Can we Utilize the Cancellation

of the
Most Significant Digits?

Victor Pan
TR-92-061

December 1992

Can we Utilize the Cancellation of the
Most Significant Digits?
Victor Pan*
Mathematics and Computer Science Departments, Lehman College, C U.NY

Bronx, NY 10468

Summary. If the sum of several positive and negative numbers has a small magnitude,
relative to the magnitudes of the summands, then we show how to decrease the precision
of the computation of this sum (without affecting the output precision). Furthermore, if
the magnitude of the inner product of two vectors is small and if one of them is filled
with “short” binary numbers, each represented with only a few bits, then we decrease
the precision of the computation of such an inner product (without affecting the output
precision), and we extend this result to the iterative improvement algorithm for a linear
system of equations, whose coefficients are represented by “short” binary numbers. We
achieve this by truncating both the least and the most significant digits of the operands,

according to our new scheme of backward binary segmentation.

Key words: precision of computations, data compression, matrix computations, linear

system of equations, numerical algorithms.

1991 Mathematics Subject Classification: 65G10, 65F10, 65G05

* Supported by NSF Grant CCR 9020690 and PSC CUNY Award # 662478.

1

1. Introduction. Cancellation of the most significant digits of the operands of an
addition or a subtraction is highly undesirable in numerical computations; the resulting
numerical stability problems usually force the user to look for alternate algorithms or to
try to control the errors by means of the expensive increase (doubling) of the precision of

the computation.

We will show, however, how one may take advantage of such a cancellation, in partic-
ular, in the cases of the subtraction and summation of numbers and of the computation of
the inner product of two vectors where the output has a relatively small magnitude. We
will then show a further application to iterative improvement of an approximate solution to
a linear system of equations, whose coefficients are assumed to be “short” binary numbers,
each represented with only a few bits.

The idea of our approach is simple: truncate the most significant bits of the operands,
as soon as they are not going to influence the output, and enjoy the benefit of decreasing
the precision of computations. For this we need, of course, a computer (such as MASPAR),
which performs faster if the computation has a lower precision. Due to recent progress
in the data compression area, we should expect that more computers of this kind will be
used. We also recall recent specific progress in data compression for basic matrix operations
([P,a], [P91], [P92], [BP]), which implies the acceleration of computations by the factor of
the order u/b, showing the ratio of the single precision, u, and of the actually needed
bit-precision of the operands, b.

Let us next comment on our approach.

To recognize which of the most significant digits of the operands are not needed
for obtaining the output and to recover the output after the deletion of these digits of
the operands, we apply our simple but, surprisingly, new techniques of backwerd binary
segmentation (b.b.s.), which enable us to bound the magnitudes of (one or) both operands
of an arithmetic operation if we have an upper bound on the magnitudes of its output

(and, respectively, another operand). We demonstrate the power of these techniques in

2

the cases of computing the difference of two positive numbers, the sum of several positive
and negative numbers, the inner product of two vectors (in section 2), provided in all these
cases that a known upper bound on the output magnitudes is substantially less than the

magnitudes of some input values.

Is this a realistic assumption? Yes, for instance, in the case of many iterative algo-
rithms of linear algebra, where we compute residual vectors of the form r(p) = f — Ax(p)
converging to 0 as p — oo. (Note that here each component of r(p) is the inner product of
two vectors.) In particular, we elaborate some details of application of our techniques to
iterative refinement of the solutions to a large class of linear systems of equations whose
coefficients have “short” binary representation. Formally, in p iterations of iterative re-
finement, each performed with the precision of the order of at most log p bits, we obtain
the order of p correct bits of each output value. Specifically, we show this in the case of an
iterative improvement algorithm, adjusted so as to accentuate the power of our techniques
and applied in its generalized version (in section 3) and in its classical version (in section 4).
In section 5 we give an example of further extensions, by applying the b.b.s. process to
Gauss-Seidel iteration. Probably most effective is the a.pplication of the b.b.s. techniques

to the solution of PDEs by means of multigrid algorithms (see [PR] and [PR,a]).

It would be most interesting for numerical linear algebra to find applications of the
b.b.s. techniques which decrease the needed precision of computations from double to

single. We leave this as a challenge to the reader.

2. Binary segmentation and backward binary segmentation. Application
to the summation and subtraction of numbers and to the computation of the
inner product of two vectors. Hereafter, all logarithms are to the base 2, and we will
rely on the binary representation of numbers. Our study can easily be extended using

b-ary representation for & > 2.

Definition 2.1. Let oo stand for +00 and expand a real number r as follows:

r = sign(r) Z ry2' r,={gJ ;@ =ik lo D (2.1)
a=—0o0
rs =0 for s = —co and for s > log|r|. Furthermore, for a pair of integers g and h, let

h—1

r(g, h) = sign(r) Zr,2’ , © e
8=g

r*(g) =sign(r)) _rs2*,
=g

h—1

r~(h) = sign(r) Z 2",

A= —00

Thus, r(g,h), r*(g), r~(h) denote the binary expansion of r chopped on both sides and
on each side, respectively. Let S(g,h), S*(¢g) and S~(k) denote the respective operators
of binary segmentation, such that

S(g,h)r =r(g, k), S¥(g)r=r*(g), S (A)r=r"(h),

S(g,h) = 5%(g)S™(h) = S™(h) 5*(g) -
The operator 5(g, h) chops all the bits representing a binary number b, except for ones in
the fixed range from 29 to 2#-1, |

Definition 2.2. {S(g,h)r: all real r} will be called the binary segment and will be

denoted S|g, h]. Eqivalently,

h-1
S[g,h]={:|:2r,2' , rs=0orr,=1fors=g,...,h—1},

a=g

Slg,h) = {r: S(g,h)r =1} .

Next, we will extend the binary segmentation of a difference, a sum and a product
to the binary segmentation of the operands of subtraction, summation and multiplication.
We will call such an extension process backward binary segmentation (b.b.s.).

We will first apply the b.b.s. process to subtraction, with the predetermined cancel-

lation of certain most significant bits.

Fact 2.1. For an integer h and for two nonnegative numbers ¢ and r such that

Ir — gl < 2%, letd = d(q,r,h) denote S™(h+ 1)r — S~(h + 1)q. Then either

d| < 2%, r—g=d (2.2)
or
ld|>2*, r—qg=-2""sign(d)+d. (2.3)
Proof. Expand r and ¢ according to (2.1), so that
oo = =] 0
r= _2: 2% g= _Z: 4,2° 4 r,,q,={1 lforalls.
Represent r — g as follows: r —g =522 d,2* d, =r, — gy, |d,| £ 1, for all s.
Denote dy= J.F ,d2% d. = zi:l_wd,fl’, so that |d_| < Ei;l_m 20 & 20 Ay =

T—g—d_, |ds| < |r— gl +|d-| < 2b+1,
Observe that (d4 — 4:{;;2")/"2’”'l = Zi’iu ds+h+12* is an integer, so that the latter
inequality, |dy| < 2**!, implies that |dy| < 2*. Moreover, either dy = 0 or |d4| = 2,

since dy /2% = °

.—0 ds+42" 1s an integer.

We shall consider two cases. If d, = 0forall s > h,thend = S~ (h4+1)r—S~(h+1)g =
r — g, and both relations of (2.2) hold.

Otherwise, |d4| = 2", |ds| = 1 and |d,| = 1 for some s > k. Therefore, |dy — d;2"| =
2741 and also dy = sign(d).

It follows (since |d4| = 2%) that d4 — dy2* = —dp2%*+!, and since r —g=dy + d_ =
(dy — dn2h) + d_ + dp2" = —dp 2"+ +d = —28*1 sign(d) + d, we arrive at (2.3). O

Remark 2.1. We cannot generally recover r — ¢ from §~(h)r — S~(h)q under the
assumptions of Fact 2.1, as this can be seen from the comparison of the two cases where
r=0,¢g=landr=2,¢g=1,forh=1.

Next, we will extend the b.b.s. process to the summation of numbers. Let

k m
r=zp(t), g= Z 9, p¥>0, i=1,....m, (2.4)
i=1 i=k+1

m2>k>0.

If we are given p‘V), ... p{™) seek p = r — ¢ and know that

lp| < 2%, (

b2
(1]
—

then Fact 2.1 enables us to reduce the computation essentially to the evaluation of S=(h +

1)r = §~(h + 1)g. We write that
d=S"(h+1)r-S"(h+1)g

k m
=S57(h+1)) S(h+1)p) =S5~ (h+1) Y S~ (h+1)p?,

i=1 i=k+1

i=1,...,m, so that we may chop all the bits corresponding to 2**3, j = 1,2,..., in the
binary representation of p{¥, for all i, and of all the partial sums of S~(h + 1)p{") that we
need to compute at the intermediate stages.

To show the next application, assume (2.4) and (2.5) and let p() = (D0 P =
1,...,m, where u(, v(¥) are nonnegative input values for all i, and moreover, for some

integers a = a(i) and b= b(i), a < b, the v lie in the binary segment S[a, b, that is,

b-1
o = Yl o) = {‘1] for all i and s (2.6)

8=a

(see Definition 2.2), so that 2¢ < v(¥) < 25 — 2¢,
Then p = r — g is actually the inner product of two vectors of dimension m, one of

which has its component values bounded according to (2.6). Then, due to (2.6),
S=(h+1)p =S~ (A +1)((S(h+1—a)uD)oD)

so that we may also truncate the bits corresponding to 2*=%+J, ; =1,2,..., in the binary
representation of u(¥) for all 1.
Note that the most significant bits of both operands of an addition or a subtraction

can be chopped if the magnitude of the output'is bounded from above, whereas for a

6

multiplication, we need to have the magnitudes of both output and one of the two operands

bounded in order to be able to safely chop the most significant bits of another operand.
So far, we have been studying the techniques of the truncation of the most significant

bits. We will next follow a traditional pattern and will also chop some of the least significant

bits of the same auxiliary, output and input values. Specifically, fix an integer g, denote

that

iV =8(g-b-1,h+1—a)u') forall:,

and compute

B = S(g,h + 1)@ vy,

i = 1,...,m. Then recursively sum 5() together, separately for i = 1,...,k and for
i=k+1,...,m, applying the operators S™(h + 1) to each computed auxiliary value.
Denote § = S™(h+1) X0, 15, F =S~ (h+ 1) 5, 9. If m > 2k, let 7 = 7 and
compute § = § + (m — 2k)29-1, Otherwise, set § = § and compute ¥ = 7 — (m — 2k)29-1,
In both cases, subtract § from 7, so that f — § =7 — § — (m — 2k)2971.
Simple analysis shows that
0<S (h+1—a)u' —g) <29-8=1 =1, m,
0<S (h+1)pW W <29, i=1,...,m,
0<S (h+1)r—-7F< k29, 0<S (h+1)g—¢g<(m—k)29,
and therefore,
(k—m)29 < S™(h+1)r — S~(h+1)g — (F — §) < k2°,
1S7(h+1)r —S™(h+1)g—(F - @)l Sm2" .

It follows that
Bl=lF-g<2b-2071, h=[log(2" +m2s")] . 2.7)

[Note that 7 — g = S*(g— 1)(— §), and |[F — §| < 2k implies (2.7).]

7

Under the assumptions (2.6) and (2.7), we may numerically compute the inner product
= E?:z u@p =57 uv) within the error bound m 29!, even if we chop some of
the most and least significant bits of the operands and outputs of the arithmetic operations
involved in this computation, specifically, if we chop:

a) the most and the least significant bits of the input binary values of u(?, for all ¢,
leaving in only h+2— g+b—a bits corresponding to 29=4=1*+J ; =0,1,... h—g+b—a+1;

b) the most significant bits of the auxiliary values of p(*) for all 7 and of their partial
sums, as well as of the “final” sums 7 and §, as long as these bits correspond to 28+7 j > 0,
thus leaving in h — g + 1 bits, for every p) and for each of the “final” sums S~(h + 1),
S—(h + 1)§ and the partial sums, and

c) the most significant bits of # (if m < 2k), § (otherwise) and 7 — §, leaving in the
values S~(k + 1)7 (if m < 2k), S~(k +1)§ (otherwise), and S~(k + 1)(7 — §) [represented
with fz_— g + 1 bits (if m is even) or & — g + 2 bits otherwise].

Note that part ¢) deals with chopping the operands and the output of the subtraction
Fog.

The next fact summarizes our estimates for the precision of computing the inner
product, which includes the summation and the subtraction of numbers as special cases
(where b = a + 1, v) = 1 for all 7 and, in the case of subtraction, m = 2k = 2).

Fact 2.2. The inner product p = r — ¢ = Ti_, udv® - Yimeg v can e
computed within the error bound m29~1, for any fized integers g, h, k, m such that g < h,
0 < k < m, by performing m — 2 additions, each with the precision of h — g + 1 bits, one
addition and one subtraction, with the precision of h — g+ 2 (for odd m) or (otherwise)
of h — g+ 1 bits, and m maultiplications of u®d by v, i = 1,...,m, with the precision
of h— g+ b—a+2 bits in the fractions (mantissas) of the binary representation of u'"
and b — a bits in the fractions (mantissas) of the binary representation of v(¥), for all i,

provided that (2.6) and (2.7) hold, and v >0, for alli.

Remark 2.2. We may ensure the output error bound 29~1, rather than m29~1, thus

8

decreasing h of (2.7) to [log(2" +2971)], if we chop by [logm] fewer of the least significant

bits of u(*), for each i. Then (2.7) will actually turn into

bl = IF - gl < 2" . (2.8)

= :
k) p{t) may

Remark 2.3. The round-off errors of the terms of p = 35, p{*) —
cancel each other; then the overall error of computing p may decrease substantially below
m 291, and then again in such a case k of (2.7) would decrease, and, similarly. if we extend
the above b.b.s. process and replace chopping by rounding.

Remark 2.4. Without the relations (2.6), we cannot extend the bounds on the
precision of p{* to the bounds on the precision of u{?, i = 1,...,m, but surely, we still
may slightly simplify the multiplications of u(¥ by v{¥ if the precision of p*) is bounded.

3. Application of b.b.s. to generalized iterative improvement algorithm.
Let us apply our b.b.s. tools in order to bound the precision of computations in the well-
known algorithm ([A], [W]) for iterative improvement of a solution to a nonsingular linear

system of n equations,

Ax=f.

Hereafter, we will assume the matrix and vector norm || - || = || - ||eo. For an input vector

f, for a pair of n x n matrices A and C (the latter approximating A=, so that
M=CAlus<2 <1, (3.1)

for some fixed positive scalar b) and for some initial vector x(0) (say, for x(0) = 0), the

algorithm successively computes the vectors

r(p) =f—-Ax(p-1), (3.2)
e(p) =Cr(p) , (3.3)
x(p) =x(p—1) +e(p) , (3.4)

9

for p=1,2,.... Then, it can be easily shown that, for p = 1,2,.. .,
x-x(p)=(I-CA)(x-x(p-1)) = (I - CAP(x —x(0)) ,
r(p) = A(x -x(p-1)),
e(p) =CA(x-x(p-1)) .
Therefore, if (3.1) holds, then r(p) and e(p) converge to 0 with the speed & a geometric

progression, as p — co. Furthermore, this analysis can be extended to the case where r(p)

in (3.3) and e(p) in (3.4) are replaced by their numerical approximations,

r'(p) =r(p) + Ar(p) , e'(p)=e(p) + Ae(p), (3.35)

respectively, for p= 1,2, ..., where
lAr)| < 2@, [lAe(p)]| < 2P, (3.6)
9*(p)=9"-bp, 9lp)=9-0bp, (3.7)

for b of (3.1), p=1,2,... and for some fixed scalars g and g*. It is not hard to show that
we may choose these scalars so as to preserve rapid convergence of |x — x(p)|| to 0 (with

the speed of a geometric progression) and that we may fix two scalars h and h* such that
It ()l <24, le*(p)]| < 24P, (3.8)

h*(p)=h" +logp—bp, h(p)=h+logp—1ip, (3.9)

p=1,2,... (see Appendix B). We will assume that b, g, g*, h and h* have been precom-
puted, and we will also assume that all the entries of the input matrix A lie in a fixed
binary segment S[g(A), h(A)] of a moderately small length h(A) — g(A).

Remark 3.1. The latter assumption is needed to bound the precision of computing
the product of A by x(p—1) in (3.2). This assumption holds, for instance, for many linear
systems obtained by discretization of linear PDE’s with constant coefficients. Generally,

if A is a well-conditioned matrix, we may decrease h(A) — g(A) by chopping the entries

10

of A and/or by applying the routine technique of algebraic segmentation, described in
Appendix A.

The above assumptions enable us to apply the b.b.s. process [based on Fact 2.2,
Remark 2.2 and the relations (2.8)] in order to bound the precision of computations per-
formed according to (3.2) and (3.3) with r*(p) replacing r(p) in (3.3) and with e(p) and
r(p) evaluated with errors represented by the vectors Ae(p) and Ar(p), which satisfy
(3.5)-(3.9).

Let hereafter c;(W) denote the number of nonzero entries of row i of a matrix W, and
for simplicity, assume that ¢;(4)+ 1 and ¢;(C) are even for all 7 [otherweise, we would just
need an extra bit of the precision to handle each term, corresponding to (m — 2k)297! with
odd ¢;(A) + 1 or ¢;(C), playing the role of m]. Then we arrive at the following bounds on
the precision of the operands (for p =1,2,...):

(2) d;(p) = h*(p) - 9" (p) + Mog(ci(A) +1)] +1 = h* —g" +log p+ [log(ci(4) +1)] +1
bits suffice for the representation of each operand of any addition or subtraction involved
in the evaluation of the i-th component of r(p) [according to (3.2)];

(b) d?(p) + h(A) — g(A) + 1 bits suffice for the representation of any component of
x(p — 1) when this component is multiplied by an entry of row i of 4 [according to (3.2)};

(c) di(p) = h(p) - 9(p) + Nlog &i(C)] +1 = h — g+log p+ [og i(C)] +1 bits suffice for
the representation of each operand of any addition or subtraction involved in the evaluation
of the i-th component of e*(p) [according to (3.3));

(d) di(p)+h*(p)—9°(p)+1 = di(p)+h" —g" +1+log p bits suffice for the representation
of any entry of row i of C when this entry is multiplied by a component of r*(p) [according
to (3.3)).

Thus, the b.b.s. process enables us to compute the solution values with the precision
of the order of p in p calls to the loop (3.2)—(3.4), even though only the order of (logi)-bit
precision is needed in the computations of the i-th call to this loop, for : = 1.2,....

In yet another comparison, if we do not use the b.b.s. process, then we generally must

11

increase, at least to H*(p) — ¢*(p) and H(p) — g(p), the precision of the computations

performed according to (3.2) and (3.3), respectively, where
H*(p) = logmax{|[bl| , max|ai;z;(p-1)|},
A=lay], x(p—1)=[zi(p-1)],
H(p) = log max |ei;r} ()]
C=lcj], (=@, &Li=1...,mp=12,...,
so that H*(p) — h*(p) and H(p) — h(p) are bounded from below by H* + bp — log p and by
log max; ; |c;;| + H, respectively, for two constants H* and H.
4. An application of b.b.s. to the classical version of the iterative im-

provement algorithm. Let us comment on some specifics of the application of the b.b.s.

process in the classical case of the iterative improvement algorithm, where
O=TPEU Y =Y~ 5 P2,

P is a permutation matrix, L = I + L*, U = D + U*, L* and (U*)T are proper lower
triangular matrices, D is a nonsingular diagonal matrix, |(L);;| £ 1, for every entry (L); ;
of L.

In this specific case, the evaluation of r*(p) based on (3.2) does not change but the
evaluation of e(p) from (3.3) is replaced by the solution of two triangular linear systems

of equations:
Ly(p) = P7'r(p) , (4.1)
Ue(p) =y(p) . (4.2)
Applications of (3.8) [with e(p) replacing e*(p) where || Ae(p)|| is small] and of (4.2) implies
the bound
ly(@)ll = |Ue(p)|| < 2P|,

and since we seek e(p) within the bound 29(?) on the error vector norm, we only need to

compute the components of y(p) within the error bound |[[U~1|29().

12

Let h and § be two fixed integers such that
ll<2t, uts2.

Then

ly(p)|| < 2~+he)

We now compute a desired approximation to y(p) [by solving (4.1)], substitute it into
(4.2) and solve for e(p). Both linear systems (4.1) and (4.2) are triangular and are solved
by means of substitution, which amounts to successive evaluation of the components of the
vectors L*y(p) and D~!U*e(p) and to subtracting them from the respective components
of the vectors P~ 'r(p) and D~ 'y(p).

Suppose that we apply the b.b.s. process [based on Fact 2.2, Remark 2.2 and the
relations (2.8)] to the evaluation of every inner product in this computation, and again,
for simplicity, assume that ¢;(L) and 1 + ¢;(U) are even numbers. Th-en we bound the
precision of the operands as follows:

8) f7(p) = h(p)—9(p)+h—g+logci(L)]+1 = h—g+h—G+logp+[log c;(L)] +1 bits
suffice for the representation of each operand of any addition or subtraction involved in the
evaluation of the i-th component of the vector y(p) from (4.1), by means of substitution;

b) f(p) + h(p) —9(p) + h—§+1=2h—g+h—§+1+logp)+ [logei(L)] bits
suffice for the representation of every entry of row i of L when this entry is multiplied by
a component of y(p) in the substitution process for solving (4.1);

c) fi(p) = h(p)—g(p)+ log ci(U)] +1 = h—g+log p+ [log c;(U)] +1 bits suffice for the
representation of each operand of any addition or subtraction involved in the evaluation
of the i-th component of the vector e(p) from (4.2), by means of substitution;

d) fi(p) + h(p) —g(p)+1=2(h — g +1 + logp) + [log(1l + ¢i(U)] bits suffice for the
representation of every entry of row i of the matrix D~1U* when this entry is multiplied

by the components of e(p) in the substitution process for solving (4.2).

13

This way, the precision of these computations may substantially decrease against the
case of the usual solution [with using no b.b.s. process], except, possibly, for the case of

smaller values of p.

5. An example of further extensions of the b.b.s. process. To exemplify
various possible extensions, assume that A denotes a matrix filled with short binary num-
bers and having 1’s on its diagonal, 4 = L* + I + U*, with L*, (U*)7 being proper lower
triangular matrices.

Gauss-Seidel’s iteration for Ax = f takes the form
X(p+1)=f-L*x(p+1) -U=x(p), p= 03 00
Rewrite this as follows:
Ax(p+1)=-L*Ax(p+1) - U*Ax(p) , p=0,10.. (5.1)

P
x(p) =Y Ax(i), p=0,1,...

=0
If the iteration converges, then

|Ax(p)lle <2977, p=0,1,...

for some constants b > 0 and ¢, and an application of the b.b.s. process enables us to
decrease the precision of the computations.

Note that in this case we do not reciuire that the input coefficients of the linear system
be short binary numers.

The reader may easily check that the analysis and the results are similar for several

other well-known iterative techniques, such as Jacobi’s, SOR, SSOR.

6. Extension to the Solution of Piecewise-Linear PDE’s.

"The results of the previous sections enable us to apply the b.b.s. techniques in order to

decrease the precision required in the computation of the solution of piecewise-linear partial

14

differential equations (PDE’s) by means of multigrid methods (compare [PR], [PRa]). First
let us briefly recall the multigrid approach. For a fixed sequence of d-dimensional grids
GoCcG C...CG, =G, ‘we assume that, for i = 0,1,...,n, a solution of a given PDE
on G; has been approximated by a N; = |G;|-dimensional vector u; that satisfies a linear
system of difference equations,

Diu;=b;, (6.1)

generated by means of the discretization of the PDE over the grid G;. Let u;(x) for x € G;
denote the respective component of the vector u;, define operators P; of prolongation of
ui—1(x) from G,_; to G; (such operators usually amount to interpolation by averaging)
and let

ei(x) = ui(x) — Piuia(x), x€Gi, (6.2)

denote the prolongation errors of these operators for 1 = 1,2,...,n. Furthermore, we
define the vectors P;u;_; and e; with the components Pju;~;(x) and e;(x), respsectively,

for x ranging on G;, and then we define the residual vectors
Die;=r;, (6.3)

or equivalently,
ri=b; - DiPu;_;, (6.4)

i S

Now, we recall the customary loop (V-cycle) of the multigrid algorithms for solving
the system (6.1), for i = n, by means of successive evaluation of the following values,
defined at stage i (1 = 1,...,n) for all x € G; [where, say, we fix up(x) = 0 for x € Gy]:

a) #;—1(x) (by the prolongation of u;_;(x) from the grid G;-;),

b) ri(x) [from (6.4)],

c) ei(x) [from (6.3)],

d) u;(x) [by using (6.2)].

15

The vector equations (6.3) and (6.4) define the computational pattern of the itera-
tive improvement of the solution to a linear system (6.1). Furthermore, in the case of a
piecewise-linear PDE with constant coefficients, the entries of the matrix D, are “short”
binary values, each represented with O(1) bits.

The only difference with the usual application of the iterative improvement scheme is
the stage of the solution of the linear system (6.3). In the iterative improvem;nt algorithms.
this system is usually solved by direct methods, whereas the multigrid algorithms solve
it by means of iterative methods (say, of Gauss-Seidel’s or SSOR type in the symmetric
case).

Furthermore, the number of iterations for solving the systems (6.3) arising in the
multigrid algorithms is typically bounded from above by a fixed constant, which corre-
sponds to setting p = O(1) in section 3. Thus, by applying the techniques of section 5 for
solving the system (6.3) and the techniques of section 3 for computing r; from the system

(6.4), we decrease the precision of these computations to O(1) bits, without affecting the

accuracy of the output.

16

References
[AHU] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Mass., 1976.
[A] K. E. Atkinson, Introduction to Numerical Algorithms, Wiley, 1978.
[BP] D. Bini, V. Pan, Numerical and Algebraic Computations with Matrices and Polyno-
mials, Birkhauser, Boston, 1993.
[D] P. Duhamel, Implementations of “Split-Radis” FFT Algorithms for Complex, Real
and Real Symmetric Data, IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34,
pp. 285-295, 1986.
[GL] G. H. Golub, C. F. van Loan, Matriz Computations, Johns Hopkins University Press,
Baltimore, Maryland, 1989.
[N] H. J. Nusbaumer, Fast Polynomial Transform Algorithms for Digital Convolution,
IEEE Trans. on ASSP, ASSP-28, 2, pp. 205-215, 1980.
[P91] V. Pan, Complexity of Algorithms for Linear Systems of Equations, in Computer
Alsorithims Tor Soloing Linear Aljebrain Byuatians, The State of the Ar, edited by
E. Spedicato, NATO ASI Series, Series F: Computer and System Sciences: vol. 77,
pp. 27-56, Springer, 1991.
[P92] V. Pan., Complexity of Computations with Matrices and Polynomials, SIAM Rewview,
34, 2, pp. 225-262, 1992.
[P,a] V. Pan, On Binary Segmentation for Matrix and Vector Operations, to appear in
Computer and Math. (with Appli-cutiam A
[PR] V. Pan, J. Reif, Compact Multigrid, STAM J. on Sei. and Statist. Comp. 13, 1, 119-
127, 1992.
[PR,a] V. Pan, J. Reif, Generalized Compact Multigrid, to appear in Computers and Math.
(with Applications).
[W] J. M. Wilkinson, Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[Win] S. Winograd, Arithmetic Complezity of Computations, SIAM, Philadelpha, 1980.

17

Appendix A. Algebraic segmentation.

In this appendix we recall the routine techniques of algebraic segmentation, cited in
Remark 3.1. For convenience, assume a floating point representation of the nonzero entries

of a matrix (or a vector) W taking the form
M-1
w; j = b° Z ak_,-,jbk
k=0

where b, e and M denote three fixed integers (the same for all the entries of W), M > 1,
b> 1, and all @k,i,j are integers varying with the entries, 0 < Qri; <b k=0,... M—1.

For a fixed integer d > 1, let us denote m = [M/d], 2 = b™ and rewrite the nonzero
entries of W as polynomials in z, that is, +b¢ Zﬁ;; ?gl(ahﬂm,;,,-b")x¢, whose coeffi-

cients have been represented with the b-base precision m. The matrix turns into the matrix

polynomial of degree d — 1,
d-1

W(z) = Z W,z9 |

g=0
where W = W(b™) and where the entries of W, have form +b¢ iy Chpgm,isbh. An
addition or a subtraction of two such matrix polynomials amounts to d additions or sub-
tractions of matrices whose entries are represented with the (b-based) precision m, rather
than M; a multiplication amounts to ¢2 matrix multiplications and d2 — 24 — 1 matrix ad-
ditions or subtractions, all performed with a lower precision ranging from m to 2m (more
advanced techniques require O(dlog d) matrix multiplications and O(dlog dloglog d) ma-
trix additions/subtractions, see [AHU], [D], [N], [Win]). In spite of a certain increase of
the number of matrix operations, the operations themselves are simplified because of the

precision decrease, and this trade-off may be accepted as beneficial in niany cases.

18

Appendix B. Bounding the error and residual norms.

Let us prove (3.8), (3.9). Replace e(p) by e*(p) in (3.4) and r(p) by r*(p) in (3.3) and

obtain
x-x(p)=x—-x(p-1)-e(p) - Ae(p) =x—x(p—1) - Cr(p) - CAr(p) — Ae(p) .

Substitute

r(p)=b-Ax(p-1)=Ax-x(p-1))

and obtain that

x—x(p) = - CA)x—-x(p—1)) - CAr(p) — Ae(p)
P
=T -CAP(x-x(0)) - Z(I — CAY ' (CAr(Q) + Ae(i)) LB
i=1
Now we recall (3.6) and (3.7) and deduce from (B.1) that
p
Ix = x(p)| < I - CAIPllx - x(O)]| + _ 1T = CAIPT(l|Clj2¢ +2%)27% .

=1
Denote that N = ||C||29" + 29, Eq = ||x — x(0)||, substitute (3.1) and obtain that
lx — x(p)|| < 27*P(Ey + pN) . (B.2)
Since
r(p)=f-Ax(p—-1)= Alx-x(p)) ,

e(p) = Cr(p) + Ar(p) ,
we now immediately deduce (3.8) and (3.9) from (B.2) and (3.6).

19

