On-Line Algorithms Versus Off-Line Algorithms: How Much is it Worth to Know the Future?

Richard M. Karp*

TR-92-044

July 1992

Abstract

An on-line algorithm is one that receives a sequence of requests and performs an immediate action in response to each request. On-line algorithms arise in any situation where decisions must be made and resources allocated without knowledge of the future. The effectiveness of an on-line algorithm may be measured by its competitive ratio, defined as the worst-case ratio between its cost and that of a hypothetical off-line algorithm which knows the entire sequence of requests in advance and chooses its actions optimally. In a variety of settings, we discuss techniques for proving upper and lower bounds on the competitive ratios achievable by on-line algorithms. In particular, we discuss the advantages of randomized on-line algorithms over deterministic ones.

1 Introduction

1.1 On-Line Algorithms Versus Off-Line Algorithms

An on-line algorithm is one that receives a sequence of requests and, performs an immediate action in response to each request. Each sequence of requests and corresponding actions has an associated cost.

On-line algorithms arise in many different settings. For example, in the case of on-line bin packing each request is an object to be packed, and the corresponding action is to pack the object in some bin. In the context of a database system each request may be a query or an update, and the corresponding action involves retrieving data from, and possibly modifying, the database. In an investment situation, a request might consist of a price quotation for a commodity, and the action might be to buy or sell some amount of the commodity.

On-line algorithms may be contrasted with off-line algorithms, which receive the entire sequence of requests in advance; an off-line algorithm is required to take an action in response to each request, but the choice of each action can be based on the entire sequence of requests. In other words, an off-line algorithm knows the future, but an on-line algorithm does not. It is clear that, in many settings, ignorance of the future is a great disadvantage (think of stock market investment, for example). Thus, on-line algorithms will often perform much worse than their off-line counterparts.

It is easy to say what is meant by an optimal off-line algorithm; for each sequence of requests, such an algorithm selects that sequence of actions which minimizes the cost. Defining a measure of performance for on-line algorithms is more problematic, since it is usually the case that, whatever actions an on-line algorithm takes in response to an initial sequence of requests, there will be a sequence of further requests that makes the algorithm look foolish. It is perhaps because of this difficulty in defining “rational” or “optimal” performance that on-line algorithms have been relatively neglected in fields like computer science, operations research and economics. For example, scheduling theory has focused on off-line models, which assume, often inappropriately, that the entire stream of jobs arriving at a service facility is known in advance.

The most common approach to evaluating on-line algorithms is to assume a specific stochastic model of the source of requests. Within such a model, an on-line algorithm may be considered optimal if it chooses its actions so as to minimize the expected cost, where the cost depends on the sequence of requests generated by the stochastic source and on the sequence of actions chosen by the algorithm in response to these requests. Much of the theory of stochastic games, stochastic control, stochastic scheduling, performance analysis of computer systems and probabilistic analysis of algorithms is based on this approach. However, the choice of a stochastic model requires data that may not be readily available about the request sequences that have been observed in the past, as well as faith that the future will resemble the past.

1.2 The Competitive Ratio

This paper is concerned with an alternative to stochastic models - a worst-case approach in which an on-line algorithm is evaluated by comparing its cost with that of an optimal off-
i is requested there are i possible actions, corresponding to moving the item forward any number of positions between 0 and i – 1; there is no extra cost for this forward motion.

Sleator and Tarjan ([ST1]) prove that Move-to-Front - the algorithm that moves each item to the front of the list whenever it is accessed - is 2-competitive. The proof is instructive because it involves the important concept of a potential function. Imagine that, as requests are received, the Move-to-Front algorithm and Opt, the optimal off-line algorithm (aided by its knowledge of future requests), process the requests and maintain their lists of the n items. At any step, let p be Move-to-Front’s list and let q be Opt’s list. At a step in which the two lists coincide any access request will cause the two algorithms to incur the same cost. Thus, Opt has the potential to outperform Move-to-Front only when the lists differ. This observation suggests defining a potential function \(\Phi(p, q) \) which measures the extent to which the two lists differ, and hence the potential for Opt to outperform Move-to-Front. In this case it is best to define \(\Phi(p, q) \) as the number of adjacent interchanges of items needed to pass from the list p to the list q. It is then easy to show that, at each step, \(c_{on} + \Delta \Phi \leq 2c_{off} \), where \(c_{on} \) and \(c_{off} \), respectively, denote the cost incurred by Move-to-Front and by Opt at the step, and \(\Delta \Phi \) denotes the change in potential at the step. It then follows by simple algebra, from the fact that \(\Phi \) is nonnegative and initially zero, that for any request sequence the cost incurred by Move-to-Front is at most twice that incurred by Opt.

It is also possible to prove that no deterministic on-line algorithm can achieve a competitive ratio less than 2. The reader is invited to provide the required adversary argument.

The field of dynamic data structures provides a great deal of scope for the study of on-line algorithms. In particular, the paper [ST1] introduces the splay-tree algorithm for executing sequences of insertions, deletions and accesses to a binary search tree. Assuming that each operation of following or changing a pointer has unit cost, Sleator and Tarjan conjecture that the splay-tree algorithm has a bounded competitive ratio, and prove the conjecture in some interesting special cases.

2.4 Multiprocessor Scheduling

In the multiprocessor scheduling problem each request is a task of a given size, and each action is to assign the current task to one of \(m \) processors. The cost of a sequence of requests and actions is the makespan, defined as the maximum, over all processors, of the sum of the sizes of the tasks assigned to the processor. In [Gra], Graham considers a natural on-line algorithm called Low. At each step, Low assigns the current task to the most lightly loaded processor; i.e., the one for which the sum of the sizes of the assigned tasks is least. Graham shows that the competitive ratio of Low is \(2 - \frac{1}{m} \). A worst-case request sequence consists of \(m(m - 1) \) tasks of size 1 followed by a task of size \(m \); for this example Low achieves a makespan of \(2m - 1 \), and the optimal makespan is \(m \).

For \(m = 2 \) and \(m = 3 \) Low achieves the smallest competitive ratio of any on-line algorithm. For \(m = 3 \) the competitive ratio of Low is \(5/3 \), and the following simple case analysis shows that no on-line algorithm can beat \(5/3 \). Suppose the first three tasks to arrive are of size 1. They must be packed on distinct processors; if not, the sequence could end and the algorithm would be paying twice the optimal cost. If the next three tasks are of size 3 then, again, they must be assigned to distinct processors; if not, the sequence could end and the algorithm would be paying \(7/4 \) of the optimal makespan. Thus, after the arrival of the first six tasks, the sum of the sizes of the tasks assigned to each processor is 4. If the next task is of size 6 then, however it is assigned, the makespan is 10. On the other
hand, one can easily see that the optimal makespan for all seven tasks is 6. This completes the proof that the competitive ratio of an on-line algorithm for \(m = 3 \) is at least 5/3.

The worst case for Low occurs when all processors are equally loaded and a large task arrives. Intuitively, it seems that a better competitive ratio can be achieved by avoiding the case of equal loading and, instead, keeping the loads on the processors somewhat staggered. Pursuing this idea, [BFKV] gives an algorithm whose competitive ratio is bounded above by a universal constant less than 2, for all \(m \); thus, when \(m \) is sufficiently large, this algorithm has a better competitive ratio than Low.

2.5 Interval Coloring

As a final introductory example we consider the interval coloring problem, in which each request is an interval on the real line and each action assigns a color to the current request. No two overlapping intervals may receive the same color. The cost of a sequence of requests is the number of colors used. This problem can be interpreted as a scheduling problem, in which each interval represents the time span of some task, and the color represents the processor assigned to execute the task. Kierstead and Trotter [KT] give an on-line algorithm with optimal competitive ratio for this problem. As each interval \(I \) arrives it is assigned a positive integer \(h(I) \) called its height and a color as follows:

- If \(I \) does not intersect any previous interval of height 1 then \(h(I) \) is set equal to 1; otherwise, \(h(I) \) is set equal to the least \(j > 1 \) such that \(I \) does not intersect more than two previous intervals of height \(j \).

- One color is reserved for intervals of height 1, and, for each \(j > 1 \), three colors are reserved for each height \(j \); interval \(I \) is assigned any color, among those reserved for its height, that has not been assigned to any previous interval that intersects \(I \).

If \(k \) is the maximum height assigned to any interval then:

- The Kierstead-Trotter algorithm uses at most \(3k - 2 \) colors;

- There is a set of \(k \) mutually intersecting intervals; thus, any algorithm requires at least \(k \) colors.

It follows that, if the optimal number of colors is \(k \), then the Kierstead-Trotter on-line algorithm will require at most \(3k - 2 \) colors. It can be shown by means of an adversary argument that, for any online algorithm, and any \(k \), there exists an instance for which the optimal number of colors required is \(k \) but the algorithm requires \(3k - 2 \) colors. Thus, the Kierstead-Trotter algorithm is an optimal on-line algorithm.

3 The k-Server Problem

In this section we discuss the most thoroughly studied of all on-line problems - the famous k-server problem of Manasse, McGeoch and Sleator ([MMS]). The problem is set in a metric space; i.e., a set of points \(M \) together with a distance function \(d \), defined for each pair \(x, y \) of points in \(M \), and satisfying

- \(d(x, y) = d(y, x) \) (symmetry) and

- \(d(x, z) \leq d(x, y) + d(y, z) \) (triangle inequality).
its decisions. It is always assumed that the adversary knows the text of the randomized on-line algorithm; however, the adversary does not have access to the algorithm's random coin tosses. Three different types of adversaries are indicated schematically below:

- **The Oblivious Adversary**
 \[r_1(b_1)(a_1)r_2(b_2)(a_2) \ldots \]

- **The Adaptive On-Line Adversary**
 \[r_1(b_1)a_1r_2(b_2)a_2 \ldots \]

- **The Adaptive Off-Line Adversary**
 \[r_1a_1r_2a_2 \ldots r_na_nb_1b_2 \ldots b_n \]

Here the left-to-right sequence indicates the time sequence of the requests and actions, and parentheses indicate actions that are kept secret. Thus, the advantage of the adaptive on-line adversary over the oblivious adversary is that it gets to observe the actions of the on-line algorithm. The adaptive off-line adversary has the further advantage that it gets to observe all the algorithm's actions before choosing any of its own actions.

Against deterministic on-line algorithms all three adversary types are of equivalent power; there is no advantage to observing the on-line algorithm's actions, since the adversary can compute these actions by simulating the algorithm. Against randomized on-line algorithms the adaptive off-line adversary type is clearly the most powerful, and the oblivious adversary type is the least powerful. The competitive ratio that is achievable will depend on the adversary type considered.

The paper [BBKTW] proves the following theorems:

Theorem 1 If there is a C-competitive randomized algorithm against adaptive off-line adversaries, then there is a C-competitive deterministic algorithm; in other words, there is no advantage to randomizing when playing against adaptive off-line adversaries.

Theorem 2 If there is a C-competitive randomized algorithm against oblivious adversaries and a D-competitive randomized algorithm against adaptive on-line adversaries, then there is a CD-competitive deterministic algorithm.

It follows that the best competitive ratio achievable by a randomized algorithm against adaptive on-line adversaries is at least the square root of the best competitive ratio achievable by a deterministic algorithm.

4.2 Example: The Paging Problem

Recall that, for the paging problem, the best competitive ratio achievable by a deterministic on-line algorithm is \(k \). It can be shown ([FKLMSY], [MS]) that the best competitive ratio achievable against oblivious adversaries is \(H_k = 1 + 1/2 + \ldots + 1/k \), whereas, against adaptive on-line or off-line adversaries, the best competitive ratio is \(k \). Thus, for this problem, randomized algorithms are more powerful than deterministic ones against oblivious adversaries, but not against adaptive adversaries.
4.3 Example: Bipartite Matching

A *matching* in a graph is a set of edges, no two of which meet at a common vertex. A bipartite graph is one in which the vertex set is the union of two disjoint sets, often referred to as the boys and the girls, such that each edge joins a boy with a girl. We consider an on-line version of the problem of constructing a large matching in a bipartite graph. In this version the boys arrive one-by-one. As each boy arrives the algorithm is told which edges are incident with the boy, and chooses at most one of these edges to be included in the matching; of course, the algorithm is not permitted to choose two edges incident with the same girl.

We must change the definition of competitive ratio to account for the fact that we are dealing with a maximization problem rather than a minimization problem. Let us say that a randomized algorithm is C-competitive against a type of adversary if, for every adversary of that type, the expected size of the matching produced by the algorithm, minus C times the expected size of the matching produced by the adversary, is bounded below by a constant; the competitive ratio of an algorithm is the least upper bound of the C's for which it is C-competitive.

The best competitive ratio achievable by a deterministic algorithm for this problem is 1/2. An adversary can hold any deterministic algorithm to 1/2 by repeating the following two-step cycle: present a boy who is adjacent to two girls; whichever girl the algorithm chooses, present a second boy who is adjacent to that girl, but not to the other one. This will limit the algorithm to matching only half the boys, even though there exists a matching that covers all the boys. A more complicated argument shows that the best competitive ratio achievable by a randomized on-line algorithm against adaptive on-line adversaries is also 1/2.

It is shown in [KVV] that the best competitive ratio achievable by a randomized on-line algorithm against oblivious adversaries is $1 - 1/e$, where e is the base of natural logarithms. The algorithm that achieves this ratio is simple to state, but not so easy to analyze: choose a random ordering of the girls and, as each boy arrives, match him with the first girl, if any, who is incident with him and has not been chosen before. The adversary strategy that limits every randomized on-line algorithm to a competitive ratio of $1 - 1/e$ is also simple: let there be n boys and n girls; choose a random ordering g_1, g_2, \ldots, g_n of the girls, and make the first boy adjacent to all the girls, the second boy to $g_1, g_2, \ldots, g_{n-1}$ and, in general, make the ith boy adjacent to $g_1, g_2, \ldots, g_{n-i+1}$. In other words, the girls drop out in a random order.

This example illustrates what seems to be a rather general phenomenon: randomization helps considerably against oblivious adversaries, but not against adaptive adversaries. A good exercise for the interested reader is to confirm that this phenomenon also holds for the ski rental problem and the list processing problem presented in Section 2.

4.4 The Harmonic Algorithm for the k-Server Problem

It seems that a good on-line algorithm for the k-server problem should tend to favor servers that are close to the request point. On the other hand, the simple greedy algorithm, which always chooses the closest server, is easily foiled by an adversary because of its predictability, and fails to achieve a bounded competitive ratio. In this section we discuss a randomized on-line algorithm called the *Harmonic Algorithm* which behaves in a way that is intuitively reasonable, and yet contains enough randomness to present difficulty to an adversary. The Harmonic Algorithm is defined by the property that, each step, the probability that a given
server is the one to move is inversely proportional to that server’s distance from the request point.

Call an adaptive on-line adversary lazy if, whenever possible, it requests a point that is occupied by one of its servers but not occupied by one of the on-line algorithm’s servers. The behavior of an on-line algorithm against a lazy adversary is relatively simple since, at any given step, there is at most one vacancy that is occupied by one of the adversary’s servers but not by one of the algorithm’s servers. Thus, one can analyze the movement of a single vacancy rather than many servers.

It is possible to show that, in any metric space, the Harmonic Algorithm is \(\frac{k(k+1)}{2} \)-competitive against all lazy adversaries. Since lazy behavior on the part of an adversary seems reasonable, this leads to the conjecture that, in any metric space, the Harmonic Algorithm is \(\frac{k(k+1)}{2} \)-competitive against all adaptive on-line adversaries. However, the best result proven so far is that the Harmonic Algorithm is \(k(\frac{5}{4}2^k - 2) \)-competitive against adaptive on-line adversaries ([Gro]). It follows from Theorem 2 that, in any metric space, there exists a \(k(\frac{5}{4}2^k - 2)^2 \)-competitive deterministic on-line algorithm.

To prove his upper bound on the competitive ratio of the Harmonic Algorithm Grove gives an ingenious construction of a potential function \(\Phi(p,q) \), where \(p \) is the configuration of the algorithm’s servers and \(q \) is the configuration of the adversary’s servers, such that:

- At any step in which the adversary incurs a cost of \(D \), \(\Phi \) increases by at most \(Dk(\frac{5}{4}2^k - 2) \);
- At any step of the on-line algorithm, the expected decrease in \(\Phi \) is greater than or equal to the expected cost of the step.

A further reason for interest in the Harmonic Algorithm stems from the work of Coppersmith, Doyle, Raghavan and Snir on resistive metric spaces. A metric space is called resistive if there exists an electric network with a node for each point in the space, such that the distance between any two points is equal to the resistance across the corresponding node pair in the network. In [CDRS] it is shown that, in any resistive metric space, a variant of the Harmonic Algorithm achieves a competitive ratio of \(k \) against all adaptive on-line adversaries. It follows that, in any resistive metric space, there is a \(k^2 \)-competitive deterministic on-line algorithm.

5 Conclusion

On-line algorithms arise in any situation where decisions must be made and resources allocated with incomplete knowledge of the future. Typical settings include robot motion planning, investment analysis, bin packing, storage allocation, cache management, file migration, scheduling, graph coloring, maintenance of data structures and databases, facilities location and capacity expansion of networks. In all of these areas, interesting mathematical arguments have yielded lower and upper bounds on the competitive ratios that can be achieved. Lower bound proof usually depend on adversary constructions, and upper bounds are usually obtained by analyzing algorithms with the help of potential functions.

In connection with each particular application, a question arises as to whether the competitive ratio of an algorithm is likely to be correlated with its performance in practice. Unfortunately, it is far from clear that this is the case. The use of the competitive ratio as a performance measure is roughly equivalent to assuming that request sequences are being generated by a devilish adversary with unlimited computational power and complete
knowledge of the algorithm he is trying to foil. This paranoid view is hard to justify. A challenge for the future is to restrict the adversary or strengthen the on-line algorithm in some way, without retreating all the way to the classical assumption that the request sequences are generated by a fixed stochastic source. Some work along these lines has already been done: [BIRS] considers the paging problem under natural restrictions on the pairs of page requests that can occur consecutively in a request sequence, and [Ir] considers on-line graph coloring with natural restrictions on the type of graph that can be presented, while [CGS] considers the effect of giving the on-line algorithm the ability to look ahead some distance into the request sequence. In other applications it may be reasonable to restrict the adversary’s computational power or to assume that, instead of getting to choose each request separately, the adversary, knowing the on-line algorithm, gets to choose a simple deterministic or randomized algorithm for generating the request sequence; the on-line algorithm then faces the task of inferring the adversary’s request generation algorithm without incurring too much extra cost. Yet another approach is to mix competitive analysis with average-case analysis by looking for on-line algorithms which not only have a small competitive ratio, but also perform well against “typical” request sequences.

6 Acknoledgement

The author wishes to thank Allan Borodin and Amos Fiat for sparking his interest in on-line algorithms.

References

