INTERNATIONAL COMPUTER SCIENCE INSTITUTE @

1947 Center Street o Suite 600 e Berkeley, California 94704 e 1-510-642-4274 » FAX 1-510-643-7684

The Impact of Multimedia Data on
Database Management Systems

Karl Aberer and Wolfgang Klast

TR-92-065
September 1992

Abstract

This paper analyzes the impact of multimedia data on database management sys-
tems and proposes some solutions which allow for a high degree of integrated han-
dling of multimedia data by a multimedia database system. We first give a charac-
terization of multimedia data with respect to issues like time dependency and
amount of data. Then we derive major requirements which need to be satisfied in
order to provide the integration. These requirements include e.g., dynamic data
management, non-transparent parallelism, scheduling, several kinds of abstrac-
tions, resource distribution transparency, and advanced interaction models satisfy-
ing real time constraints. We show how some of the requirements can be met by
exploiting concepts from the object-oriented paradigm and database systems.
Then we discuss extensions needed with respect to data integration, scheduling,
parallelism, and real time streams.

T On leave from GMD-IPSI, Dolivostr. 15, D-6100 Darmstadt, Germany; e-mail; klas@darmstadt.gmd.de

1 Introduction

Multimedia data (often also called continuous media) extends the set of alphanumeric datatypes
available in conventional computer systems in two ways. First, by anew dimension of complexity,
stepping from simple symbolic data, to complex symbolic and “real” data. This includes
graphical, pictorial, and textual data. Second, by a new temporal dimension correlated with audio
and video data. These two dimensions draw serious consequences on the integration of multime-
dia data with conventional data. The problems to be solved include issues like the degree of
integration of multimedia data into the DBMS, the internal architecture of a multimedia DBMS
(storage subsystem for continuous data, interfaces to special devices like magneto optical discs
and compact discs, compression techniques, etc.), data model and data manipulation language
extensions (multimedia data types, formats, presentation, etc.), indexing techniques for
continuous media, and the handling of digital formats as well as analog sources. Current
approaches in the field of database systems, database integration, and database interoperability
provide only limited solutions for integrating continuous media. But as solutions are becoming
available with respect to the limited availablility of appropriate digital video/audio hardware
which can be integrated into conventional computing environments based on workstations, of
standards for compression techniques, of some basic support at the levels of operating systems,
networking, window systems, and application toolkits, one can approach an integrated solution
for multimedia database systems which should incorporate the services provided by the other
system levels. Such an approach should be based on appropriate architectures and should not be
limited to add-on solutions as those may only partially satisfy the requirements of applications.

In this paper we analyze the “nature” of multimedia data, give a characterization and classifica-
tion, and derive and discuss a set of essential requirements imposed on database management sys-
tems by multimedia data. We propose solutions for particular design issues of a database manage-
ment system which are able to meet these requirements by focusing on data modelling, database
functionality, and some additional concepts needed. Although many of the problems are related to
other system levels like operating systems and networking too, we do not discuss the impact of
integrating the handling of multimedia data into database management systems on those levels.

Solutions for multimedia database systems range from quite simple ones which do not address a
real integration of the handling of multimedia data into the services of a database management
system over those providing a kind of pseudo- or semi-integration to those which address a real
integration.

In the first case the user of a (database) programming language or database model constructs a
multimedia information system by writing an application on top of the database system. By doing
so he does not get any support from the database management system for handling multimedia
data. That is, he may just store file names or other annotational information in a database which
refers to the multimedia data stored and handled outside the control of the database system. Thisis
for example always the case when a database management system does not provide for arbitrary

user defined functions and when external equipment like video recorders, cameras, laser discs,
etc. has to be controlled in order to handle analog video or audio.

In the second case the database system provides for a pseudo- or semi-integration of multimedia
data by means of some trivial built-in data type like binaryLargObject which allows to store multi-
media data in some general digital form, but which still leaves all the responsibilities of how to
interpret, manipulate, and present the data with the application programmer.

In the third case in which the database system is able to handle multimedia data in an integrated
manner with respect to its characteristic the user gets all the support he needs to store, manipulate,
and present multimedia data by using a database system. Note that such a solution does not ex-
clude application development as required in the previous two cases, but it provides the optimum
support for dealing with multimedia data as application design should not be forced to deal with
the implementation of basic multimedia concepts and modeling primitives. Hence it provides re-
lief for application implementation, but it also supports standardized semantics of basic concepts
of multimedia data. This case is comparable to the step from using a relational database system to
using an object-oriented database system: a (truly) object-oriented database model allows to cap-
ture more semantics of data and operations in a database than the relational model.

The proposed solutions presented in this paper are intended to eventually lead to a multimedia
database system which provides integrated management of multimedia data. It is based on a care-
ful analysis of the requirements of multimedia data. It turns out that the central problems are re-
lated to (a) time dependency, and (b) the huge amounts of multimedia data. First we discuss the use
of already available concepts and techniques. Our approach exploits the object-oriented paradigm
as it provides proper semantic modelling concepts needed to deal with many requirements which
are consequences of (b). We illustrate this by using the open object-oriented database model VML
[15] of VODAK. We show that utilizing database management functionality (persistent, consis-
tent management of data for multiple users) can cover some of the requirements derived from (b).
Second, we focus on extensions of the data model and the database functionality. These include
mechanisms within the data model of VODAK and extensions of it to integrate multimedia data
types up to different degrees. To meetrequirements derived from (a) we introduce mechanisms for
scheduling, show up some prospects to introduce parallelism, and analyze ways of how to inte-
grate the abstraction of real time streams.

There is several related work which addresses basic solutions in this particular field: Recent re-
sults in coding and compression techniques [24] as well as the establishment of standards like
JPEG [28] and MPEG [19], now lead to more appropriate digital video and audio technology and,
hence, will pave the way for advanced multimedia applications. Managing continuous media re-
quires also appropriate support at several system levels: Operating systems should provide ap-
propriate basic concepts and abstractions for multimedia file management [23], for parallelism
[22], for window management [4], synchronization [5]. Further aspects are real-time require-
ments (e.g., transmission and de/compression of data [26]), scheduling of resources [2], and ar-
chitectural issues [14]. For an overview of related work in the field of operating systems and net-

working see [10]. Additional aspects include programming and query language support(e.g., [8]).
Furthermore, experiences made with hypermedia systems like NoteCards [12], [13], Neptune [7],
Intermedia[11],[21], and KMS [1] as well as first versions of prototypes of multimedia database
systems like ORION[27] and VODAK [16] may also influence the overall design of multimedia
database management systems with respect to their functionality.

The paper is organized as follows: Section 2 characterizes and classifies multimedia data and
gives an analysis of requirements with respect to multimedia database systems. In section 3 we
analyze and show how to meet these requirements with respect to database mechanisms, object
oriented programming, and multimedia extensions.

2 Analysis of Multimedia Requirements

In this chapter we first give a characterization of multimedia data. Then we derive and discuss
requirements for multimedia computing focusing on the impact of multimedia data on database
management systems. We do notclaim that the list of requirements is complete and all the require-
ments are equally important. However, we believe that we can cover the most central points and
we understand this list as a starting point for conceptually well founded development of multime-
dia database management systems.

2.1 Characterization of Multimedia Data

Very often systems are defined as multimedia systems by enumerating in lists data like motion
video, audio, still images, graphics, animation, text, etc. they are able to deal with. This typical list
of so called multimedia data reflects the fact that very little attention is given to the characteristics
behind these kinds of data. By looking closer to the different kinds of multimedia data one can
differentiate and classify them according to specific criteria.

The most significant features of multimedia data come from the observation that its representation
can be much closer to the physical or a virtual physical reality than the usual alphanumeric data
which in general is used to represent symbolic information. For example, a video is a recording of
the visual information! over a period of time at a point in space.

Due to the unique role of time in physics, the most striking classification of multimedia data can be
made as either fime dependent data like audio, video, and animation or time-independent data
which includes data types like text, still images and alphanumeric data types. Time dependent data
has only a meaningful interpretation with respect to a constantly progressing time scale. A time
scale is needed to associate with a time dependent data its correct interpretation at each point of
time expressed by the atomic constituents of the data. We call this kind of data dynamic, more
precisely dynamic in time. We further can distinguish between data with an absolute time scale

1. Namely a photon count over a discrete pattern in space, time, and energy.

which have a canonical correspondence to real world time and data with a relative time scale
which is to ensure the correct chronological sequence of the atomic constituents, but leaves the
rate of progression open. In contrast we will call time independent data static, more precisely szaz-
ic in ime. The atomic constituent of the data is the data itself.

Examples: A video recorded with a camera has a canonical mapping to real world time. The atom-
ic constituents are called frames which correspond to intervals of equal length on the time scale of
the video. The length of the interval is determined by the recording speed, e.g., 30 frames per se-
cond. An animation also consists of frames, but since there is no canonical mapping to the real
world the time scale may be deformed, for example to speed up or slow down the animation with-
out affecting the natural meaning of the animation.

Note: The relationship between the atomic constituents of a dynamic data may be more intricate
than it may appear at first glance. One has also to think of compression techniques for digital video
or audio which use interpolation methods such that the representation of the data goes beyond a
sequence of independent frames or samples.

To distinguish from this is now whether data is static or dynamic in size, i.e., whether one atomic
constituent of the data requires a constant or variable amount of storage. Although data dynamic in
size plays already a role in e.g., commercial data base systems, e.g., lists, text, they are much more
common among multimedia data.

Examples: An integer is static in time and size. A text field is static in time and dynamic in size.
Uncompressed digital video is dynamic in time and static in size, while compressed digital video
may be dynamic in time and size depending on the compression technique.

Due to the closeness to physical reality a further characteristic of multimedia data is its high densi-

ty of information in one datum. This holds already for data like pictures and text, buteven more for

data dynamic in time. Therefore, we want informally distinguish between data with potentially

low and high information content. Potential, because data with high information content in gener-
al is also highly redundant.?

2.2 Requirements

This subsection presents the major requirements which need to be satisfied by the kind of multi-
media database management system we proposed earlier. A summary of all requirements is given
in the appendix.

2.2.1 Amount of Data

Due to high density of information in multimedia data the amounts of data can be huge. Aslong as
Data is static in time and size like symbols, pictures, or images no serious problems in terms of

2. Note, that there are many aspects of redundancy of course, e.g., with respect to the users model or the internal
representation.

processing speed are imposed on networks, on storage devices, and on main memories of current
computer technology. Also data dynamic in size can be handled efficiently by using the abstrac-
tion of files as provided by operating systems. Serious problems with such data occur only in con-
nection with applications where extreme high numbers of data elements are involved, e.g., proces-
sing satellite images for weather forecast [25]. We do not address these problems herein.

On the contrary, data dynamic in time inherently leads to huge amounts of data for single data
elements. For examples see the following table: '

Voice quality andio « ccvavw on vovvies svvnnaian on v 64 Kb/s

CD qualityaidio:: .. cooun o svven o pevieviman s 1.4 Mb/s
BRI woumnn s sowas sa aNeY 1S SUREEEY S Boks 24 bits/pixel
MO VIERD o5 v as waw o568 Sum s o Salmavis v 5 ds 30 frames/s
NTSC quality video (512 x480,8bpp) 1.92 Mb/frame
HDTV quality video (1024 x 2000, 24 bpp) 48 Mb/frame

Additionally to the analogous problems mentioned above now we have to deal with this huge
amount of data under real time constraints. This has on one hand serious consequences to the de-
sign of hardware, operating systems, and networks, but it also must be taken into account when
designing a multimedia database system.

When dealing with this data it may be convenient or even necessary to perform the processing not
on the data values themselves but on the references to the values. A good example for this is video
script editing.

Note: Since these references are not necessarily provided a priori they may have to be created by
the user or by the system. We address this problem later in subsection 2.2.5.

Certain applications of dynamic data may need operations which cannot be performed over refer-
ences, e.2., copying, but also cannot be executed in the standard way as for alphanumeric data
because it exceeds the physical resources. In this case some form of dynamic data management
has to be provided which a kind of spreads the process over time such that at each distinct moment
only a limited amount of physical resources are needed. Since these kind of dynamic operations
heavily affect the behavior of a system they must not be transparent. For example, they last for a
considerable amount of time or block certain resources.

The requirements determined in this subsection can be summarized as follows:
Rl appropriate referencing mechanism

R2 dynamic data management of very large objects

2.2.2 Temporal Aspects

When processing dynamic data typically parallel tasks occur. This comes from the nature of this
data since in contrast to processing static data operations take non negligible periods of time. Also
it often is necessary to process data in parallel. ‘

Example: An application plays back a video on a screen. Simultaneously it gets the audio from a
different device and allows for user interaction to control presentation, e.g., to associate annota-
tions at certain points to the video without interrupting the video presentation. This includes paral-
lel tasks for playing back the video and audio, for the user interaction, and for processing user in-
put. The application programmer must be able to control the synchronization of these tasks.

Although parallel execution of applications is supported by database management systems, it is
considered to be transparent to users. Hence, database management systems do not explicitly and
efficiently provide concepts for the control of parallel tasks by the user?. Some tools have to be
provided to the user which allow him to explicitly control the parallel execution of different tasks.

There are basically the following alternatives to control parallelism of tasks: establishing relation-
ships between tasks (relative scheduling), e.g., two tasks have to be executed simultaneously or a
task can trigger another one, or placing events on a time scale (absolute scheduling), or combining
both, e.g., start a task at the next full hour when another task has finished. Both alternatives require
appropriate concepts which allow a programmer to express such schedules.

We summarize the requirements determined in this subsection as follows:
R3 non-transparent parallelism

R4 scheduling mechanisms

2.2.3 Resources

Many different physical devices are involved in processing multimedia data because of the fact
that one standard device cannot handle all kind of multimedia data. There are several reasons for
this: special purpose hardware (e.g., compression chips, equipment for analog or digital video/au-
dio, presentation devices like loudspeakers, monitors, and windows), efficiency (although it is
possible to store digital videos on hard discs, it may be much more efficient for retrieval to store
them on laser discs), space requirements (a few minutes of digital minutes easily fill up any stan-
dard hard disc). |

These devices can range from physical devices with their corresponding device drivers over de-
vices which come with all kinds of special software to devices hidden by other database systems.
Although these different types of devices and their behavior should be made transparent as far as
possible to the application developer, some of their characteristics should be made visible as far as
necessary. Therefore an abstraction mechanism is needed for device transparency.

Some of these devices may often be used only by a limited number of applications at the same
time. Therefore, appropriate mechanisms to share these resources upon applications have to be
provided. :

3. Itis of course possible to coordinate tasks by using the database as a coordinating medium.

By classifying them into appropriate hierarchies and groups one can reduce redundancy and mod-
elling is such more efficient. Since the available devices evolve continuously it must be possible to
integrate them in a simple and efficient way without affecting existing systems. This can be
achieved by employing the well-known modularization principle.

Since there may be so many devices involved in a multimedia application the same data can reside
on different devices. This should be made transparent for the application programmer, therefore
an mechanism for daza distribution transparency is needed.

Multimedia applications have to interact with these devices simultaneously, maybe over long last-
ing periods of time, or on the basis of interrupts. We will cover the requirements derived from this
fact in 2.2.7 because these aspects are closely related to user interaction.

We summarize these requirements as follows:
R5 device transparency
R6 resource sharing
R7 modular device classification and modelling

R8 data distribution transparency

2.2.4 Data Representation

Any data stored in a computer is a representation of some "reality”, e.g. a physical reality like visu-
al information, virtual (physical) reality, mathematical reality like a geometric model, organiza-
tional structures like account information at banks. As explained earlier multimedia data
primarily emerges from representations which are close to physical realities. The representation
by alphanumerical data is straightforward, and formatting problems are already mostly settled for
this kind of representation. Also the operating systems guide mostly the way by providing some
standard set of datatypes. This is, at least today and in the near future, not the case for multimedia
data.

The basic datatypes like the alphanumeric ones are not appropriate to reflect the strucuture of
multimedia data. New built-in datatypes like bitmap or audiosample have to be provided.
Furthermore, type constructors taking the temporal nature of multimedia data into account will be
needed in some form. Additionally, appropriate support for processing these data types have to be
provided. Similarly to the standard operations associated with alphanumeric data (e.g., add inte-
gers, concatenate strings) operations like interactive editing videos, playing back and synchroniz-
ing videos and audios.

But there is another aspect which has not been considered yet: while it does not make sense to use
many different formats for the same alphanumeric datatypes like integer, float (on the contrary itis
confusing and dangerous, as one can experience from C) this is crucial for multimedia data for the
following reasons:

(1) Different compression techniques may be appropriate for different applications. Each
format can in principle converted to another. Different resources may need different formats.
Due to the high degree of hardware dependency of multimedia data proprietary standards are
more likely to emerge. One has to take this into account as de-facto standards and has to pro-
vide for the proper openness of a system. The system must provide for a modular and effi-
cient representation of these different formats and standards but it must also be able to make
this transparent to the user.

Example: Encoding of still or moving images is different in nature. For videos with little
dynamics differential compression may be appropriate.

(2) The internal representation may not be appropriate to be presented to the user (in contrast for
alphanumeric data the representation to the user is close to the internal). So special
representations for different users to provide different views of the same data may be needed.
These may be generated on the fly or be stored persistently (e.g. as a result of a query).

From the above we can derive the following requirements:
R9 new built-in data types & operations
R10 modular and efficient representation of different formats
RI11 transparency of data representation

RI2 different views for the same data

2.2.5 Modelling

Representation of multimedia data encodes the physical reality (as explained in section 2.1) and
hence is a very low level representation formalism. This leads to the problem of huge amounts of
data as discussed in 2.2.1. As mentioned there references to the data which also can be understood
as abstractions of the data are needed to efficiently process it by avoiding copies. More complex
abstractions like references enriched with more information than just used for identification can
be used to index data to provide for fast access.

Another reason for introducing such abstractions is to allow the user to refer to the data in terms of
abstractions which make up his model of the application domain. These abstractions may be pro-
vided by the user or by the system based on the contents of the multimedia data. It can be very
reasonable to store these derived abstractions since their computations may be very expensive.
For the retrieval and organization of the multimedia data it should be possible to provide several
layers of abstractions.

Examples: Assume we have a database of videos. A firstpossible layer of abstractions would be to
identify single scenes in videos such that several abstractions may be provided for a single video.
Another layer could be used to identify geometric objects in these scenes, and in a further layer the
geometric objects could be related to real world entities in the scenes. A user may search for such

10

entities based on attribute values stored elsewhere in the database, and so, may access a video in
which this entity occurs using indices at each layer.

In order to have these features available in a multimedia database system appropriate solutions
have to be found for

R13 indexing mechanisms

RI14 semantic and consistent modelling of abstractions.

2.2.6 Database Management Functionality

Many of the needs discussed so far apply for multimedia programming languages as well as for
multimedia database manipulation languages. The need for database management functionality
for multimedia data comes besides from the usual reasons from the nature of multimedia data.
Multimedia applications deal with persistently stored data because of the huge amounts of data
already for single objects, and the processing of the multimedia data very likely requires second-
ary storage. Few exceptions can be found in real-time applications like video-phones or video-
conferences.

Very often abstractions as discussed previously in subsection 2.2.5 are based on derived data and,
therefore, database management functionality is needed to maintain consistency between original
data and derived data.

Besides the usual reason for muiti-user support, namely consistently sharing data among several
users, there is the aspect of efficiency for sharing data which is significant for storing multimedia
data since it makes no sense to make and to maintain copies of the same multimedia data.

Thus there is a need for the typical functionalities like transaction management, query languages,
data dictionaries, etc., but due to the characteristic of multimedia data discussed so far these have
to be adapted or new concepts have to be developed. The individual major requirements can be
summarized as follows: :

R15 persistent secondary storage management
RI6 consistent management of derived data

RI17 efficient sharing of multimedia data among applications

2.2.7 User Interaction

User interaction is much more complicated when multimedia data is involved. For example, input
devices like microphones, cameras may be used additionally to keyboard and mouse for speech
and gesture recognition or output devices like windows, monitors, loudspeakers, and VCRs could
be involved. Thus the interaction takes place simultaneously over different media which needs (1)
simultaneous control of different devices, (2) handling interrupts from users, and leads (3) to long

11

lasting interactions. In the presentation as well as retrieval of multimedia data different modes can
be used to control the quality of output and input, e.g., different resolutions and speeds, image
stabilization, browsing. While not all of these techniques and their support will be integral parts
and central goals of multimedia database systems they have to support any developments which
will take place in these directions.

The major requirements with respect to user interaction can be named as follows:
R18 appropriate simultaneous device interaction (see also subsection 2.2.3)
R19 efficient (real time) handling of user interaction
R20 appropriate model for long lasting interactions

R21 support for advanced user interfaces

3 Building Blocks for Multimedia Database Systems

In this section we analyze and show how we can meet the requirements presented in the previous
section in order to get solutions for the design and implementation of a multimedia database man-
agement system. In general, we conclude from the topic database management functionality (see
2.2.6) that there is definitely a need for multimedia database systems. Topic resources (see 2.2.3)
and topic modelling (see 2.2.5) suggest that the most promising starting point are object-oriented
databases. Topics amount of data (see 2.2.1), temporal aspects (see 2.2.2), data representation
(see 2.2.4), and user interaction (see 2.2.7) are those for which presently no adequate database
systems solutions are available and where most additional research will be needed. Therefore, in
our approach we will first exploit concepts and techniques from the fields of object oriented pro-
gramming/modelling and database management systems, and, second, we will introduce multi-
media extensions needed to meet requirements which are not covered so far.

3.1 Object-Oriented Paradigm

The object-oriented paradigm provides several useful concepts which we can exploit to meet par-
ticular requirements. This is also the reason why most approaches for multimedia database sys-
tems follow object-oriented principles (e.g., [8], [18], [27D).

Object identity leads to a referencing mechanism (R1) provided that object identifiers are made
explicitly available in the data model.

Encapsulation, message passing: Encapsulation is one fundamental building block for (static)
transparency of definition because it allows to hide details of implementation from the ap-
plication programmer and provide uniform method interfaces. Message passing is one fun-
damental building block for (dynamic) transparency of execution because it allows for asep-
aration between method interfaces and method implementations during runtime. Both
mechanisms contribute to RS, R7, R8, R10 and R11.

12

EXAMPLE: In VODAK the concept of semantic relationships allows for delegation of mes-
sages to other classes. This can be used to implement data distribution transparency (R8) by
assigning the same multimedia object to different storage devices. In runtime the system de-
cides to which device to pass on a message call requesting a representation of this object.

Class taxonomy and inheritance: they allow for reusability of definitions and implementations by
sharing common parts and are the tool to provide an ontological order of the application do-
main. This contributes to R7 and R10. '

EXAMPLE: We give an example of how to realize resource integration by modelling multi-
media devices in a class hierarchy. We give the object types defining the class interfaces.

OBJECTTYPE LaserDisk_Type
INTERFACE play() Stop() position() //only signatures

OBJECTTYPE Sony-LaserDisks_Type SUPERTYPE LaserDisk_Type
INTERFACE repeat() //only signatures
IMPLEMENTATION play() {//use repeat}

position() {//use repeat}

OBIECTTYPE SonyLD-SVC77 SUPERTYPE Sony-LaserDisks_Type
INTERFACE index()
IMPLEMENTATION repeat(), index(),new()

This type hierarchy reflects several layers of abstraction with common interfaces. We as-
sume to have a common interface for all Laser-Disk players. This may then be enriched for
devices from a specific producer which share some common functionality and which is then
refined to the type corresponding to a specific model. This is the common technique to en-
sure certain interfaces, organize code etc..

Views: To distinguish from a hierarchical organization of interfaces and code in order to ensure
certain access to objects is the problem of making inhomogeneous interfaces transparent to
users who are not interested in the details. An important mechanism to do this (which is still
not well understood in the framework of object—oriented modelling) is the concept of views.
Views are important to provide the right level of abstraction of the resources, data distribu-
tion and data representation (see R5, R8, R11). Views are also important to provide different
views of same data (R12), as, e.g., to realize the often mentioned distinction between internal
and external representation of data.

EXAMPLE: A user may be interested in a very abstract view of a device, like a laserdisc,
while the application programmer may need some more details, like formats, and the person
responsible for the integration of the device needs full access to all details.

After devices like laserdiscs and VCRs have been made available an application designer

13

wants to provide a posteriori a common view of these to a certain group of users.

VIEW YVideoDevice
CONTRIBUTORS INTERFACE play();
INTERFACE forward(); reverse();
IMPLEMENTATION forward(); reverse(); // uses play()
INIT: LaserDisc->participateInView(VideoDevice);
VCR~->participateInView(VideoDevice);

CLASS LaserDisk ...
CLASS VCR ...

CLASS CDI-Player
INIT: participateInView(VideoDevice)

The interface defined in CONTRIBUTORS INTERFACE represents the minimal interface
necessary for a class to contribute to this view. It should describe the minimal functionality
needed for the implementation of the view. The clause INTERFACE gives the methods vis-
ible to a user of this view.

Note: In object—oriented systems, which do not provide a subset semantics of subclassing,
the concept of views cannot be simply mapped to the concept of classes. This is because the
extension of the superclass cannot contain objects which are instances of subclasses. In ob-
ject—oriented systems which provide a subset semantics of subclassing, one can simulate
views to some extent under the following serious limitation: the extension of the superclass
is defined to be exactly the union of the extensions of the subclasses, and the resulting view is
union and projection of the subclasses. Butitis well recognized that views are muchricher in
their semantics as itis ,e.g., orthogonal to the notion of class taxonomy. In VODAK it is pro-
posed to use the concept of semantic relationships and message inheritance via those toreal-
ize views.

The object-oriented paradigm is the basis for many systems which provide the appropriate and
powerful mechanisms for semantic modelling (R14). In VODAK this mechanism is provided by
the concept of semantic relationships. It has already proven its powerful modelling capabilities in
many applications, e.g., [16], [17] [18].

3.2 Database Systems
Database management systems are a successful approach to work with huge amount of data on

persistent media, in a shared environment (R15, R17). They provide services for, e.g., locking,
recovery and concurrency. Many other functionalities of database management systems can be

14

used to meet several requirements mentioned in section 2, but also some extensions are needed.
We wantto go now into some non—standard applications of basic database services with respect to
multimedia data and some extensions of database services needed .

Devices which can be accessed only by a limited number of users at a time are typical for multime-
dia applications (R6). By modelling devices as data in the data base, the transaction management
can avoid conflicts occuring through simultaneous access to these devices, e.g., by providing ap-
propriate locks.

Since transactions on multimedia objects may be time-consuming there is a need for cooperative
and long-lasting transactions in order not to lock unreasonable large parts of the database for other
users (R20). This is already the issue of an own area of research (for details see [9])

Another major issue in database management is to maintain the consistency of the data. This is
especially important for multimedia databases, since for several reasons much derived data is
present (R13, R16). Constraints can be used to maintain consistency between derived data and
underlying raw data.

Query and retrieval mechanisms may be needed to be adapted according to new or modified fea-
tures of a database system. New concepts like visual indexing and access methods based on ab-
stract models of the data may be needed to be introduced.

Techniques from the field of distributed databases (e.g., partitioning of schemas, management of
replicated data, query processing, data distribution transparency) may play a significant role.
They may be adapted and extended (but we do not go into details).

Since the dispersed resources for multimedia applications may be considered as heterogeneous
databases techniques from this area may be useful to be able to provide transparent access to dif-
ferent kinds of databases (different formats and devices). For example, a video database may con-
tain analog, digital, compressed or uncompressed videos, and a user of such a database should not
have to deal with the different formats. One and the same video is stored in different formats, e.g.,
in analog PAL and in NTSC digital. A user should not be forced to distinguish between these dif-
ferent formats, but the system should know about the availability of both formats and should
choose the right one for specific processing.

3.3 Multimedia Extensions

In this section we will now focus on the extensions needed to provide appropriate support for mul-
timedia data. These extensions will focus on the problem of integrating multimedia data types and
on real time management.

3.3.1 Data Integration

In order to model multimedia data properly new static datatypes are needed (see R9). There are
basically three different approaches to data integration, depending on how far the data is
technically integrated into the computer system.

15

(1) New built-in data types:

In this case, specific data types like Audio, Video, Animation are predefined and built into the
system. They are available as language constructs and the user can use them like other well-
known built-in types. But this solution makes only sense when the platform supports
explicitely standard formats as it is today the case for most of the alphanumeric data. That is,
in the case of a database management system, the operating system should provide appropri-
ate support fore.g., video and audio data. Then the data base model can provide built-in data
types based on the functionality of these underlying data types.

(2) Integration via data types or classes:
As long as the platforms on which multimedia applications are running are not supporting
some standard formats for multimedia data, as itis the case for alphanumeric data, some type
of raw format like binary large object or byte sequence are appropriate. The first alternative
we consider is to construct a multimedia datatype as an abstract data type describing the
functionality of the type. The data itself is encapsulated in the raw format. This approach is
useful if we want to manipulate the data as transient values.

EXAMPLE:
ABSTRACT DATATYPE bitmap_jpeg
compressedData: ByteSequence
OPERATIONS decode(p: bitmap_jpeg) : X11WindowBitMap;
encode(p: KodakCDPicture) : bitmap_jpeg;
cut(p:bitmap_jpeg, X, y, 1, w: INT) : bitmap_jpeg;
width(p:bitmap_jpeg) : INT;
length(p:bitmap_jpeg) : INT;
END

An alternative approach is to introduce such types as classes. Depending of whether abstract
data types are available or not we have two possibilities to define these classes. The first
using the previous definition of birmap_jpeg

EXAMPLE:
CLASS SatellitePictures
PROPERTIES: picture: bitmap_jpeg;
recoredAt : DATE; ...
INTERFACE: decode() : X11WindowBitMap;
encode(p: KodakCDPicture);
IMPLEMENTATION:
decode() : X11WindowBitMap; { return decode(picture); };
encode(p: KodakCDPicture); { picture := encode(p); } '
END

One disadvantage of this approach is that we have to provide trivial implementations for the
bitmap_jpeg interface functions based on the abstract data type bitmap_jpeg operations. We

3

16

can avoid this on the cost of loosing transient values for bitmap_jpeg by implementing bit-
map_jpeg itself as a class and exploiting inheritance.

EXAMPLE:
CLASS bitmap_jpeg
PROPERTIES: compressedData: ByteSequence
INTERFACE:
decode() : X11WindowBitMap;
encode(p: KodakCDPicture);
cut(x, y, 1, w: INT) : bitmap_jpeg;
width() : INT;
length() : INT;
END

CLASS SatellitePictures SUBCLASS bitmap_jpeg
PROPERTIES: recoredAt: DATE; ...
INTERFACE:

END

Note: as stated in requirement R1 large data may be handled by references. Such a referenc-
ing mechanism is given as long as such data is modelled as classes since objectidentifiers are
assigned to each instance of a class and this identifier is explicitly available in the language.
If we introduce a referencing mechanism (pointers) on the level of abstract data types (as it is
usual to handle large objects in programming languages like C/C++) and we use these point-
ers as properties of classes in the database, then the actual property values of the database
objects are no longer under the control of the database management system as long as no
extensions are provided for this situation.

Modelling as real world entities:

However there are many cases where data integration is not possible, simply because the
computer system has no direct control of the data. In this case there remains only the
possibility to consider the data as real world entities which are modelled (and controlled) by
the database systems, but for which consistency between the real world and the database
world has to be maintained by the user.* For example consider a VCR with a collection of
tapes stored in some cabinet maybe controlled by some mechanical device. But the data is
never controlled by the database system.

4. This is very similar to the situation where in a standard database application like as address database, the

correctness of the address has to be maintained constantly by updating the data (manually).

i

3.3.2 Extensions For Real Time Management

One of the most important gaps between todays programming paradigms used for database
systems and the needs of multimedia data is that concepts related to real time behavior are not
present. We showed the necessity of concepts related to real time behavior with requirements R2,
R3, R4, R18, and R19.

In order to provide for scheduling of different tasks on multimedia data (R4), appropriate simulta-
neous device interaction (R18), and efficient handling of user interaction (R19), we propose a
built-in language construct for scheduling, We also discuss some of the consequences for the mes-
sage handling in an object-oriented language.

Scheduling allows for the modelling of non-transparent parallelism (R3). So we have to discuss
possible realizations of parallel events in a multimedia database system. Our intention is not to
propose a parallel programming language, but to integrate parallelism in order to satisfy the re-
quirements identified earlier.

An important abstraction which is useful for the dynamic management of dynamic objects (R2) is
that of real time streams. We show how these can be modelled by taking advantage of the schedul-
ing mechanisms introduced earlier.

(1) Scheduling

It is obvious that for the integration of the presentation aspects into the services of a database
management system, some kind of scheduling mechanism will be needed. Less obvious,
scheduling mechanisms are also needed for the internal manipulation or updates on the data,
which in turn are intertwined with presentation aspects. This kind of scheduling has to be
reflected in the database manipulation language and goes far beyond the traditional concepts
like message passing for object oriented databases. Scheduling includes triggering events at
certain points in time, upon other events, before deadlines and other similar operations.
Without analyzing all possible kinds of features of a scheduling mechanisms we want to con-
centrate on the fundamental aspects.

Two problems can be identified when introducing a scheduling mechanism:
(1) conciliation with the object oriented message-passing paradigm, and
(2) conciliation with the transaction management.

We propose a short outline of such a scheduling mechanism by presenting the basic compo-
nents which solve these two problems:

The Global Clock:

Since multimedia data are time-dependent our scheduling mechanism is based in a clock.
This is the basis for absolute scheduling on the time scale. A tick of the clock is considered as
an event. In order to be able to reconcile schedules in a distributed environment the clock
should reflect a system wide world time. We propose that the clock is realized by a built-in
function currentTime().

18

The Event Language:

In order to express time relationships one has to introduce appropriate language constructs
which form the basis for relative scheduling of events. This aspect has already been recog-
nized and several temporal interval based schemes have been proposed e.g., [20]. One
should introduce language constructs for building time expressions based on such schemes.

The Schedule: -

A schedule consists of a set of messages (which are method calls or schedule calls) at prespe-
cified points of time. Schedules are defined for classes like methods. They are part of the
interface of a class. Schedules can be called by sending a message to an object like for meth-
ods. In contrast to methods a schedule call never returns any result value.

Example:
CLASS X
INTERFACE
METHODS ml(..):.. //some methods definitions
SCHEDULES
m(a, b, ¢) {
VARX,y:T // some variable declarations sequence
5, // some initial computations
y = // some initial computations

v = x->m2(a, y, ...) AT time-expression // this is a message to be sent
/I at time fime-expression
wi)
Like a method, a schedule may take arguments (a, b, ¢). The body of a schedule consists of an
init sequence (variable declaration, initial computations) and a set of scheduled messages
where the schedule time is expressed by the AT construct and the rime-expression is formed
by using constructs from the event language and the clock call.

The Message Handler (Semantics of calling a message):

Let us assume that the Message Handler is the module which executes messages sent to an
object. It checks whether the selector m in a message o—>m(argl, arg2, ...) identifies a
schedule or a regular method. If m is a schedule (we call this a schedule call), the Message
Handler sends a request to register the schedule m with its actual parameters to the Scheduler
(amodule we describe later). No value is returned from this message call which corresponds
to executing a methods which does not define a return value. Otherwise the Message Handler
executes the method m as usual [15].

The Scheduler: :

The Scheduler maintains a list of registered messages, and a list of schedule scopes. A sched-
ule scope has associated all its scheduled messages and all the variable bindings of the vari-
ables declared in the init sequence and of the parameter list of the schedule. The list of regis-
tered scheduled messages is based on a time scale over all registered schedules.

19

)

The functionality of the scheduler is conceptually separated into two phases: the registration
phase and the realization phase.

The Register Phase:
When the Scheduler receives the request to register a schedule from the Message Han-
dler, it builds the schedule scope. A schedule scope consists of all the scheduled mes-
sages and the (parameter) variable bindings. The actual arguments passed with the
schedule call become part of the variable bindings. An init sequence of a schedule is
executed after the parameters have been put into the variable binding. The execution of
the init sequence can establish or change the variable bindings.

The Realization Phase:
The scheduler continuously chooses registered messages from its schedule list and re-
quests the Message Handler for executing the message. Results of messages (which are
in this case always method calls) will change the variable bindings of the correspond-
ing schedule scope. In case the message is a schedule it is sent to the Scheduler as ex-
plained above.

A major advantage of this concept is that we do not need to implement a full parallel lan-
guage. The scheduler can exploit parallelism if available, otherwise it is simple running out
of resources. The approach fits nicely into the object-oriented paradigm, makes use of the
object-oriented concepts, no fundamental changes have to be made to the message handler,
and no changes are required for the transaction management.

Open issues are the design of an event language, the handling of several parallel running
message handlers, and how far a static scheduling is applicable in this context.

Parallelism '
From our requirements and our proposal of a scheduling mechanisms we observe the follow-
ing situations where parallelism occurs:

(@) The realization of a schedule involves the execution of paralle] tasks in case two mes-
sages are scheduled at the same point in time.

(b) External tasks including simultaneous operated resources which may be devices as
well as users. We require to model these tasks by internally parallel computations
which are active for the same period of time as a resource is operating. This model is in
contrast to an approach based on a global interrupt handler, since this contradicts the
object-oriented paradigm.

(c) Long lasting interactions call for parallelism as tasks may overlap. Similar problems
occur in the context of multi-user support.

By allowing for several message handlers which can run in parallel we can realize parallel
execution of tasks in a schedule as in (a). Parallel external tasks can be modelled as parallel

(3)

20

scheduled messages. in general, there are two alternative to implement parallel running mes-
sage handlers: either by processes with separate address spaces or by threads with a common
address space. The only feasible solution appears to be the use of threads, since otherwise the
overhead is much to high and complex (see also [22]). Specific approaches like check-in/
check-out paradigm may be employed to solve the problem of long lasting interactions (c).

Real Time Streams

Streams, especially real time streams, correspond to dynamic management of dynamic data.
This abstraction is very useful and will be soon provided as a primitive in operating systems.
It should also be made visible to the database programmer. The situation is very similar to
that of data integration. As long as there is no built-in support of this concept we do not want
to make it a built-in construct of the data manipulation language (because there is no guaran-
tee to get the appropriate operating system support for the language kemel). Therefore, at the
present stage real time streams should be modelled by classes. This takes also into account
that there are other similar yet in the details different models emerging (e.g.,[6]), and we
want to be able to take advantage of these by reflecting them by appropriate classes.

(a) Basic building blocks for real time streams:
The most common abstractions used in the context of real time streams are Ports,
Filters, Sources and Sinks. They can be used for forming complex configurations in the
form of directed graphs which describe the topology of the stream flow.

(b) Global clock for synchronization:
All components in a stream configuration depend on their real time behavior from a
global clock which is equivalent to associating a time-dependent functionality to the
entire stream configuration.

(¢) Realization of building blocks:
The following two variants of a mechanism which controls the behavior of a stream
configuration are conceivable: the data driven approach where sources and sinks domi-
nate, or the control driven approach where ports and filters dominate. Both can be im-
plemented through classes by using the scheduling mechanism introduced earlier.

Note: Streams may not always be instantiated as data flows within a program. For example,
if videos reside on an external laser disc (transparently controlled by a multimedia database
management system) and the video signal is sent from the laser disc directly to the presenta-
tion device via a separate video network, the stream of video frames may never be accessible
within the database application program. These cases, when streams are bypassing the data-
base management system, are close to the situation of process control, which again can be
readily be implemented using the scheduling mechanisms.

21

4 Conclusion

In this paper we presented a characterization and analysis of multimedia data which goes beyond
the definition of multimedia data often given in literature. We did not just define muitimedia data
as being video and audio, or a combination of these with other types of data like animations, still
images and conventional data types like text and basic alphanumeric data types. We presented a
classification of all these data types according to the “nature” of the data. The main criteria were
based on time issues and the amount of data involved. This characterization then led to a set of
requirements which need to be satisfied in order to provide the kind of integration of multimedia
data into a database system which we proposed as an appropriate solution for multimedia database
systems. For a summary of these requirements see the appendix. We showed how the object-ori-
ented paradigm and concepts from data base systems contribute to meeting these requirements.
For those requirements which cannot be satisfied with these concepts we proposed solutions with
respect to data integration, scheduling of (simultaneous) tasks on multimedia data involving de-
vices, presentation, and user interaction, non-transparent parallelism, and real time streams. Open
issues not addressed in this paper are the design of an event language, the handling of several par-
alle] running message handlers, and how far a static scheduling is applicable in this context. These
aspects are currently investigated and solutions will be implemented on the basis of VODAK.

22

5 Literature

[1]

[2]

(3]

[4]

[5]

[6]

{7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Akscyn, R., D.L. McCracken and E. Yoder, “A distributed hypertext for sharing knowledge
in organizations”, Communications of the ACM 31, 7 (July 1988), pp. 820-835.

Anderson D.P.: Meta-Scheduling Fro Distributed Continuous Media. Technical Report No.
UCB/CSD 90/599, University of California, Berkeley, October 1990.

Anderson D.P., R.Govindan, G.Homsy, and R.Wahbe: Integrated Digital Continuous Me-
dia: a Framework Based on Mach, X 11, and TCP/IP. Report UCB/CSD 90/566, March 1990.

Anderson D.P,, R.Govindan, G.Homsy: Abstractions for Continuous Media in a Network
Window System. International Conference on Multimedia Information Systems, January
1991. (also: UCB Technical Report No. 90/596, University of California, EECS, Berkeley,
USA, 1990.)

Anderson D.P.,, G.Homsy: Synchronization Policies and Mechanisms in a Continuous Me-
dia I/O Server. Technical Report UCB/CSD 91/617, University of California, Berkeley,
1991.

Cabrera L.-F., and D.D.E.Long: Exploiting Multiple I/O Streams to Provide High Data-
Rates. Proceedings of the 1991 Summer USENIX Conference on Multimedia — For Now
and The Future, Nashville, Tennessee, June 1991.

Delisle, N. and M.Schwartz, “Neptune: A hypertext system for CAD applications”, in: Pro-
ceedings of ACM SIGMOD '86 (Washington D.C., May 28-30). ACM, New York, 1986, pp.
132-142. :

Dimitrova N., F.Golshani: EVA: A Query Language for Multimedia Information Systems.
Proceedings of the Int. Workshop on Multimedia Information Systems, Tempe, Arizona,
Feb. 1992.

Elmagarmid A.K. (Ed.): Database Transaction Models For Advanced Applications. Morgan
Kaufmann, 1992.

First International Workshop on Network and Operating System Support for Digital Audio
and Video. ICSI Technical Report TR-90-062, ICSI, Berkeley, November 1990.

Garret, L.N., K.E.Smith, and N.Meyrowitz, “Intermedia: Issues, strategies, and tactics in the
design of a hypermedia document system”, in: Proceedings of the Conference on Computer—
Supported Cooperative Work (Austin, Texas, Dec 3-5). 1986, pp. 163-174.

Halasz, F.G., T.P.Moran, and R.H.Trigg, “NoteCards in a Nutshell”, in: Proceedings of the
1987 ACM Conference of Human Factors in Computer Systems (CHI +GI ’87), (Toronto,
Ontario, Apr 5-9). 1987, pp. 45-52.

Halasz, F.G., “Reflections on NoteCards: Seven Issues for the Next Generation of Hyperme-
dia Systems”, Communications of the ACM, Vol. 31, No. 7, July 1988.

Homsy G., R.Govindan, D.P,, Anderson: Implementation Issues for a Network Continuous-
Media I/O Server. Technical report No. UCB/CSD 90/597, University of California, Berke-
ley, September 1990.

23

[15] Klas W. etal.: VML — The VODAK Model Language Version 2.2, Technical Report, GMD-
IPSI, August 1992.

[16] Klas W., E.J. Neuhold, M. Schrefl: Using an Object-Oriented Approach to Model Multime-
dia Data. Computer Communications, Special Issue on Multimedia Systems, Vol. 13, No. 4,
May 1990.

[17] Klas W., E.J. Neuhold: Designing Intelligent Hj&pertext Systems using an Open Object-Ori-
ented Database Model. Technical Report GMD, No. 489, Birlinghoven, 1990.

[18] Klas W.: Tailoring an Object-Oriented Database System to Integrate External Multimedia
Devices. International Workshop on Heterogeneous Databases and Semantic Interoperabil-
ity, Boulder, February 1992. :

[19] Le Gall D. : MPEG: A video compression standard for multimedia applications. Commu-
nications of the ACM, Vol 34, No 4, April 1991.

[20] Little, T.D.C, and A. Ghafoor: Conceptual Models for Time -Dependent Multimedia Data.
Proceedings of the Int. Workshop on Multimedia Information Systems, Tempe, Arizona,
Feb. 1992.

[21] Meyrowitz, N: "Intermedia: The Architecture and Construction of an Object-oriented Hy-
permedia System and Applications Framework”, in: Proceedings of the Conference on Ob-
ject-oriented Programming Systems, Languages, and Applications (OOPSLA’86) (Port-
land, Oregon, Sept. 29 - Oct 2) ACM SIGPLAN Not. 21, 11 (1986).

[22] NakajimaL., M.Yazaki, H.Matsumoto: Multimedia/Realtime Extensions for the Mach Op-
erating System. Proceedings of the 1991 Summer USENIX Conference on Multimedia -
For Now and The Future, Nashville, Tennessee, June 1991.

[23] Polimenis Vassilios G.: The Design of a File System That Supports Multimedia, Technical
Report TR-91-020, International Computer Science Institute, Berkeley, March, 1991.

[24] SPIE — Proceedings of the Conference on Visual Communications and Image Processing,
10-13 November 1991, Boston

[25] Stonebraker M., Jeff Dozier: SEQUOIA 2000 — Large Capacity Object Servers to Support
Global Change Research, Sequoia Technical Report 91/1, University of California, College
of Engineering, Electronics Research Laboratory, Berkeley, CA 94720, (1951)

[26] Umemura K. and A.Okazaki: Real-Time Transmission and Software Decompression of
Digital Vudei in a Workstation. ICSI Technical report TR-91-004, ICSI, Berkeley, January
1991.

[27] Woelk, Darrel, W. Kim, and W.Luther: An Object-Oriented Approach to Multimedia Data-
bases; ACM SIGMOD Record 1986, pp. 311 — 325, ACM, 1986.

[28] Wallace G.K.: The JPEG still picture compression standard. Communications of the ACM,
Vol 34, No 4, April 1991.

6 Appendix: Summary of requirements

This appendix provides a summary of all requirements given in subsection 2.2.

2.2 REGUIEIIEINE 1« cov cnwin o3 b wawds vose s ol @oois &5 B v Bk

2.1 BanondtoR LIata) . v covmsms samemmens mmmosr sa s e
R1 appropriate referencing mechanism %
R2 dynamic data management of very large objects

222 Temporal AEPBEE vuvwuvs o vwsamn i suawews e viess wasses e
R3 non-transparent parallelism o oot
B4 schednling nacelamiSms (. comon «o comms s sommenn semmsmn s

2. 2.3 ROSOMIEEE . s sp sor mom st diaihn o i 45 B0 iR 330 ER00NES v R 49 ¥
RS device Trafisparency oo veins ix aio wen & vui vy s % v
RE6 resource Shartig o .u covowins v swvinn v vovem i semis oa o
R7 modular device classification and modelling e o
R8 data distribution transparencycccivvvunennnnen

2.2.4 Data Representationcoovviiesevrnesctacscstaonarnnes
R9 new built-in data types & operationscciauuiiannn
R10 modular and efficient representation of different formats . ..
R11 transparency of data representationcev.n.
R12 different views for thesamedataccoviiieiann,

DS NIRRT s sncemmonne s xossonss s a0 K aams sor Wi w8 KEwn 52 S
R13 indexing mechanismscoiiiiinninnninannananns
R14 semantic and consistent modelling of abstractions.

2.2.6 Database Management Functionality 000l
R15 persistent secondary storage management
R16 consistent management of deriveddata
R17 efficient sharing of multimedia data among applications .

2. 2 T USEr IRterachion .. o toosn o ve soatnn 5o 96 fela s avas Sasen &
R18 appropriate sunultaneous déyice MISTACTION « sorvios a0 wwvai &
R19 efficient (real time) handling of user interaction
R20 appropriate model for long lasting interactions
R21 support for advanced user interfaces

