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Abstract

The previous best algorithm for approzimate evaluation of a polynomial on a real set was due to Rokhlin
and required the order of mu+nu® infinite precision arithmetic operations to approzimate [on a fired bounded
set X(m) of m+1 real points] a degree n polynomial p(z) = S o pizt within the error bound 27% 37, Ipil.
We develop an approzimation algorithm, which decreases Rokhlin’s record estimate to O(mlog?u 4 n min
{u,logn}). For logu = o(logn), this result may also be favorably compared with the record bound O((m +
n)log?n) on the complezity of the exact multipoint polynomial evaluation. The new algorithm can be per-
formed in the fields (or rings) generated by the input values, which enables us 1o decrease the precision of the
computations [by using modular (residue) arithmetic] and to simplify our computations further in the case
where u = O(logn). Our algorithm allows NC and simultaneously processor efficient parallel implementa-
tion. Because of the fundamental nature of the multipoint polynomial evaluation, our results have further
applications to numerical and algebraic computational problems. By passing, we also show a substantial
improvement in the Chinese remainder algorithm for integers based on incorporating Kaminski’s fast residue
compuiation.
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1 Introduction.

The techniques for algebraic computing and for numerical computing have been historically developing
quite independently of each other, although the power of combining their advantages has been increasingly
appreciated in recent years and has been advocated, for instance, in [15] and [2]. The present paper gives
some new evidence of the advantages of such a combination: we improve the known results on the multipoint
polynomial evaluation (on a real set) by computing approximations, rather than the exact solutions (which
is a typical feature of numerical computing). We, however, obtain such approximations by applying (some
new and some old) purely algebraic techniques.

The literature on efficient evaluation of a polynomial dates back to a linear time algorithm, using n
additions and n multiplications, for the exact evaluation of a polynomial at a single point. The algorithm
is usually called Horner’s rule, due to the work of 1819 by Horner [7], but was actually discussed by Isaac
Newton [12], already in 1669. For the evaluation at a single point, this algorithm has been proved to be
optimum ([13]).

We will consider the fundamental problem of evaluation of a polynomial of degree n, simultaneously
at m points, in less than nm time (measured by the number of arithmetic operations involved, hereafter
referred to as ops). In 1971 Borodin and Munro [4] published an O(n'-*!) time algorithm for multipoint
polynomial evaluation, for m = n, thus giving the first algorithm with the complexity below nm. The
asymptotically fastest algorithm known for the multipoint exact polynomial evaluation problem is due to
Moenck and Borodin [10], who reduced the problem to repeated polynomial divisions. Including here the
Sieveking-Kung fast algorithm for polynomial division made this an O((m + n)log? n) algorithm. Strassen
[20] proved the lower bound [m log n].

Our goal is to present efficient algorithms for multipoint approzimate polynomial evaluation. Indeed, in
most applications, the computation needs to be done up to some limited accuracy of the machine, say, 32 or
64 bits, whereas the number of points and the degree of the polynomial may grow arbitrarily large. Thus,

we desire an algorithm for the approximate evaluation of a polynomial

n
p(z) = ) _ iz’ (1)
i=0
on a fixed set X(m) of m + 1 points,
X(m) ={z0,21,.--,Zm} 5 (1.2)

this algorithm should achieve a fixed accuracy of the output and should support upper estimates for com-
putational complexity that grow linearly (with a small constant multiple) with m + n, or at least noticeably
slower than (m + n)log®n.

The first major progress in this direction was made by Rokhlin [18]. Rokhlin’s algorithm uses O(mu+nu?)

(infinite precision) ops in order to compute (within the error bound 27%p, p < S r-o |ps]) the set of the values

V(m) = {p(z;), i =0,1,...,m}, (1.3)



for a positive u and for a set X(m) of (1.2) lying on a real interval {z,0 € z £ 1}. The number of ops is
linear in m + n if u is a fixed constant. The transition to larger linear intervals can be made by means of
linear transformations of the variable z and applying the same algorithm on two or more than two adjacent
real intervals. The algorithm of [18] is numerically stable and performs well with a finite precision. Although
its computational complexity is linear in n and m, the multiplicative factor of u? is large even for a relatively
small u, and this limits both practical application and theoretical value of the algorithm.

In the present paper we substantially modify the approach of [18] (see our Remark 3.1), making it
conceptually simpler and, unlike [18], exploiting some algebraic tools.

Let us next compare our resulting estimate for the arithmetic computational cost with those of [4,18,20].
Whereas the algorithm of [4] exactly computes the values p(z;), for j = 0,1,...,m, in O((m + n)log’ n)
ops, we decrease this cost estimate to O((m + u)logzu + n min {u,logn}) (infinite precision) ops (see
Remark 6.1) because, as in [18], instead of computing exactly, we approximate p(z;) within the error bound
2-%p, p < T o |pil. The complexity bound of [4] (for the exact evaluation) exceeds this our bound (for
approximation), by more than a constant factor, whenever logu = o(logn). Our upper bound (on the
complexity of the approximation) turns out to be strictly less than the lower bound of [20] (for the exact
multipoint evaluation) already for u of the order of logn. And finally, our bound is also superior to the cited
bound of [18] for the approximate evaluation problem.

Technically, we rely on the approximation to a given polynomial p(z) on a real interval (—a,a), 0 <
a < 1/2 (say), by means of its interpolation on the Chebyshev set of d points on this interval by the
polynomial v(z), of degree less than d, and in section 2 we prove that this polynomial approximates p(z)
within O(2~9p/+/d). Such an accuracy may satisfy the user, already for smaller values of d (say, for d = 20),
and then we shall compute v(z) [rather than p(z)] on the set X (m) of (1.2).

First we need, however, to obtain the coefficients of v(z). Theoretically, we may do this by computing
p(z) on the d point Chebyshev set, with the subsequent interpolation by the degree d — 1 polynomial, and
this approach can be applied even if we just have a black box subroutine for the evaluation of p(z) [rather
than the coeficients of p(z)], which can be convenient, for instance, if we seek the eigenvalues of a matrix,
with the characteristic polynomial p(z). However, this way to approximating p(z) on the set X(m) of (1.2)
is inconvenient for symbolic computation (because Chebyshev’s points are irrational) and generally is not
good numerically [because interpolation is an ill-conditioned computational problem (see Appendix B)]. Due
to this ill-conditioning, the roundoff errors of numerical computations may generally contaminate the output
values p(z;) of (1.3) too much even if we apply slower but numerically more stable algorithms of [6,11,21]'
for the evaluation and interpolation, rather than the faster algorithms of [1,2,10,14].

Thus, we will devise some alternate, algebraic algorithms, which compute the coefficients of v(z) in any
ring containing the values a/2, py, ..., Pn as its elements; to do this, we show that v(z) = p(z) mod L(2z/a),
where L(y) is a fixed monic polynomial with integer coefficients. If the values a,py,...,pn are rational,

we may perform almost all of the computations (with [logy M]-bit precision) in the ring (or field) Zps of



integers modulo an integer M and at the end output the coefficients of v(z) with no errors (see section 6).

Our algorithms allow their parallel implementation in polylogarithmic time with full processor efficiency
(see Remark 5.2).

We may decrease the precision of our computations and, consequently, their bit-complexity, by applying
the Chinese remainder algorithm. Adding here Kaminski’s algorithms [8] for computing the residues of
polynomials and integers, we may decrease the bit-complexity of our computations. We estimate such
complexity in section 6, and by passing, we decrease the known upper estimate for the bit-complexity of the
Chinese remainder algorithm. (We achieve such a decrease by incorporating Kaminski’s algorithm of [8].)

We organize this paper as follows. After some preliminaries in the next section, we present our algorithms
(which can be performed over abstract rings or fields) in sections 3 and 4. We estimate the arithmetic cost
of our computations in section 5 and their precision and bit-complexity in section 6. Section 7 is left for

discussion and three appendices for some related and auxliary material.

2 Auxiliary Results

For a fixed positive a, we identify the set X(a,d) of the d Chebyshev points (nodes) on the real interval

{z: —a < z < a} as follows:

X(a,d) = {atop41 =acos (%}iw),
h=01,...,d=1} .

(2.1)

We will need the following basic result:
Theorem 2.1 ([5], p. 120). For reala and b, a > b, a naturald, and a real function f(z), with a bounded
derivative f(9(z) of the d-th order on the interval {z: b < z < a}, such that

M = max |[fO(z)] ,

b<r<a

let a polynomial v(z) = Zf;g v;z' interpolate 1o f(z) on the sel of the Chebyshev points of (2.1), that is, let
U(dtgh.‘_l) = f(afz};+1) B h= 0, 1, . .,d— 1. (22)

Denole that
E= E(f,ﬂ, b, d) = b?:éta |f(=) - 3(3)'.
Then
2M ,a-b.4
E< =)

Since we may shift from f(z) to f(—z), we will hereafter assume that a > [b], so that

(2.3)

0<a-b<2a.



We will apply Theorem 2.1 in the case where a < 2/3, and we will further assume that da > 1 —a (see
Remark 2.3 in the case where da < 1 — a). Designate that H = |=L |, r = 1/a and observe that

1-a
d da
= =|—] = e I ; 24
r=1/a>3/2, H Ll—aJ d+|_1_aj_d+l (2.4)
The latter inequality follows due to the assumption that da > 1 —a.

Furthermore, let f(z) be the polynomial p(z) = Y i—s piz* of (1.1) with real coefficients. In this case we

will next deduce that

. 8r—4 2 1-b
E=E(fabd) < B = () Llllgr—=5) "™ (2.5)
i=d

where H> d+1,e=271828...,e/(2H) < et < 1., ::f; < 53, due to (2.3), (2.4).
Remark 2.1. Observe that 1 - br < 2 for |b| < a and 1 — br = 2 for b = —a. Denote that p= 3.7, pil

and deduce from (2.5) that
E* = ((8r — 4)/(rd))/? (p/(2r - 2)¢) £/,
for b = —a. (Note that 2r — 2 > 1 since r > 3/2.) In particular, recall that ¢1/(12H) < 11 and obtain that

E" <1.1(12/(xd))V/?22 % , forr=2,a=-b=1/2,
E* < 1.1(20/(xd))/?479p , forr=3,a=-b=1/3,
E* < 1.1(28/(xd))/?6=%p , for r=4,a=-b=1/4.

Remark 2.2. Since the error bound E* rapidly decreases as a and/or a — b decrease, we may greatly
decrease the approximation error if we partition the original interval {z:b < z < a} into two or several
smaller subintervals and approximate p(z) separately on each of them. By shifting and scaling the variable
z, we may turn each such a subinterval into the interval of the form {z: —a < z € a}, where 0 < a < 2/3,
say,a=1/2o0ra=1/4.

To prove (2.5), apply Theorem 2.1, take into account (2.3), and deduce that

B <2 | Tiamiat ()]

i (2.6)
< 2m(a, d)(532)" Lizalpil
a—b 1-=1br
where “Thiniae” [see (2.4)], h
—_ h
m(a,d) = drsnhaﬁxﬂ {a (d) } ;
Since a*+! (*+1) < a* (%) for h > d if and only if (h+ 1)a < h+ 1~ d, it follows that
m(a,d) = a” (g) = (1/+F) H!/(d(H - d)!)
where H —d > 1, r = (1/a) > 3/2 [see (2.4)}, and
d dr
H=|r—] =74 0<g<l1. (2.7)



Applying Stirling’s formula, we obtain that

(H/n)" H
(H — d)f-4 Srry 2

We deduce from (2.7) that

U2 1J2H) o= 971828..., /(12 1.1, for H>d+1.

m(a,d) < T

_d H _ (1-a)g
Hod= o q~0 gog =0+ =i

1t follows that HH Fi < (2-a)r, since H —d > 1> q. Therefore,

H .H-4
= (

(1-a)g\H-d _g_a_ ,(1-a)g H-d
(= =(1+ )7 =t g1l
H-d =

H-d
On the other hand,

(5) = (-9 - (- L)’ s i

Substitute the latter expressions for (ﬁ)”‘d, (-’3"—)", and the upper bound (2 — a)r on H/(H - d) and

transform our previoﬁs bound on m(a, d) as follows:
m(a,d) < (1 - a)r)™((2 - a)r/(@x)!/? £HO2.
Then replace a by 1/r and obtain that
m(a,d) < (r = 1)79((2r = 1)/(2xd))!/? /028 |

Combine this estimate with (2.6) and obtain (2.5).

Remark 2.3. If we relax our earlier assumption and consider the case where da < 1— g, then we obtain
n

from the equations of (2.4) that H = d, and therefore, m(a,d) = o, E < 2((a - b)/4)° 04 Ipil-

3 Reduction to the Evaluation of a Residue

Based on the results of section 2, we arrive at an algorithm for real multipoint approximate polynomial

evaluation.

Algorithm 3.1.
. Input: a positive rational a < 2/3, natural m, n and d, real po,p1,...,Pn and zg,21,...,Zm [compare (1.1)
and (1.2)], such that (2.4) holds (compare Remark 2.3) and

|:J.ISG| j=0,1....,m.
Output: real values Vg, W, ..., Vi such that
IV; —p(zi)| <E*, J=01..,m,

for p(z) of (1.1) and E* of (2.5).



Computations.
Stage 0, choice of the degree d—1 of the approzimation polynomial. Choose d— 1 based on the estimates

of Remark 2.1.

Stage 1, interpolation via modular reduction. Evaluate the coefficients of the polynomial

' d-1
v(z) = 3 wz' = p(z) mod L(2z/a) (3.1)
i=0
where ; .
L(z) = Y iz =[] (= - 2t2ns1) (3.2)
i=0 h=0

and where t2p4; are defined by (2.1).
Stage 2, multipoint evaluation [1,2]. Compute and output the values

Vi=v(z), Jj=01....m.

Correctness of Algorithm 3.1 follows from (2.5) since, clearly, L(2z/a) = 0 on the set X(a,d) of (2.1),
and therefore, p(atan41) = v(atznyy) for all A. _

Remark 3.1. The algorithm of [18] also uses Chebyshev points, but only in order to approximate each
monomial ' as an exponential function in f. This leads to a distinct algorithm and distinct complexity

estimates,

4 Computing the Coefficients of v(z) (Stage 1 of Algorithm 4.1) via Polyno-
mial Division.

Let us first specify the polynomial L(z) of (3.2).
Theorem 4.1. The polynamial L(z) of (3.2) has integer coefficients such that

t?j-}-l:O)j:Utli"'! (4'1)

b= (477 dra- ) 5= 00 s, (42

where s = |d/2].

Proof is given in Appendix C. O

Theorem 5.1 implies that L(z) is a monic polynomial with integer coefficients. Thus, at stage 1 of
Algorithm 3.1, we prefer to have reduction modulo L(z), rather than modulo L(2z/a). We will achieve this
by scaling, which turns p(z) into a polynomial with the coefficients (a/2)' piB, for any nonzero scalar B.

Specifically, fix such a scalar B at our convenience, denote that

y=2z/a,



9(v) = 3 aiv’ = Bp(oy/2) = B) (a/D'pi’ (4.3)
i=0 1=0

d-1 d-1
w(y) = Y wiy' = Bu(2y/a) = BY (2/a)'uiy’ , (4.4)
1=0 =0

and equivalently rewrite (3.1) as the following equation:

w(y) = g(y) mod L(y) - (4.5)

Now, we may obtain v(z) as follows:

a) compute the coefficients of the polynomial g(y), from the equations
gi = B(a/2)'pi, i=0,...,n, (4.6)

implied by (4.3);
b) compute the coefficents wy, ..., wq-1 of the polynomial w(y) satisfying (4.5);

¢) compute the coefficients vp, ..., v4-1 of the polynomial v(z), from the equations
v = (a/2)'w;/B, i=0,...,d-1,

implied by (4.4).

We only need to specify stage b).

The straightforward algorithm for polynomial division [1,2] (sometimes called “synthetic polynomial
division”) computes wy, ..., w41 remaining in the linear space with the basis go, ..., gn over the ring Z of
integers or over any of its extensions (that is, over any ring with unity), since the divisor L(z) is a monic
polynomial with integer coefficients.

Besides the “synthetic division” algorithm, we may apply any algorithm for polynomial division in order
to compute the coefficients of the polynomial g(y) mod L(y). In pa;ticular, we may start with computing

the coefficients of the auxiliary polynomial,

[(n-d)/2] .
R(y) = z "iy:‘ )
i=0
of degree at most n — d, such that
L*(y) R(y) = 1 mod g~ RN C )

where L*(y) = y?L(1/y) denotes the reverse of the polynomial L(y) (we refer to [1,2] and to our Remark 4.3
on computing the coefficients of the polynomial R(y)).
Then we deduce from (4.5) that

9(y) = L(y) q(y) + w(y) , deg w(y) <d, _ (4.8)

and consequently,
¢"(v) = " %q(1/y) = R(y)g" (y) mod y"~ ', (4.9)



where g*(y) = y"g(1/y) is the reverse of the polynomial g(y). Given g*(y) and R(y), we apply (4.9) and
immediately compute the d trailing coefficients of g(y). Then, from (4.8), we compute the coefficients of
w(y), by means of the subtraction of two polynomials modulo y?. In the next section (in Table 5.1), we will

refer to this entire computation of w(y) as to Algorithm 4.1.

Remark 4.1. By choosing an appropriate integer value for B, we may make the coefficients g, ..., gn of
the polynomial g(y) integers if @, po, . . ., Pn are rational numbers (the value a can always be chosen rational,
of course).

Remark 4.2. Due to (4.1), the polynomial L(y) of (3.2) can be represented as follows:
L) =y*-? K@), K@)=Y &t , t=y, s=d/2].
i=0
Thus, the computation of g(y) mod L(y) can be reduced to computing go(t) mod K(t) and g;(t) mod K(?)
where g(v) = go(t) + y91(t), go(t) and g1(2) are polynomials of degrees at most 5.
Remark 4.3. The reader is challenged to deduce explicit expressions [in closed form, similar to (4.2)]

for all or some of the coefficients of the polynomial R(y) = Z:;:ud riy® of (4.7), in particular, to deduce that

"= (‘”2‘) d/(d+2), for i=0,1,2,....8.

i
Furthermore, since R(y) only depends on d and n, we may assume computational models that allow the

cost-free evaluation of the integer coefficients of R(y) even where their explicit expressions are not available.

5 The Estimates for the Arithmetic Computational Complexity

To estimate the sequential and parallel arithmetic complexity of our computations, we will assume the
customary models of the arithmetic RAM and PRAM ([1,2]). The resulting estimates will be represented by
the number T of arithmetic operations involved (under the sequential model) and by the pair [, w], under
the parallel model, where ¢ stands for the parallel arithmetic time and w for the product of t with the number
of processors involved. This product is called the (potential) work of a parallel algorithm, [16]. The values
of T, t and w will be defined within constant factors. (The choice of the PRAM models is for convenience
only; the resulting estimates can be immediately translated to the cases of the arithmetic circuit mode;l and
of any reasonable model supporting fast polynomial arithmetic.)

In our estimates, we will use the notation log™ D and log" D where
log®D=D, log®D=log® VD, h=12,..,lg"D, (5.1)
log* D = max{h: log™ D > 0} . (5.2)

M(s) will denote the sequential arithmetic time (that is, the number of arithmetic operations) required to

multiply two polynomials of degrees at most s. We recall (from (1,2]) that

M(s) = O(slogs) (5.3)



over the fields (such as the complex field) that support discrete Fourier transform on 2% points, for an integer

k, such that 2% > 25, 2F = O(s); furthermore,
M(s) = O(slog sloglog s) (5.4)

over any ring of constants.

By performing stage 1 of Algerithm 3.1 via polynomial division and by using the known estimates for
the computational complexity of polynomial multiplication [see (5.3), (5.4)], of polynomial division, and of
multipoint polynomial evaluation [1,2,14], we obtain the upper estimates of Table 5.1 for the sequential and
parallel arithmetic cost of performing Algorithm 3.1. The estimates are shown within constant factors, using

the definitions (5.1)-(5.4); some further comments are given in Remarks 5.1-5.3.
Table 5.1. Upper estimates for the arithmetic cost of performing Algorithm 3.1.

stage 1 sequential cost parallel cost [t, w]
stage 1
(via “synthetic nd [n—d,d]
division”)
stage 1 (via

Algorithm 4.1) M(n) [(log" n) logn, M(n)]
stage 1 [via
Algorithm 4.1,
with precomputing M(n) logn, M(n))
the reciprocal
polynomial R(y)
of (4.7)]

m+d

stage 2 = —d-—M(d) logd | [(log" d)log? d, T3]

Remark 5.1. As follows from the estimates of (2.5) and Remark 2.1, we may ensure approximation
within the errors p2~% to p(z) on the set X(m) of (1.2) if we apply Algorithm 3.1 with d = O(u). Substituting
this expression and (5.3) into the bounds of Table 5.1 on T} and T3, we arrive at the bound Ty + T2 =
O((m + u)log? u + nmin{u,logn}) on the overall arithmetic cost of performing Algorithm 3.1. We have
cited this bound in the introduction and abstract.

Remark 5.2. The last column of Table 5.1 shows that Algorithm 3.1 runs in polylogarithmic parallel
time and has the optimum potential work bound (equal to the record upper bound on the sequential time).
In fact, the parallel time bounds # in lines 1 and 3 of Table 5.1 can be decreased by the factors of log”™ n and
log® d, respectively, at the cost of a slight increase of the potential work w, by the factors of 1+2~*log'® D,
for any fixed positive integer b, h < log" D, where D = n or D = d, respectively (see [1,2]).

Remark 5.3. We may perform stage 2 by using O(nd) ops to ensure numerical stability [11].

6 Bounding the Precision and the Bit-Complexity of the Computations.

Suppose that the coefficients of g(z) are integers (see Remark 4.1). Then so are the coefficients of w(y).

Due to Lemma 2 of [3], we have the following a priori bound:

W = gy, < g, U+ Sl (1+ )

10



Combining this bound with (4.2) and (4.6), we obtain that

W < 181 | e (n(e/21) + 3 lpile/2) (1+4 g {("'?")/(d—.f)})] S (3

<5<
i=d =154 J

Since the coefficients of w(y) are integers, bounded according to (6.1), we may compute them by applying

any algorithm for polynomial division in the ring Zas of integers modulo M for any integer
M>2W.

Then we may recover w; from w; mod M according to the equations

wi =w; mod M if w; mod M < M/2, (6.2a)
w; = —M + w; mod M otherwise, (6.2b)
We may choose M in the form
M=2+1,

for an integer r, to simplify the reduction modulo M. Then the number T of bit-operations required for

such a polynomial division will be bounded by
Tp = O(Tpu(log M) = O(M(n)u(log W) (6.3)

where T = O(M(n)) denotes the arithmetic complexity of computing the coefficients of g(y) mod L(y) (see
Table 5.1), p(r) denotes the number of bit-operations required for multiplication of two integers modulo 2

or 2" 4+ 1, and W i1s bounded according to (6.1). Theoretically, we may reach
p(r) = O(rlogrloglogr) , (6.4a)
[1], but in practice the users mostly rely on the straightforward algorithm, which only supports the bound
p(r) = 0(?) . (6.4b)

Example 6.1. Let M = O(W), W = n%"%), for a nonnegative ¢, so that logW = O(n¢logn). Assume
(5.3) and obtain from (6.3) that
Tp = O(n*t!(log n)® loglogn) (6.5a)

under (6.4a) and that
Tp = O(n?***(logn)?) , (6.5b)

under (6.4b). Assuming (5.4), rather than (5.3), would have implied an extra factor loglogn in these
estimates.

In the remainder of this section, we will combine the above results with some customary techniques,
based on the Chinese remainder algorithm [1,2] (hereafter referred to as C.r.a.) and usually applied in order
to decrase the precision of algebraic computations. This will also lead us to a substantial decrease of the

bit-complexity estimate (6.5b), under the assumption (6.4b).

11



Specifically, first choose a natural H and then H integers my,...,mpy, all exceeding 1, all pairwise

relatively prime, and satisfying the relations,
myma -y =_M>2W . (66)

Having chosen these integers, we
a) first compute w; mod my, in Zm, for all k and i,
b) then recover w; mod M for all i, by applying the C.r.a.,
¢) and finally, obtain the values w; for all i, from (6.2a b).
Hereafter, m* = max; my, T denotes the arithmetic time required for the division of g(y) by L(v):

T = O(min{nd, M(n)}) (6.7)

(see Table 5.1);
m® = max{m} . (6.8)

The bit-complexity of performing stage a) is bounded by O(TH u(logm*)). Stage c) is clearly less costly
than stage a). To estimate the bit-cost of stage b), we recall the C.r.a. [1,2], reduced to the following steps:

1.° Compute M = mymz---my.

92.° Compute My = M mod m}, for all h.

3.2 Compute Fj = My/my, for all A.

4.° Compute fn = (1/Fx) mod my, for all A (by means of the Euclidean algorithm applied to Fj and
mp).

5.° Compute

H
w; mod M = Y, (((wi mod my)fs) mod ms) Fy ,
h=1
for all i; for each i, we obtain such a value by recursively summing in A the partial fractions

(wi mod mp)fu/ms, h=1,...H,

and outputing the numerator of the resulting sum.

Let us now assume the bound O(u(log N)) on the bit-complexity of performing an arithmetic operation
with integers reduced modulo N [compare (6.4a,b)}, and estimate the number of bit-operations requried in
each of steps 1°-5°.

We need:

O(log H p(log M) ) bit-operations at step 1°%;

O(H p(log M) ) at step 2%

O(H p(logm®)) at step 3°%

O(H p(log m*)logm®) at step 4°, and

O(dlog H u(log M) ) at step 5°.

Summarizing, we need

Ts = O(dlog H p(log M)

_ (6.9)
+TH p(logm*) + H p(log M) + H p(logm* ) logm*)
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bit-operations in order to compute the d coefficients of w(y) = gly) mod L(y), with p(r), H, m*, M, T
satisfying (6.4)-(6.8).

If d = O(logn), we may replace the bound (6.7) on T by the bound T = O(n), and if logm*® =
O(loglog M), then we may decrease the cost of step 2° to O(H log M); in both cases we achieve the cost
decrease by using the algorithms of Kaminski [8]. The overall bit-complexity bound (6.9) will then decrease
to the bound

Tg = O (H p(logm®) (n+logm®) + Hlog M + dlog H p(log M) ) . (6.10)

Remark 6.1. By incorporating Kaminski’s algorithm of [8] for integer residues, we may decrease the

known upper bound on the bit-complexity of the C.r.a. from
O (H p(log M) + H p(logm®)logm”) (6.11)

to
O (log H p(log M) + Hlog M + H p(log m*) log m®) (6.12)

[compare (6.9) and (6.10) for d = 1, n = 0], which is a substantial improvement under (6.4b) (see the next
example).
Example 6.2. Under the assumption of Example 6.1 that M = ow), W= n9("%), choose the integers
H,my,...,myg of (6.6) such that
H =logW/logn = O(n°) ,

m* = H? = O(n%), (m*)¥ > M. Then at step 2° of the C.r.a. we may apply Kaminski’s algorithm of [8]
for computing integer residues. For any positive constant c, this will decrease the overall bit-cost estimate
for the C.r.a. from O(n3¢log? n) [obtained from (6.11)] to O(n* log® n) [obtained from (6.12)].

Example 6.3. Let the assumptions of Example 6.2 hold and let d = O(logn). Then we may apply
Kaminski’s algorithm for computing polynomial residuals and arrive at (6.10), with M, H and m* bounded

according to the assumptions of our Examples. Thus,
Tg = O (n“*!p(logn) + n* logn + (log n)? y(n®logn)) .

The latter bound turns into the bounds Tg = O (n°*!log” n + n*log" n), under (6.4b) [and this improves
(6.5b) roughly by the factor n™n{¢3}], and Tp = O(n®log n(n*logn + nloglog n loglog log n)), under (6.4a)
[and this slightly improves (6.5a) for ¢ < 1 and exceeds the bound (6.5a) for ¢ > 1.

7 Discussion

a) Our algorithms can be applied recursively, to simplify the multipoint evaluation of v(z) at stage 2 of
Algorithm 3.1if p= Y[, |pi| substantially exceeds v = zi;}, [val.

b) Instead of using approximation via interpolation on the Chebyshev set, one may try to use any other
good approximation by a polynomial or by a ratio of two polynomials of lower degrees, as long as the

coefficients of the latter polynomials are easy to compute.
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¢) Of course, it is interesting to consider approximate interpolation and multipoint evaluation with
complex input nodes, although this case is much harder to treat than the real case (compare [17]).

d) A major challenge is an extension of our results to interpolation. As a heuristic approach, we suggest
replacing the input set X(n) of n + 1 nodes of interpolation (1.2) by the set X(a,d) of d Chebyshev nodes
(2.1). The input values of p{z) at z = z;, i = 0,1,...,m, are then used in order to approximate the values
platzp41), for A = 0,1,...,d — 1. Then interpolation to p(z) is replaced by the simpler interpolation to
a polynomial of degree at most d — 1 that approximates p(z) at z = atgp4y, for A =0,1,...,d = 1. The
approach is promising if all the points of X(m) are closely approximated by the nodes atyp41 of X(a,d).
Some difficulties with this heuristic may stem from the fact of ill-conditioning of the interpolation problem

(see Appendix B).

Appendix A. Proof of Theorem 4.1.
Recall that cos(r — t) = —cost, for any t. Therefore,

t?h-{-l:-t!d—!h—ll h=0|1|'-'sd-11

due to (2.1). Deduce from these equations and from (3.2) that

-1

L(z)=z*" [[(* - 483u0) » 8=1d/2],
h=0

which implies the equations (4.1).
To prove the equations (4.2), we need some auxiliary results.
Hereafter, w; = exp(27y/—1/g) denotes a primitive g-th root of 1. We will first represent ta54; of (2.1)
as follows: ;
— ,2h41 —(2h+41) -
2t2h+1 —w“ +w‘d 3 h—-—o,l,-.-,d_l . (A.l)

Next, we will prove the following identity in z [where L(z) is the polynomial of (3.2)):
Fact A.1.
Liz4+z ) =204279, (A.2)
Proof. Represent the right side of (A.2) as a polynomial in z + z~!. Observe that such a polynomial
is monic and has degree d. It remains to show that this polynomial has the same zeros as L(z), that is,
vanishes where
24z =py, h=0,1,....d-1.

But the latter equations imply that z = wﬂnﬂ) [due to (A.1)], and consequently, that

Zd +z_d' — W.[;?dh-l-l}d'*'w:d(?h-l-l)d = (w';’SQ.M}l)d e l)w:§2h+l)d =0. O

Based on Fact A.1, we will now prove
Fact A.2. The coefficients £q,8a, ... of L(z) satisfy the following unit triangular linear system of equa-

{ions:

Z(‘i‘i’)&j:am, i=0,1,...,8, (A3)

i=0
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where §o0 = 1, 60; =0 for i > 0, s = |d/2].
Proof. Substitute (3.2) and (4.1) into (A.2) and obtain that

]
L+ )=Y e+ )Y =427, s=1d/2).
j=0
Expand the powers of z + z~! in the latter expression (to represent them as polynomialsin z and z~!) and

obtain that

d-2j -
(z + z-—l)d—ij = Z (d—kg.?) ,d-2j -2k 1

k=0
" d-2j .
d-2 ;
P4z4= lei Z ( E J) 242 s=1d/2] .
j=0 k=0

Substitute i = k+ j, k = { — j and deduce that

d -d : = d_2J d-21
224z =Z£gjz fd z :
=0

i=j

a=f (£ (1)

i=0 \j=0

Therefore,

Equate the coefficients of the powers of z on both sides of the latter identity and arrive at (A.3). O
To prove Theorem 4.1, it now remains to replace £3; in (A.3) by their expressions from (4.2) and to verify
that the resulting equations hold true, This is immediate for i = 0, and we may substitute £, = 1 into the

remaining s equations of (A.3). We only need to prove that
L (d=2j\ (d-]j . _ _
Z( J)( .J)(—l)’d/(d-J)=0. o Y (A.4)
jmo ¥V Y J

Towards this goal, we now represet (dl-'_";:f) (d;j) J/d— j as follows:

(d—j—1)! _  (d=j-1) il 1_ (d=j-1) (i\1
M—i-iﬂﬁ—jﬁﬂ—(i-UHd—i-ﬂ!G—ﬂU!i'( i-1 )(Ji'

Substitute the latter expressions into the equations of (A.4) and thus rewrite (A.4) as follows:

gg(‘*;j;l) (=0, it

where the factor d/i can be deleted. This brings us to the known equations (see [Kn], equation (2.5) on

page 58, for k=jm=i-1,r=d=-1,8=4it= 0), which completes the proof of Theorem 4.1. O

Appendix B. Error Magnification in the Interpolation.
Fix a set X(m) of (1.2), denote

m

Plz)= H(z -z,

k=0
Li(z)=P(z)/(z—2), k=0,1,....,m,
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assume that m = n, and recall Lagrange’s interpolation formula,
m
p(z) = Y_p(zr) te(z) / Lalze) -
k=0

Observe that an error ¢ in the value of p(z:) causes the output perturbation ¢ £&(z)/£k(z¢). This perturbation
is large if |£x(z)| is small, which is frequently the case. For instance, if zs = —a+2ak/m, k=0,1,...,m,
then
tn(zm) = max |64 (2)] = (20/m)"m!
so that
(2a/e)"m/2e%4 < £ (zm) < (20/e)™em!/? (B.1)
If m = d—1 and if X(m). = X(a,d) is the Chebyshev set (2.1), then the magnificaion of the errors at
z4_1 = a (and similarly at zg = —a) is greater than (B.1) indicates, since the nodes t2541 are accumulated
near z4_; = a and zo = —a, so that the distances from z; to a are of the order of (2ak/d)? if d - k = o(d)

(and similarly for z; near —a).

Appendix C. Special Techniques for Chebyshev’s Nodes.

To simplify the evaluation of a polynomial pa(z) of (1.1) on the set X(1,d) of Chebyshev’s nodes and
the interpolation by p(z) on the set X(1,d) (provided in the latter case that n = d — 1), represent p(z)
as po(z?) + zp1(2?) = qo(y) + zq1(y) where y = 1 - 9222, The substitution of y = 1 — 2z% for z maps the
Chebyshev set X(1,d) of (1.2) into the half-size Chebyshev set X(1,d/2). We may assume for simplicity that
d and n are integer powers of 2 and recursively apply the above relations to obtain the divide-and-conquer
algorithms for both evaluation and interpolation (see more details in [14]). The resulting algorithms slightly
improve the parallel version of the algorithm of [10], incorporating the parallel polynomial division algorithm
of [2].
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