ai+1
Note that

n = O(log ao). @)

We will promiscuously mix representations of triangles by their vertices
and by their facets or sides, because either representation can be transformed
into the other in NC, by performing some basic linear algebra operations..

Define a unimodular matrix to be an integer matrix with determinant
either 1 or —1. Multiplying a unimodular matrix by an integer vector gives
an integer vector, and since the inverse of a unimodular matrix is also uni-
modular, only an integer vector can multiply a unimodular matrix to give
an integer vector.

Definition 1. An instance of Opt-2-ILP is: given A € Z™*%, v € Z™, u =
(u1,u2)T € 22, find z = (z1,22)7 € 22 such that Az < v that maximizes
uTz = uyzq + upz,, where vT denotes the transpose of a vector v. That
is, less formally, given a polygon P in R? as an intersection of half-planes,
and a linear objective function, find the integer point that maximizes that
function over all integer points in the polygon.

We observe that a unimodular transformation of a triangle transforms a
solution of Opt-2-ILP over this triangle to a solution of Opt-2-ILP over its
image.



3 NC reduction of Opt-2-ILP to Opt-2-ILP over
a triangle of a special form

The next two lemmas are from [13] (compare also [2],(3]); we clarify the
proof of the first lemma.

Lemma 1 Opt-2-ILP is NC-reducible to Opt-2-ILP over triangles.

Proof: For an instance of Opt-2-ILP with feasible region P given in the
usual manner as the intersection of half-planes, we may, in NC, compute
the representation of P as a polygon given by vertices and edges. We will
next show a relatively simple (though far from being the most efficient)
method for doing this in NC. For every pair of half-planes compute the
point where their boundary lines intersect (if they do intersect). For each
such point, check whether it lies in each of the remaining half-planes, and
reject infeasible points. Eliminate duplicates. Finally, declare two points
(now vertices) to be adjacent if they both lie on the boundary of the same
half-plane. If unbounded P are allowed as input, we can add explicit bounds
on the components of any finite optimum solution (see [12], Corollary 17.1b).

We next triangulate this polygon in NC by taking an arbitrary vertex a
and, for each adjacent pair of vertices b, c, neither equal to a, producing the
triangle abc. By a note above, we can obtain the equations of the sides of
any triangle from its vertices in NC. Now we solve the original optimization
problem by, in parallel, solving the linear number of optimization problems
over the triangles, and taking the best of the optima. O

Lemma 2 Opt-2-ILP over triangles is NC-reducible to solving the following
pair of computational problems: GCD and Opt-2-ILP over triangles of the

form T =convez hull(a, 8,7) where a = (a1, a3), B = (B1,82), ¥ = (71,72)
are three points in Q2 such that &y = ) < v, az > B2, a3 > 7, and a is the
solution to the linear programming relazation of the original Opt-2-ILP.

Proof: See [13], Lemma 5.2. O

4 Restriction of the problem to the boundary of
the convex hull of all the integer points of a
superscribed right triangle

We will use the following definitions.



Definition 2. Hereafter, a triangle, T, of the form {(z;,2;) : azy 4+ bz; <
¢, 21 2> ¢,%2 2 h}, for five integers @ > 0, b > 0, c, g, h, will be called a right
triangle.

Definition 3. For any set §, let §5 denote the boundary of the convex
hull of the integer points in §.

To solve Opt-2-ILP over a triangle of Lemma 2, we will reduce (in NC)
this problem to solving EUGCD and to solving Opt-2-ILP over a few right
triangles with integer slopes (see the next sections). To solve the latter
problem in NC (see section 6), we will need the following lemma:

Lemma 3 Let a, b be positive integers, and c, d, e, f, g be integers, such
that
T ={(z1,22) : az1 4+ b2y < ¢, dzy + €25 < f, 21 > g}

is a nonempty bounded triangle. Let u € Z? be such that mazimum over T
of Tz occurs at the verter z* = (g,(c—ag)/b). (This is the upper left-hand
corner of T.) Then the mazimum over T N Z2 of uTz occurs among the
integer points of §T', the boundary of the convez hull H of integer points in
the right triangle T', where

T' = {(21,22) : az1 + bz < ¢, 21 2 g, 22 > h),
and h is an integer chosen so that T C T'.

Proof: 1 z* defined above were integer, then z = z* would optimize u7z
over T N Z?%, and would be a vertex on 6T’. Otherwise let z = 2* maximize
uTz over TN Z2. Now suppose that z* ¢ 67", but rather z* = (21,23) €
interior H, and we shall obtain a contradiction. (See figure 2.)

Let K be the open wedge {(z1,72) : 21 < 2, a2} + bz} < az; + bz,},
and P be the parallelogram K'NT". Forall z € P, z; > 23, so P is in fact
a subset of T. All points of K (and hence all of P) have a better objective
value than 2*. In particular, by choice of 2*, P contains no integer points.

Since z* is a vertex of T’ but not an integer point, z* ¢ H. Thus, since
2" € interior H, the diagonal of P from z* to z™ intersects 67" at some point
¢ on an edge between two integer points w and y. Because they are integer
points, neither w nor y can lie in P. They are in T, so cannot lie anywhere
else in K, but because the edge between them contains a point of P, one
of these, say y, satisfies 31 < 27, ayy + byz < az] + bz}, and the other, w,
satisfies wy > zf, aw; + bwy > az] + bz;. Furthermore, either wp > 2; or
else ¥ > z3.



Let T = w+ y — z*. By the above, and since w and y are in T’, we can
see that Z; > g, and aZ; + b3 < ¢. We can also see that Z; > h, so that
Z € T'. The points w and y are opposite vertices of a parallelogram with
integer vertices y, Z, w, and z* in T'. Since the point ¢ between w and y
lies on the boundary of the convex hull of integer points of T, we have the
desired contradiction. Thus z* lies on the boundary of H. O

5 Recursive partition of a triangle into unimod-
ular images of right triangles

Lemma 4 For integers k, I, p > 0, ¢ > 0, r, the right triangle

§={(z1,22) 122 < g— ’E-Tls z) 21, 2, > k}
(if nonempty) is the union (with disjoint interiors) of the right triangle
R= {(31,.'32) 113 < I'- lEJ z1, T 2 !) zy 2> k}a

sharing the horizontal edge with the triangle S, and the unimodular image
U = MW of the triangle

!

r
W = {(z1,23) 122 < i ;i,l'l, 2202, 2 K}

where p' = ¢, ¢ = p—qlp/al, ! = k(¢'/p) + |p/q|r/p, ¥ =1, and

M=(? —EJ)'

Proof: We just divide S along the line of slope —|p/q] that goes through
the point (r/p— (g/p)k, k), the lower right-hand corner of S. (See figure 3.)
This gives § = RU U where R is as above, and

U={(z,z :l'—{EJx <z Q:—Bz,z >1}.
{(z1,22) Pl Rl 121}

Now perform an elementary unimodular transformation (z;, z3) — (23, ng 21+
z3), to map U to the triangle
-

- (§ = l?J)z;, z; > 1}.

Notice that (p/q) — |p/q] = ¢'/p’. Reflecting V over the line z; = z; gives
us W above. O

V ={(z1,22): '€ 22 &



Lemma 5 Given a sequence ag, @1, .. -,0n41 Of integers satisfying (1), and
three rationals h, kg and lg such that aglo+a1ko < h, we can compute in NC
three sequences of rationals ki, l;, and unimodular matrices M;, such that if

T* = {(z1,22) : @71 + a122 < h, 71 2 lo, 22 2 Ko},

and
Vi={(z1,22) : 22 S lia - ['a—'} Ty, 1 2 i, 22 2 ki)
i1
then -
T = J MT:
1=0

Proof: First we give recursions for the sequences k;, l;, and M;. Then we
will show that these sequences actually meet the requirements of the lemma.

Let
1 0
M"_(O 1)’

and, for0 €1 < n,

kiy1 = i, (3)
. coplin | @ | B
e i 2
- 0 1
Mi:(l-l_ﬁ-J)’ (5)
Gi41
Mg = M M;. (6)

Due to (2)-(6), the maximum magnitude g of I; and of the entries of M;
(over all ) satisfies the relation

log ¢ = (log(ao + a1))°®. (7)
For 0 < i < n, define the triangle

h a;
S; = {(z1,22) 1 22 £ — — ——21, 71 2 ki, &2 2 ki,
Gix1 il
so So = T*. Applying Lemma 4, we can see_that S; is the union of the
two triangles (with disjoint interiors) V; and M;Siy1, where Sny1 = 0. By
induction, we easily deduce that T = U7y M:V..



Now, due to (7) and since the values k; and the I; are defined by a
linear recurrence with coefficients depending only on A and the a;, we may
compute these values k; and I; in NC using the prefix algorithm on their
transformation matrix. Similarly, the prefix algorithm allows one to compute
in NC the M; as the products of the M;. O
Remark If we let u; = (h — a;41k;)/a;, then it can be verified, for i > 2,
that

a;_
l;= l——’ lJ uimy + li-g,
a

u; = la,__lj licq + uiog.
a;
Thus, if h, ko and o are integers, %o and [y can be expressed as fractions
with denominator ag, and all later terms can be expressed as fractions with
denominator apa;. Likewise, if h, ko, and [y are fractions with denominators
dy, di, and d;, all terms can be expressed as fractions with denominator

dpdidiaga;.

6 Final reduction of Opt-2-ILP to EUGCD

Lemma 6 OPT-2-ILP over a triangle of the form T = convez hull(a, 8,7),
where a, B, and 4 are points in Q? such that a3y = B; < v, a3 > B,
and ag > 72, and with objective vector v € Z*? such that uTa > uTB and
uTa > uTy, can be NC-reduced to EUGCD.

Proof: Given such a triangle by its vertices, we easily convert it in NC to the
representation used in the statement of Lemma 3 for T. We then trivially
produce the parameters for the triangle T’ in the statement of that lemma.
Using one call to EUGCD, we produce the partial fraction representation
(1) of the slope ag/a; of T'. We now apply Lemma 5 to T”, computing in NC
the unimodular matrices M; and right triangles T; with integer slopes, such
that T’ = U; M;T;. According to Lemma 3, the maximum of uZz overz € T
occurs in 6T, and so in T N 6T". The set 67" is contained in U;6(M;T;), so
T N éT' is contained in T N U;6(M;T;), which equals U;(T N M;éT;).

Each 6T; can be expressed simply as the union of three pieces A4;, B;,
C;, each consisting of an arithmetic sequence of integer points, as follows:

8T; = A; U B; U C;,

A= {([1, TR + 3025 = 0y, i) - [—* J [kil = [k},



Bi= (1] + 3, k)i = 0., Ll =Tl _ e

lﬂ_-+_

a; a ki
e :i ., I.' _ t+1J I,‘ |- t+1j = 0 . :+1_1 [ I;‘ 3
Co= (144, = | 22| 11- | 222 3,5 ST
(See Figure 4.) Naturally, M;6T; is the union of M;A;, M;B;, and M;C;.
Thus we can maximize ulz over z € T by taking the maximum (for i =
0,1,...,n) of the maxima of uTz over z in T N M;A;, in TN M;B;, and in
TnMC;. O

Theorem 1 Opt-2-ILP can be NC-reduced to EUGCD.

Proof: By Lemma 1, Opt-2-ILP can be NC-reduced to Opt-2-ILP over
triangles. By Lemma 2, Opt-2-ILP over triangles can be NC-reduced to
EUGCD plus Opt-2-ILP over triangles of a particular form. Finally, by
Lemma 6 Opt-2-ILP can be NC-reduced to EUGCD. O

Since (2], [3] give a reduction of EUGCD to Opt-2-ILP, we obtain that
Opt-2-ILP and EUGCD are NC-equivalent.
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