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Abstract

The fastest known algorithms for the problems of polynomial evaluation and multipoint interpolation
are devastatingly unstable numerically because of their recursive use of polynomial divisions. We apply
a completely distinct approach to compute approximate solutions to both problems equally fast but with
improved numerical stability. Qur approach relies on new techniques, so far not used in this area: we
reduce the problems to Vandermonde matrix computations and then exploit some recent methods for
improving computations with structured matrices.
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1 Introduction

It is known that interpolation and evaluation (on any set of n nodes) of an n-th degree polynomial can
be performed in O(nlog® n) (arithmetic) operations [1], but recursive application of several polynomial
divisions is involved, and this makes the resulting algorithms highly unstable numerically (thus, restricting
their application to the case of computers performing exact rational arithmetic). Fast Fourier transform
(FFT) enables us to solve both of these problems in O(nlogn) operations [1] with no numerical stability
problems [10], in the special case where the nodes are roots of unity, and similarly in some other special
cases [4]. In particular, for the input nodes lying on a bounded real interval, the estimate O(nlog®n) can
be improved [14,17]. ‘However, for a general set of nodes on the complex plane, the order of n? operations is
required in the known numerically stable solutions.

In this paper we propose a new approach to both problems, which we solve approximately, within a
given tolerance Ke to the error, K denoting the condition number of some auxiliary computational problem
[see (4.1) in section 4]. Solution time is proportional to n(log® n + log(1/¢)), which turns into O(nlog® n)
if log(1/€) = O(log®n). Polynomial divisions are avoided in this approach, based on the application of
computations with structured matrices.

The solution involves Toeplitz type linear systems, which for many inputs may still cause some numerical
stability problems [7], not as devastating, however, as ones caused by recursive polynomial divisions. In
particular, we may shift to symmetrized systems which are still of Toeplitz type, and if they remain sufficiently
well-conditioned after their symmetrization, then numerical stability problems are avoided [7].
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Our algorithms have the feature of many iterative algorithms: their output errors and their running time
decrease with the condition number of the auxiliary linear system (in our case of Toeplitz type) to which we
reduce the solution. Furthermore, we may try to use a random transformation of some input parameters in
order to improve the condition of the latter linear system (see remark 3.1 and the derivation of the complexity
estimates based on our first algorithm of section 4).

It is known that the Vandermonde matrix (defining the interpolation problém) is ill-conditioned for a
very large class of sets of interpolation nodes, and the parameter K of (4.1), defining the approximation error
of our computations, tends to be large. Thus we cannot, as of now, recommend our algorithms for practical
computations, except for the special cases of node sets defining well-conditioned Vandermonde matrices.

From the theoretical point of view, however, the new algorithms may be of interest since they demonstrate
some previously hidden correlations between computations with polynomials and with structured matrices.
Specifically, we represent the original computational problems of polynomial evaluation and interpolation in
the form of operations with a Vandermonde matrix. Then we apply the techniques of [13] for computations
with structured matrices and reduce the original problem with any set of nodes to the case of roots of unity
as the nodes; in this case FFT applies. The reduction involves Toeplitz type computations (with matrices
having displacement rank at most 3) and a single multiplication of a generalized Hilbert matrix by a vector,
at which stage we apply the fast approximation algorithm of [16], known to be effective and reliable in
numerous computations, in particular, for integral equations and n-body mechanics.

We present and analyze our algorithms in section 4 after some preliminaries in sections 2 (definitions)
and 3 (auxiliary results).

2 Definitions

Let n be a positive integer, and i,j,k integer parameters, ranging from 0 to n — 1. Matrix rows and vector
components are represented by 7, columns by j. W7 is the transpose of a matrix (vector) W; W¥ is the
Hermitian transpose of W.

Complex vectors e, f, g, r, u, v, w, x and y are of the form h = [h, ..., hn—1]T (where h can represent
any listed vector). r; = r!, where » = exp(27/—1/n), is a primitive n-th root of 1. Let-the components u;
of u be pairwise distinct and not equal to integer powers of r.

Matrices I, J, V, H, T and Z are of size n x n. In particular, the matrices

0 1 0 0
1.
J= : (reversion) and Z = <. (displacement)
1 0 0 10
satisfy J? = I (the identity matrix), Ju = [up_1, ... ,uo)T, Zu=[0,uq,...,un_2]7.

V(u) = [u}] is a Vandermonde matrix. V(r) = [r] is the matrix of discrete Fourier transform (DFT) on

iz T
n points, so that V(r)ju = [Z:-:Ol rH ’i.{;'] is the DFT of a vector u.

H(u,v) = [u

T = [tn-14i-;] is a Toeplitz matrix.

— ] is a generalized Hilbert matrix (u; # v; for all 7 and j) .
.

Td=;l, IT={tan-ni-y] (2.1)

are Hankel matrices.
[Toeplitz (Hankel) matrices have entries that are invariant under shifts in the diagonal (antidiagonal)
direction]. '



3 Auxiliary Results
We recall the following simple and/or well-known results (which we state by using definitions of section 2):
H(u,v) = —H%(v,u). (3.1)

V()= Vi), VE@E@)V(c)=nl (3.2)
Fact 3.1 The values of a polynomial w(z) = Z::ol wizt (with coefficient vector w} on the set of points
Ug,...,Un_1 are given by the vecior

v=V(u)w. (3.3)

Fact 3.1 defines the problem of interpolation and multipoint evaluation of a polynomial w(z) in terms of
a vector equation (compare Problems 4.1 and 4.2).

Remark 3.1 It is simple to shift from polynomial w(z) to t(z) = w(az + b) for any fixed complex numbers
a and b, and vice versa, at the cost of O(nlogn) operations [2]. Even simpler is the transition to the reverse
polynomial wrev(z) = 2™w(1/z). These transformations enable us to vary (to our convenience) the input
matrix V(u) of the problems of polynomial interpolation and multipoint evaluation. For evaluation, we may
also vary the input node set, for instance, by partitioning it into two or several subsets, complementing each
subset to n points at our choice and solving two or several evaluation problems.

Fact 3.2 [1]. Given vectors u and r, it suffices to use O(nlogn) arithmetic operations to compute V(r)u
and V (r)u (that is, to perform the forward and inverse DFT of a vector u).

Fact 3.3 a) [1] Given a vector v and a Toeplitz matriz T, it suffices to use O(nlogn) arithmetic operations
to compute the vector T'v.

b) [3,5,6,11,12] Furthermore, O(nlog® n) arithmetic operations suffice to compute T—v if T is nonsin-
gular.

Fact 3.4 The estimates of the previous fact hold even if the matriz T is replaced by any mairic of the form
VT (0)V(u), Wa,r) = VT () H(r,u)V(u) or WT (u,r).

Proof. The extension of fact 3.3 to the matrix V7 (u)V(u) = [E:;é ui”'j] follows since this is a Hankel
matrix [compare (2.1)]. The extension of fact 3.3 to W(u,r) and W7 (u,r) follows from [13]. (Specifically,
proposition 6.1 of [13] implies that W(u,r), W7 (u,r) are Toeplitz type matrices defined with their n x 3
displacement generator matrices (see definitions in [9,13]), and to such matrices both parts of fact 3.3 can
be extended [see [9] and/or [12] on the extension of part a) and [5] or [12] on the extension of part b)]).0

Propositon 3.5 [16]. Given a natural n, positive a, q, s, and ¢ and three compler vectors u, v and y of
dimension n, 1 suffices to use (5bn — 1)s arithmetic operations to compute, within the error bound €, the
values (H(v,u)y); = Eg;é ye/(vi —ur), for i=0,1,...,n—1, provided that

log(an) —log((1 — g)e)
log(1/9) ’

a> |uefur|, 1>q> |vifur| for alli and k. (3.5)

(34)

Proof (see appendix).0

Remark 3.2 a) If, say, ¢ < 1/2, loga = O(logn), log(1/¢) = O(logn), then (3.4) can be satisfied for
s = O(logn).

b) In our algorithms of the next section, v = r, and the veclor u can be linearly iransformed, according
to remark 3.1. This enables us to insure the last inequality of (3.5) for ¢ = 1/2 and for alli and k.



4 Interpolation and Multipoint Evaluation

Problem 4.1 Interpolation.

Input: wectorsu and v.

Output: vector w satisfying (3.3).

Note that, by assumption about vectors u and r (in section 2), V' (u) is non-stngular, and H(r,u) can be
defined. Let H(r,u) be non-singular (until the end of this section).

Solution: successively compute the three vectors:

1 f=H(r,u)y,

2. g = VT(x)f = V(r)f [see (3.2)],

3. w=W-(ur)g.

The correciness of this algorithm follows since for the computed vectors w and g, we have:
W(a,r)w = Wa,r )W (ur)g =g =VI(x)H(r,u)v,

and (3.3) follows since V(r) and H(r,u) are nonsingular.

We apply the algorithm for approximate evaluation of w, so as to decrease the estimated computational
complexity:

At stage 1, approximating the components of £ (within € > 0) requires (5n — 1)s operations, for s defined
by (34);

Stage 2 requires O(nlogn) operations (see fact 3.2);

Finally, at stage 3, we need to compute the matrix W(u,r), of Toeplitz type, or more precisely, to
compute its displacement generator of length (at most) 3. For this, we just need to compute the products
w(f) = (W(u, r) — ZW(u,r)Z7) v(£), £ = 1,2,3, for three general vectors v(1), v(2), v(3).

Moreover, we may choose these vectors in the form v(£) = b(¢) = [1,5(£), (6(£))?, .. .5 (6(£))"~*]%, where
b(£) is a random parameter, £ = 1,2,3. [Indeed, the n x n matrix B = [(b(¢))’] has rank n, if all the b(¢) are
distinct numbers, i, = 0,1,...,n — 1; therefore, with a high probability (see [18,19]), for a random choice
of b(7), the matrix (W(u,r) — ZW(u,r)27) B has rank 3, and so has any of its random n x 3 submatrices).
The vector V(u)b(£), £=1,2,3, can be computed in O(nlogn) operations, since the evaluation of V(u)b(£)

7 n-1
%_(bég% = ;(b(f)::)’: at the points ug,...,un_1.

Therefore, the complexity of approximate evaluation of the vectors w(£), for £ = 1,2, 3, is still within the
bounds of O(n(s + log n)), for s defined by (3.4), provided that ¢ denotes the tolerance to the errors of the
appproximate multiplications of H(r,u) by vectors in the process of the evaluation of w(£).

Given w({), £ = 1,2,3, we can, by using the algorithms of facts 3.3 or 3.4, find W—1g at the cost
O(nlog® n). Therefore, stage 3 can be done at the cost of O(n(s + log®n)), s defined by (3.4).

The bound € on the approximation errors of all the multiplications of vectors by the matrix H(u,r) is
not substantially magnified in the subsequent multiplications of the resulting vectors by the matrix V(r)
(having 2-norm equal to 1) but may be substantially increased in the evaluation of W=1g unless

amounts to evaluation of the polynomial

K =cond W (4.1)

is small.



Problem 4.2 Evaluation.
Input: veciorsu and w.
Output: veclor v satisfying (3.3).

Solution: successively compute

L Ufu) = VT ()V (w),
2. e=Ulu)w,

3. x=W7%(u,r)" e,
4. y=V(r)x,

5. v= H7(r,u)y.
Correctness.

Premultiply both sides of (3.3) by V7 (u) and obtain that
e=VT()V(@u)w = VT (u)v.

Then substitute v = H7 (r,u)y = H7 (r,y)V(r)x, obtain that

W7 (u,r)x = e,

and thus verify the correctness of the above solution.

Complextly.

Follow [8] to perform stage 1 in O(nlog® n) operations. Specifically, first compute at this cost [1] the
coefficients of the polynomial T]}_o(u — ug). Then obtain the power sums S 2 zau} in O(nlogn) operations
from the system of Newton’s identities (see e.g. [15], appendix A).

We need O(nlogn) operations at stage 2 and O(n(s +log? n)) at stage 3, for s defined in Proposition 3.5
[use fact 3.4 and the algorithm for the evaluation of W(u,r) shown above], and O(nlogn) operations at
stage 4 (due to fact 3.2).

At stage 5, we approximate all the components of the vector v within the error bound ¢ at the cost
(5n — 1)s, where s 1s defined by Proposition 3.5.

Appendix: proof of Proposition 3.5

e 63

h=0

Substitute the expressions

and obtain the power series representation

n-=1 1

o] n-1
- 'Uh= v—Up) =— y—k— :

k=0

=— Zyk/uh"'l h=01,.. . (A.2)

p(v) converges when |v] is small enough. Approximate p(v) by the s-term partial sum and estimate the error
in terms of s, |vi/ux| and a. Due to (3.4) and (3.5), we obtain:

3—1

p(u:) = > pav?

h=0

<ang*/(1—g¢)<e, forall: (A.3)

It remains to compute first pg,...,ps—1 of (A.2), by using (3n — 1)s operations, and then ER Dph‘!.h for
i=0,1,...,s—1, by using 2ns operations. O
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