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Abstract

According to a recent mathematical theory the intuitive concept of shape can be
formalised through functions, named size functions, which convey information on both
the topological and metric properties of the viewed shape. In this paper the main
concepts and results of the theory are first reviewed in a somewhat intuitive fashion.
Then, an algorithm for the computation of discrete size functions is presented. Finally,
by introducing a suitable distance function, it is shown that size functions can be
successfully used for both shape description and recognition from real images.
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1 Introduction

Shape description and recognition are important stages of vision. From the compu-
tational perspective, many problems stem from the well known difficulty of dealing
with qualitative and quantitative changes in shape within the same scheme.

Studying shape through integer-valued functions, called size functions [1, 2, 3],
has recently been proposed. The key idea underlying the concept of a size function is
that of setting metric bounds to the classical notion of homotopy, i.e., of continuous
deformation. Size functions are very good candidates for shape representation because
they (i) convey information about both the qualitative and quantitative structure of
the viewed shape, (i1) can be tailored to suit the invariant properties of the shapes
to be studied, and (%ii) are inherently “stable” against small changes in shape.

The aim of this paper is to assess the potential of the theory of size functions for
computer vision. Therefore, after a brief summary of the main concepts of the theory,
an algorithm for the computation of size functions in the discrete case is described.
Then a simple way to measure distances between size functions is proposed and tested
on real images. Finally, the main conclusions which can be drawn from our research
are summarised.

2 A Simple Example

First, let us introduce the notion of a size function through a simple example. The
aim of this Section is to generate a description of the curve in Fig. 1a which is useful
for shape recognition.

As a preliminary step, let us define a transformation H which brings a point of
« onto some other point of o without leaving the curve. The arrows in Fig. la, for
example, help visualise two possible “trajectories” along which H brings the point p
onto the point gq. The transformation H induces an equivalence relation on the points
of a, where two points u and v are said to be H-equivalent if there exists a continuous
trajectory on « which brings u onto v. Since, independent of the shape of ¢, all the
points fall into one and the same equivalence class, the purely topological concept of
H-equivalence is clearly not sufficient to characterise the shape of «. Intuitively, this
is due to the absence of “topological obstructions” between points of a.

Let us now change the definition of H-equivalence slightly by introducing “metric
obstructions” along the trajectories of H on a. For example, let ¢ be the center of
mass of o and D.(s) denote the distance between ¢ and a point s of . In Fig. 1b
the continuous lines identify the points with D, < 3, the dashed lines the points with
3 < D. <17, while the points with D. > 7 have not been drawn. The gaps in Fig. 1b
make it clear that D., which is called a measuring function, eventually exceeds 7 (the
“metric obstruction”) along any trajectory from p to ¢. This suggests that H should
be redefined so that two points u and v are said to be H(D, < y)-equivalent if a
trajectory exists on e from u to v along which D, never exceeds y. It is evident that
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(a) (b)

Figure 1: Topological and metric obstructions. (a) Since the curve & has no topolog-
ical obstruction, the point p can be brought into coincidence with ¢ without leaving
a by following either one of the two trajectories indicated by the arrows. (b) If, along
either trajectory, D,, the distance from the center of mass ¢, cannot be larger than
7 (the metric obstruction), p cannot be brought into coincidence with ¢ any longer.
The size function Ip,(«) at the point (3,7) equals 2 because 2 of the 4 connected
components of the set of points within the larger circle (the points with D, < 7)
contain at least a point within the smaller circle (the points with D, < 3).



not all the points of a are H(D, < y)-equivalent for some value of y and that the
number of equivalence classes depends on the shape of a. In Fig. 1b, for example, p
is not H(D, < T)-equivalent to .

The notion of H(D, < y)-equivalence is essential for the definition of the size
function. For each pair of real numbers (z,y), the size function lp.(e;z,y) induced
by the measuring function D, counts the number of equivalence classes in which the
equivalence relation H(D, < y) divides the set of points of & with D, < z (for y > z).
In practice, the size function lp,(a;z,y) can be computed by counting the number
of connected components of the set of points of a with D, < y that contains at least
one point with D, < z. In the particular example of Fig. 1b we have lp_(;3,7) = 2,
because the set of points with D, < 7 has 4 connected components, two of which
contain at least one point with D, < 3 (i.e., a point on a continuous line).

The diagram of Ip (@;z,y) is shown in Fig. 2a (the horizontal and vertical axis
are the z- and y-axis respectively). The size function Ip_(z,y) is a piecewise constant
function which, within the triangular region T' = {(z,y): 0 < z < 10.56...,z < y <
10.56...}, equals 0 for 0 <z < 1,2for 1 <z < 4, and 4 for 4 < z < 10.56.... The
numbers 1, 4, and 10.56... are the critical values of the measuring function D, (see
Fig. 2b). The value of Ip, elsewhere is independent of a. In essence, I, = 0 on the
left of the vertical axis (there are no points to start with), I, =1 for y > 10.56... and
0 > z > y (all the metric obstructions are removed), and I, = coforz >0 and y < =
(each point belongs to a different equivalence class).

3 Main Definitions

Let us now define and comment on the notion of size function in more general terms.
We first establish some basic notation.

In this Section a shape is an n-dimensional, compact, boundaryless, piecewise C'*
submanifold M of the Euclidean space E™ (n < m) [1]. The set of k-tuples p of points
p; of M, i =1,...,k, is denoted by M* (in the example of Fig. 1, it was simply k = 1
and thus M' = o' = @). If p and g are in M*, let di(p,q) = maxocick{d(pi, ¢:)} be
the distance between p and ¢, where d(p;, ¢;) is the usual Euclidean distance between
p; and ¢;. The important concept of measuring function can now be defined.

A measuring function [1] is any continuous function

w: MF SR

The notion of measuring functions leads to the key concept of metric homotopy
[1].

A metric homotopy between p and ¢ in MF is a continuous function H : [0,1] —
MF such that

o H(0) =p, H(1) = g (the usual definition of homotopy);
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Figure 2: Representing size functions. (a) The size function Ip, (z,y) of the curve a
is a piecewise constant function which equals 0, 2, and 4 for 0 < z < 1,1 < z < 4,
and 4 < z < 10.56... respectively, within the triangular region T = {(z,y): 0 <z <
10.56...,z < y < 10.56...}. (b) The numbers 1, 4, and 10.56... are the local minimum
and maximum values of the measuring function D.. (c) The size function Ip,(z,y),
output of the algorithm described in the text, consists of thin regions, named “blind
stripes”, which go all around the regions where [, is known exactly and in which the
“true” value of [, is bounded by the monotonicity constraints but otherwise uncertain.
(d) However, a grey-value coded representation of Ip_ shows that the estimated value
of Ip, within the blind stripes is mostly correct.
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We write p ~,<y ¢, if such a metric homotopy exists. Let now M*(¢ < z) be the
set of points p in M* with ¢(p) < z (e.g. the set of points on the continuous lines of
Figs. 1b). We have the following

The size function l,(M) : R2 — N U {400} [1] can be defined as

@) #{M* (0 < z)/ ~yey} if finite,
.T.,y 3

+ o0 otherwise.

A fundamental theorem of the theory [1] ensures that the value of the size function
inside the triangular region T,(M) = {(z,y) : ™" < y < 2, M < g < y},
where ™™ and (™2 are the minimum and maximum value of ¢ on « respectively, is
finite. In what follows, for the sake of simplicity, let us assume that the value of the
size function on the boundary of T,,(M) is also finite.

With respect to the previous Section, the definition of size function has been ex-
tended in two important directions. First, a size function can be defined on piecewise
smooth surfaces of arbitrary dimension. Second, the measuring function does not
need to be the distance from the center of mass and can be defined on k-tuples of the
shape. In the case of a curve, for example, the curvature, the distance between pairs
of points, and the area of the triangle whose vertices lie on the curve, could equally
have been used as measuring functions with k£ = 1,2, and 3 respectively.

A size function I,(M; z,y) has a number of general properties. First, by definition,
l, is nondecreasing in = and nonincreasing in y (see Fig. 2a). Second, [, inherits the
invariant properties of the measuring function ¢ (thus, in the previous Section Ip ()
is invariant for translation and rotation of a on the plane of Fig. 1a). Third, although
[, can be defined over the entire plane, the relevant information is contained within
the triangular region T,,(M).

The relevance of the notion of size function to shape analysis is due to the fact
that the main properties of size functions can be extended to the discrete case [2] with
little change. In the next Section an algorithm for the discrete computation of size
functions will be described and the main properties of the obtained representation
discussed. A rigorous account of the mathematical foundations of the theory of size
functions in both the continuum and discrete case can be found in ref. [1,:2)

4 Computing Size Functions

This Section describes the implementation of an algorithm for the discrete compu-
tation of the size function of a planar curve @ and discusses the main properties of
size functions in both the continuum and discrete case. For the sake of simplicity,
let us restrict the discussion to the case in which the measuring function ¢ is defined
on single points of  (that is, k¥ = 1) with ¢ > 0 (2 more general description can be
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found in ref. [4]). In addition, let B(p)s be the open circle of center p and radius §,
and [, and [, the size function in the continuum and discrete case respectively. The
algorithm consists of four steps.

1. Sample (or approximate) the curve o at a finite number N of points p', ¢ =
1,..., N, so that () @ C UX, B(p;)s and (ii) the set B(p;)s N« is non-empty and
connected for s = 1,..., N. Compute ¢(p;),:=1,...,N.

2. Define the graph GG whose vertices are the points p* and whose edges link vertices
which correspond to adjacent points on a.

3. Compute the maximum ™ of ¢(p'), ¢ = 1,..., N and set A > ¢,(8), where
€,(6) is the modulus of continuity of ¢ at é.

4. Fory =0to y < (pmax

(a) Define the subgraph G,<, of G induced by the set of vertices of G for
which ¢ < y.

(b) For z =0 tountilz <y

i. Let I,(o;,y) be the number of connected components of G,,<, which
contain at least a vertex p' such that o(p') < z.

1. z — 4+ A.
(c) y = y+A.

The conditions () and (%) of the first step ensure that the curve a is covered in
such a way that each open circle contains exactly one connected arc of a. The graph
G, in the second step, is a discrete representation of « such that a path on G between
the vertices p; and p; is the discrete counterpart of a trajectory between points of the
two arcs B(p;)sNa and B(p;)sNa. The third step determines the minimal resolution
at which Ip, can be computed. In the final step Ip_ is computed over a grid of equally
spaced points within the triangular region T,(a) = {(z,y) : 0 < y < p™* 0 < z <
v}

The diagram of Ip_, that is, the output of the algorithm when o is sampled at
100 points, is shown in Fig. 2c. Somewhat unexpectedly, the diagram of Fig. 2c does
not consist of a set of discrete estimates. This is made possible by a fundamental
theorem of the theory [2] which ensures that if Az, Ay > €,(6) (see the third step of
the algorithm) and [, = n at two different points, then, at “every” point in between,
I, = n and, most importantly, [, = n. Consequently, there are three areas in the
diagram of Fig. 2c where [p, is known to be equal to Ip, and to 0, 2, and 4 respectively
with “no margin of error”. The differences between I, and [, are located nearby the
points where I,, is not constant. In fact, it can be shown [2] that if I, takes on different
values at two adjacent points along either axis, none of the two estimates is a priori
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equal to [,. Thus, there are regions, named “blind stripes”, which go all around the
locations where [, is known exactly and in which the “true” value of I, is bounded by
the monotonicity constraints along the coordinate axes but is otherwise uncertain (see
Fig. 2d, however). Intuitively, the width of the blind stripes reflects the coarseness
of the sampling stage and the ambiguity of the finite covering of the first step of
the algorithm. A finer sampling would narrow down the width of the blind stripes,
thereby reducing the uncertainty in the location and value of the discontinuities of

L.

5 Experimental Results

Let us present some experimental results on the computation and use of size functions

for object recognition from real images. First, a distance between size functions needs
to be defined.

5.1 A Distance between Size Functions

Let ¢ be the measuring function with ¢ > 0, @; and a; two planar curves, and
©™**(@a;) the maximum of ¢ on o, for i = 1,2. Let us scale ¢ by defining ¢ =
/Y™ (a;) on a;, for ¢ = 1,2. As a result, $(e;) = ¢(ey) = 1 and a scale-invariant
distance D between the size functions l,(e;) and I,(a2) can be defined simply as

1 '}
D (lafen), fea)) =2 [ dy [ dells(an; z,y) — lo(asi 2,9)l.

Similarly, in the discrete case, l[3(a;) and I[;(az) can be computed at the same
fixed resolution R and regarded as triangular matrices [;(a1);; and [;(a;);; with
t=1,...,R—1and y =1,..., R — 1. The distance D can then be redefined as

R-1 R—i

D (Ig(ea), Ig(ea)) = ﬁ 2 2 a(en)is = Tp(an)is | (1)

=1 3=1
where the normalisation factor is chosen so that D =1 if, on average, the triangular
matrices I5(cn) and Is(e) differ by 1 at each entry. The entries on the diagonal
of the triangular matrices are not considered because they may be affected by large
quantisation errors. -

In order to test the algorithm for the computation of size functions of the previous
Section and then assess the usefulness of the concept of size functions for object
recognition, some experiments on sets of “real” objects were performed. Let us now
describe one of these experiments in some detail.

5.2 Leaf Recognition

Fig. 3 shows the images of six leaves from six different plant species (from upper left to
lower right: ivy, lemon, oleander, pittosporum, oak, and olive). Each leaf was picked
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Figure 3: Six images of six different species of leaves. From upper left to lower right:
ivy, lemon, oleander, pittosporum, oak, and olive.

from a set of eight leaves of the same species for a total of 48 leaves and one image of
each leaf against a dark background was taken. Standard edge detection techniques
were applied to extract the silhouette of each leaf [5] and the size function Ip, of each
leaf was then computed over a grid of fixed resolution. The distance from the center
of mass was always normalised between 0 and 1. In order to test the invariance of
Ip, for translation and rotation, the position and orientation of each leaf on a plane
nearly parallel to the image plane was varied from image to image.

Fig. 4 shows the grey-value coded “size functions” which have been obtained by
averaging the size functions obtained from leaves of the same species (the value at
each point of these “size functions” is the average of the value of the size functions at
that point). A number of qualitative conclusions can already be drawn by a simple
inspection of Fig. 4.

First, the size functions of the ivy leaves appear to be consistently different from
all the other size functions. Second, the size functions of oleander and olive leaves are
qualitatively similar but quantitatively different (the location of the main discontinu-
ity along the horizontal axis of the oleander size function is further to the left). Third,
the difference between the size functions of oak and lemon leaves is localised near the
diagonal (which is where the shape “details” can be detected). Fourth, it might not
be easy to distinguish between lemon, olive, and pittosporum leaves. Lastly, the size
functions of lemon, pittosporum, and oak leaves present a higher degree of variability
(larger regions over which the average takes on non-integer values). Quite interest-
ingly, similar conclusions could have been drawn by looking at the original set of
leaves.

From the quantitative point of view, the average “size functions” of Fig. 4 have
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Figure 4: Grey-value coded “size functions” which have been obtained by averaging
the size functions obtained from leaves of the same species. From upper left to lower
right: 1vy, lemon, oleander, pittosporum, oak, and olive.

been used to classify each leaf according to a simple recognition scheme. Each of the
“size function” of Fig. 4 has been considered as a “model” for each of the six species
and the distance D between each leaf and each model has been computed by using
Eq. 1. Finally, each leaf was classified depending on the minimum distance. The
described method was able to classify all the leaves correctly with the exception of
a lemon leaf which was mistaken for a pittosporum leaf. A more robust technique
which combines descriptions from different size functions and correctly classifies each
leaf will be described in a forthcoming paper [6].

Similar results (with no classification errors) have been obtained by looking at im-
ages of tools such as pliers, screwdrivers, scissors, wrenches, and hammers of different
sizes and quantitatively different shapes.

6 Conclusion

The aim of this paper was to assess the relevance of a recent mathematical theory in
relation to the problems of shape description and recognition. The theory is based
on the concept of size function which combines topological and metric properties of
shape.

Our analysis has shown that size functions in the discrete (i) can be computed
reliably from real images, (ii) preserve the invariant properties of the chosen mea-
suring function, (i) can easily be made independent of change-of-scale, and (iv) are
inherently robust against small qualitative and quantitative changes of shape. In
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conclusion, experiments on real images indicate that the shape representation which
can be obtained through size functions is likely to be suitable for object recognition.

We thank Massimo Ferri and Patrizio Frosini for many helpful discussions. Pa-
trizio Frosini and Steve Omohundro made valuable comments on the paper. Clive
Prestt checked the English.
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