On Randomized Versus
Deterministic Computation

Marek Karpinski'
Rutger Verbeek?®

TR-92-078
November, 1992

Abstract. In contrast to deterministic or nondeterministic computation, it is a fundamental open
problem in randomized computation how to separate different randomized time classes (at this point we
do not even know how to separate linear randomized time from O(n'°8 ") randomized time) or how to
compare them relative to corresponding deterministic time classes. In another words we are far from

understanding the power of random coin tosses in the computation, and the possible ways of simulating
them deterministically.

In this paper we study the relative power of linear and polynomial randomized time compared with
exponential deterministic time. Surprisingly, we are able to construct an oracle A such that exponential
time (with or without the oracle A) is simulated by linear time Las Vegas algorithms using the oracle
A. We are also able to prove, for the first time, that in some situations the randomized reductions are
exponentially more powerful than deterministic ones (cf. [Adleman, Manders, 1977]).

Furthermore, a set B is constructed such that Monte Carlo polynomial time (BPP) under the oracle B
is exponentially more powerful than deterministic time with nondeterministic oracles. This strengthens
considerably a result of Stockmeyer [St 85] about the polynomial time hierarchy that for some decidable

oracle B, BPP? o4 A,PB. Under our oracle BPP?® is exponentially more powerful than A; P2, and B
does not add any power to A;EXPTIME.

1De;:.\.a,x'trnent of Computer Science, University of Bonn, 5300 Bonn 1, and International Computer Science Institute,
Berkeley, California. Email: marek@cs.bonn.edu. Supported in part by Leibniz Center for Research in Computer Science,
by the DFG Grant KA 673/4-1 and by the SERC Grant GR-E 68297.

2Dept. of Computer Science, FernUniversitit Hagen, 5800 Hagen 1. Email: verbeek®fernuni-hagen.de. Part of the
research was done while visiting the International Computer Science Institute, Berkeley, California.

1 Introduction

In contrast to deterministic or nondeterministic computation, it is a fundamental open
problem in randomized computation how to separate different randomized time classes
(at this point we do not even know how to separate linear randomized time from O(n!%2")
randomized time) or how to compare them relative to corresponding deterministic time
classes. In another words we are far from understanding the power of random coin tosses
in the computation, and the possible ways of simulating them deterministically.

In this paper we study the relative power of linear and polynomial randomized time
compared with exponential deterministic time. Surprisingly, we are able to construct an
oracle A such that exponential time (with or without the oracle A) is simulated by linear
time Las Vegas algorithms using the oracle A. For Las Vegas polynomial time (ZPP) this
will mean the following equalities of the time classes:

ZPP# = EXPTIME” = EXPTIME(= DTIME(2"%)) .
Furthermore, for all the sets
MCZ : M<yrp A<= M e EXPTIME
(<ur being unfaithful polynomial random reduction, c.f. [Jo 90]).

Thus A is <yr complete for EXPTIME, but interestingly not NP-hard under (determin-
istic) polynomial reduction unless EXPTIME=NEXPTIME. We are also able to prove,
for the first time, that randomized reductions are exponentially more powerful than de-
terministic or nondeterministic ones (cf. [AM 77]). Moreover, a set B is constructed
such that Monte Carlo polynomial time (BPP) under the oracle B is exponentially more
powerful than deterministic time with nondeterministic oracles, more precisely:

BPP? = A;EXPTIME? = A,EXPTIME(= DTIME(2"%)NTIME@®))

This strengthens considerably a result of Stockmeyer [St 85] about the polynomial time
hierarchy that for some decidable oracle B, BPP? ¢ A,P®. Under our oracle BPP? is
exponentially more powerful than A, P2, and B does not add any power to A,EXPTIME.

2 Randomized Computation

A probabilistic Turing machine (PTM) is a standard Turing machine with the ability to
toss a random coin, and can be viewed as a nondeterministic machine with a different

2

accepting condition: an input z € ¥* is accepted (in time T'(n)) if more than a half of
the computations (of length 7'(|z|)) are accepting. '

The probability of accepting (rejecting) can be defined as the fraction of accepting (reject-
ing) paths in the normalized computation tree (i.e. all the paths have the same number
of binary branching points). We will restrict ourselves to machines with a clock: all
computations have the length at most T'(|z|).

We shall study the following classes of probabilistic (bounded error) Turing machines:

e Monte Carlo machines (Bounded error PTMs, MTMs)
any input is accepted either with probability > % or with probability < 41.
e Randomized machines (one sided error PTMs, RTMs):
any input is accepted with probability > % or 0.
e Las Vegas machines (zero error PTMs, ZPTMs):

either z is accepted with probability > % and rejected with probability 0 or z is

rejected with probability > % and accepted with probability 0.

We denote the corresponding complexity classes by

PrTIME(T) = {L(M)| M is an O(T)-bounded PTM}
BPTIME(T) (same for MTMs)

RTIME(T) (same for RTMs)
ZPTIME(T) (same for ZPTMs)

Other than in the deterministic case it is not clear that the “linear speed up” is valid for
Monte Carlo, Randomized, and Las Vegas machines.

The polynomial time classes are denoted as usual by

PP (= | JPrTIME(n*)), BPP, RP, and ZPP.
k

All these machines can be relativized in a canonical way. The relativized machines, sets,
complexity classes (with oracle A) are (as usual) denoted by M4, L(M*4), e.g. BPP4; if
C is a set of oracle sets, the union of relativized classes with oracle A € C is denoted by

superscript C (e.g. BPPYF = | BPP4).
AENP

Other than deterministic or nondeterministic machines, PTMs with bounded error
(MTMs, RTMs, or ZPTMs) cannot be described by the syntactical properties only. The
MTMs (RTMs, ZPTMs) form nonenumerable subsets of the PTMs. Thus ZPP, RP and
BPP have probably no complete sets. Therefore, we do not have any method for proving
that BPTIME(n) # BPTIME(n'6") [KV 88] and we cannot exclude the situation that
(at least under some oracle) ZPTIME(n) = BPP. In [FS 89] the existence of such an
oracle is claimed but unfortunately the construction used in the proof seems to have an
irreparable flow [F 92]. The paper [FS 89] was also a starting point of our investigation.

A related notion of a probabilistic Turing machine with an oracle was introduced recently
by A. Yao in a context of program checkers [Y 90].

Under the random oracle BPP (and RP, ZPP) equals P and reasonable hierarchy theo-
rems are valid ([BG 81]). Most researchers believe that the power of ZPP does not (or not
by much) exceed P. BPP is included in £f and thus in the polynomial hierarchy. On the
other hand, under some oracle, BPP € Af [St 85]. We will show that under appropri-
ate oracles ZPP=EXPTIME and BPP = A,EXPTIME. This means: under some oracle
the zero-error PTMs are exponentially more powerful that their deterministic counter-
parts, and bounded error PTMs are exponentially more powerful than nondeterministic
machines.

The results have also consequences for the unrelativized world: we can show that the
Las Vegas reductions are exponentially more powerful than deterministic reductions, and
the Monte Carlo reductions are exponentially more powerful than v-reductions.

While the definition of the polynomial hierarchy in ¢ we will need a generalization of the
well known polynomial hierarchy (in a relativized version):

STIME(T)* = T TIME(T)* = A,TIME(T)* = DTIME(T)*
Ap i TIME(T)A = DTIME(T)E:,,TII\fIE(n}f’l
Sau TIME(T)A = NTIME(T)ZTIME@?*
M, TIME(T)* = co-NTIME(T)™TIME®* = {57\ 4| 4 € =, TIME(T)*} .

To avoid confusion with oracle classes we prefer £ P etc. for the classes of the polynomial
hierarchy ©f = S, TIME(n'); e.g. NP = I, P. It is easy to see that for all at least

linearly increasiné T
51 TIME(T)# D NTIME(n)=» TIME@*

and this inclusion is strict for some oracle A.

Let EXTIME denote |JDTIME(2*"), and let NEXTIME, BPEXTIME, I;EXTIME,
k

ete. denote the other exponential time classes. In the same way let
EXPTIME(NEXPTIMEetc.) denote UDTIME(Q“k) (U NTIME(Q“k) ete.).
K k

3 Oracle A with ZPP* = EXPTIME” = EXPTIME

We will construct an oracle A such that for all deterministic oracle machines M, running
in time 2" and all z € ©* with |z|=n > 1

tg LIMP) = VYpeIh, <izp>gA
z€ LM} = #{pez™ |<z’,x,p>eA}>§l.g4ﬂ

This set A has the property

DTIME(2")4 C DTIME(2°") .
By standard padding arguments we can conclude
Theorem 1. There exists an oracle A, such that

ZPTIME(n)* = EXTIME* = EXTIME,
ZPPA = EXPTIME* = EXPTIME .

The (surprisingly simple) construction uses the fact, that deterministic exponential time
machines cannot query all oracle strings of linear length.

First of all some notations:

— < i,z,p > will denote the string $'z$p. The oracles will be subsets of {0,1,8}* =
(Zu{shH".

— The following ordering of pairs (i,z) € N x £* is used:
(i,z) < (4, y) if one of the following holds

(1) lzl < lyl
(2) |z| = |y| and = < y (lexicographically)

5

(8) z=yandi< .

— (Restricted to pairs (i, z) with 7 < |z| this is a linear ordering of (ordinal) type w.)

Without loss of generality we restrict ourselves to the input alphabet ¥ = {0,1}.

Construction of the Oracle A

A is constructed in stages following the above defined ordering. The (initially empty)
set A is augmented during the construction at stage (i,z) by strings < ¢,z,p >, when
z € L(MZ#). Queries “< i,z,p >€ A?” on previous stages are recorded in a set D; these
are not changed when “z € L(MZ#)” is encoded.

Stage (0,€): A:=0; D:=0.

Stage (i,x), ¢ < |z|:
Simulate at most 2/°! steps of M#(z).
If M{ asks “< j,y,p >€ A", (j,y) > (i,2), and || = 4~ Jy],
then D := DU{< j,y,p >} (le. <j,y,p>¢ A is fixed).
If M2 accepts z, then A := AU ({< ¢,z,p>]| |p| =4 |z|} \ D). 0

Lemma 1. Forall i,z (i < |z|) the following holds:
(1) If M2 accepts x € T™ within 2" steps, then < i,z,p >¢ A for at most 2n - 22"
strings < i,x, p > with |p| = 4n.
(2) If M2 does not accept x € ™ within 2" steps, then < i,xz,p>¢ A for all p.
Proof. Though the oracle is changed during the construction, all oracle queries are

answered consistently. A new string is added to A only if it was not queried during
previous steps.

(1) If M2 accepts z € £" within the time bound, all strings < i,z, p > not in D with
|o| = 4n are added to A. D contains all strings < 4, z, p > queried in earlier stages.
Since there are less than n - 2"*! earlier stages and on each stage at most 2" strings
are queried, #D < 2n - 22",

(2) is obvious, since < i,z, p > is added to A only if M# accepts r within 2" steps. O

6

Our next lemma shows that A is not only decidable in exponential time, but A does
not add much power to deterministic time bounded machines. A universal set for all
sets decidable in time 2" with oracle A is itself decidable in exponential time. (From

“A € DTIME(2")” we could only conclude “DTIME(2")4 C DTIME(2")PTIMEC") _
DTIME(22")”.)

Lemma 2. Ly = {$z| M accepts z in time 2%l | |z| > i} € DTIME(26").
Proof. We construct a machine M which accepts L4 (without oracle) in time 26"

On input 'z (i < |z|) M simulates all MA(y)((j,3) < (i,z), j < |y|) for 2%l steps in
the order of the oracle construction, recording the set D (as list of oracle strings) and
the outcome of these machines. Oracle queries “a € A?” are replaced by the following
procedure:

1) If a has not the form < k, z, p > with |z| > k and |p| = 4|z|, then a & A.

(1)

(2) Otherwise, ifa =< k,z,p > and (k,2) > (j,y), thena ¢ A. Ifa ¢ D, D := DU{a}.

(3) Otherwise, if a € D, then a ¢ A.

(4) Otherwise (a =< k,2,p >, (k,2) < (j,y), a € D), then a € 4 < M4 accepts 2
(which was recorded on stage (k, z)).

If Mf(y) enters an accepting configuration, this fact is recorded and the next machine is

simulated. After 2% steps of simulation we know that Mz (y) does not accept within the
time bound and record this fact. After stage (i,z) we know whether or not M# accepts
z within the time bound and thus have decided “is $iz € L,?”.

Thus M accepts L 4.

On stage (¢,z) D contains at most 2|z| - 222l strings of length at most 2%, Thus the
simulation of a single oracle query costs O(|z|- 23°l) steps. The other simulation steps
are cheaper. Thus the simulation of M#(y) ((j,y) < (7,2)) can be done in O(|z] - 2%2])
steps, which yields the total costs for all stages up to (i,z) of O(|z|?-2%l) C O(28=l). O

Proof of Theorem 1.

e “EXTIMEA = EXTIME”

Suppose L € EXTIME”. Then there is an oracle machine M# and some k such
that M decides L within 2¥" steps. Let L' = {z10™ |z € L, m > k - |z|} be the

(i

appropriately padded set. Then y = z10™ € L' can be decided by some Mf in time
ly| +2™ < 2w,

Hence by Lemma 2,

L

|

€ DTIME(26(i+(k+1)12Dy — DTIME(28(k+11=l)
C EXTIME.

o “ZPTIME(n)* D EXTIMEA”

Since EXTIME is closed under complement and ZPTIME(n)# = RTIME(n)* 2
EXTIME” N co-RTIME(n)4, it is sufficient to show “RTIME(n)4 D EXTIME"”.

Suppose L € DTIME(2F™)4,

Let L' = L(M%) as above, M{ runs in time 2". An R-machine M accepts L =
{z | z10¥1=+ € L'} as follows:

On input z, M computes y = z10%#*7, Then M chooses a random string p of
length 4 - |y|. M accepts iff < j,y,p >€ A.

Obviously, M runs in time O(n). ;From Lemma 1 we conclude for all z:
r€dL = ygL =Vp <j,y,0>¢ A= Probl< j,y,p>€ A] =0,

3
re L = Prob[< jy,p>€E Al)é_l'

o “ZPTIME(n)4 C EXTIME*” is obvious:
ZPTIME(n)* C PrTIME(n)* C DTIME(2°(™)4

for any oracle A.

The corresponding statements for ZPP4, EXPTIME?, and EXPTIME are proved in
similar way using polynomial instead of linear padding. a

4 Oracle B with BPP?
AEXPTIME

A EXPTIME?

I

The construction of the oracle B follows a similar idea as for the oracle A. The main
difference is that we must introduce strings < i,z,p > into the oracle before M?(z) is
encoded. This yields a small two-sided error for the probabilistic machine.

8

B will have the property that for all Aj-oracle machines M; running in time 2" and all
z with |z| = n > { the following holds: '

€ LM?) = #{peZ"|<i,z,p>€ B} >§-24”

1
t¢LME) = #{peZ™|<i,z,p>€ B}<E-24".

Furthermore
AgTIME(Q”)B C AgTIME(221”) :

Again we can conclude

Theorem 2. There exists an oracle B, such that

BPTIME(n)® Ay EXTIME? = ALEXTIME,
BPP? = ALEXPTIME® = A,EXPTIME.

Construction of the Oracle B ‘

During the construction we record all oracle queries in (initially empty) sets B (strings
with positive answer) and C (strings with negative answer), BNC =0. E = {0,1,8}*\
(BUC) contains all strings with yet undetermined outcome.

Recall that a Ap-machine with an oracle X is a deterministic machine which can query
arbitrary nondeterministic linear time machines with the oracle X.

Let us denote the j-th nondeterministic linear time machine with oracle X by JV:T)L .

Stage (0, €):
B :=0;
E:={<iz,p>||p| =4"|z|, i <|z[};
C:={0,1,8}*\ E;

Stage (7, z) (2 < |z|):
Simulate up to 2% steps of M;(z).

If M;(z) queries “y € L(N}?)?”, do the following:
If there is a set D C E such that y € L(N"YP), then NPV has at least one
accepting path of length |y|. Suppose F is the set of all oracle queries on this
path. Set B:= BU(FND); C:=CU(FN(E\D)); E:=E\F. Otherwise
foral DCEy ¢ L(,/\GBUD)_

If M; accepts z, encode this:
B:=BuU{<iz,p>€ E}; E:=E\B.

If M; rejects z or does not accept z within 2/%l steps
C:=0U{x1iz,p»€ E}; E:=E\C. O

Lemma 3. Suppose B is constructed as described above. Then for all i,z (i < |z|) the
following holds:

(1) If ME accepts z € =" within 2" steps, then < i,z,p >& B for at most 2n - 23"
strings < i,z, p > with |p| = 4n.

(2) If ME does not accept z € T" within 2" steps, then < i,z,p >€ B for at most
2n - 2% strings < i,z,p > with |p| = 4n.

Proof. At the end of stage (i,z) all < i,z,p >€ E are added to B (case (1)) or to C
(case (2)). Since there are less than 2n - 2" stages (f,y) < (4,2), it is sufficient to show
that at most 2%" strings < i,z, p > are removed from E during stage (j,y) < (i,z) and
during but before the end of stage (i, z).

M;(y) (4, ly| € n) performs at most 2" queries of the form “z € L(NP)?” with |2| < 2".
For each of these queries the size of F' (in the oracle construction) is bounded by |z| < 2™.
Thus for each query “z € L(NE)? at most #F < 2 strings (possibly of the form
< i,z,p >) are removed from E. At the end of stage (j,y) only strings < j,y,p > are
added to B or C and thus removed from E. O

Our next lemma asserts that B does not add much power to As-machines. The proof of
this fact is much more difficult than the proof of the corresponding Lemma 2.

Recall that the construction of B does not completely determine the oracle B: when
“y € L(NP)" is fixed, we can choose different sets D C E such that y € L(NPUP)
and for every such D select several accepting computation paths of N}BUD (y). Thus by
appropriate choice arbitrary complex (even undecidable) oracle sets B may turn out. The
proof of Lemma 4 yields the construction of one oracle set B consistent with the above

10

described construction and thus with the properties of Lemma 3. In the rest of the paper
B denotes this set.

Lemma 4. There is an oracle B (which is one of the possible sets that turn out from
the “construction of oracle B”) such that

Lp = {8'z | ME is a Ay-machine accepting x in time 2%, i < |z|} € A, TIME(22'™).

Proof. Similar as in the proof of Lemma 2 the Aj-machine M with input $'z will
simulate all stages of the oracle construction up to stage (i, z).

Again we record the outcome of MP (y) on stage (j,y) in alist Z. Some at the positive or
negative answers to the oracle queries are recorderd in the additional lists X and Y. X and
Y are (initially empty) lists of oracle strings of the form < k,z,p > (|p| =4 |z, k < |2|)
which are known to be in B (or not in B, respectively). Let E be the same set as in the
“construction of oracle B”, i.e. on stage (j,y)

E={<kzp>|(k2) 20y k<lz]lpl =4[z} \ (XUY).

In order to simulate queries “z € L(N2)?” we will use the following universal set L,
which determines on stage (7,y) whether or not there is an augmentation of the current
B consistent with the previous oracle queries (recorded in X,Y,Z) such that the non-
deterministic machine A/ZY? starting in same configuration C' can reach an accepting
configuration within ¢ steps:

Ec XY Z7yt € L <= N, starting in configuration accepts within ¢
steps, where the oracle queries “a € B7” are
replaced as follows:

(1) “a & B” if a has not the form < l,u,p > with I < |u|, |p| =4 - |u.
For the other cases assume a =< I, u, p >.

(2) “a € B” if a is contained in the list X or if (l,u) < (4,¥), a ¢ ¥ and
(l,u) € Z.

(3) “ag¢ B’ ifaeY orif (,u) < (j,y),a ¢ X and (l,u) € Z.
(4) Otherwise (a € E) replace the query by a nondeterministic choice.

It is easy to see that L € NTIME(k - t- (| X| + Y| + |Z])) € NTIME(n®).

11

Suppose we are simulating stage (7,y) < (i,).

Using L a query of M;(y) of the form “2 € L(ANF)?” can be replaced by a sequence of
queries “p € L?”, which yields a stepwise simulation of an accepting path of N2, and
appropriate augmentation of X or Y:

c:= initial configuration of N} (2);
t:= |2; _

IF $*c$ X3V 287y$t € L THEN

WHILE ¢ > 0 AND c is not accepting Do

BEGIN
IF the next step of A} is an oracle query “a € B?” and a is not yet recorded THEN
BEGIN
add a to X:
¢’ := next configuration if a € B;
IF $*¢'$XYZ88Y$! ¢ L THEN
BEGIN
remove a from X;
add a to Y
¢’ := next configuration if a ¢ B
END
END

ELSE { the next step is a nondeterministic choice }
determine a next configuration ¢’ with $¥¢'$X$Y 2%7y$t 1 € L
{ at least one ¢’ has this property };

t:=1—1;
gu=
END:;

IF c is an accepting configuration of A
THEN “z € L(NE)” ELSE “z ¢ L(NE)”.

At the end of the stage (j,y) (i.e. when M; reaches an accepting configuration or else
after 21/ simulation steps) record the outcome of M;(y): if M; accepts y within 2 steps,
add (4,) to Z.

The oracle B constructed by this procedure is determined by

a€ B+ a=<i,z,p>i<|z| |p| =4-|z| and after stage (i, z)
of the simulation either a € X ora ¢ Y and (i,z) € Z.

12

On stage (,y) < (i,z) M simulates at most 2" (n = |z|) steps. The simulation of a
query “z € L(N2)” costs |z| < 2™ steps and 2" queries to the oracle B times the cost for
looking at and updating the lists X, Y and Z. These can contain up to 2n - 23" elements
of length 22", Thus the total costs for all 2n-2" stages up to (i, z) are bounded by 4n?- 25"
and

Ly € DTIME(2™)NTIMEG) ¢ privE(e2=)NTIME® = A, TIME(2?™).

O
Proof of Theorem 2. Follows from Lemma 3 and Lemma 4 in the same way as
Theorem 1 from Lemma 1 and Lemma 2. 0

5 Consequences

The sets A and B have many interesting properties. Perhaps the most interesting is
that randomized reduction can be exponentially more powerful than deterministic or
nondeterministic reduction (cf. [AM 77]).

Definition (Reducibilities)
X <, Y :& there is a polynomial time bounded NTM M with:

(1) For every input z there is at least one computation
which produces an output.

(2) V(z,y)y M(z)=y=>[ze X @yeY]
X <yr Y :© there is a polynomial time bounded PTM M with:
(1) every computation produces an output
(22) re X =>M(z)eY

(2b) * ¢ X = ProbM(z) ¢ Y] > § (unfaithful
R-reduction)

X <gpp Y :& as <yp with (1"), (2b), and (2a’)
(2a’) z€ X = Problr € X = M(z) e Y] > 3.
Obviously X <, Y = X € NP¥, X <pTimem ¥ = X € DTIME(T)Y.

13

Theorem 3. UR-Reductions are ezponentially more powerful than DTIME-reductions.

(1) VX € EXPTIME, X <yp A and X <yr A
(2) VEVT € O(2™) 3X € EXPTIME, X £pTipEm A

Proof.

(1) follows (by polynomial padding) from Lemma 1.

(2) Suppose T € O(g“k). i
X <PTIMEm A = X € DTIME(T)* = X € DTIME(26"") (by Lemma 2), which
is not true for all X € EXPTIME. O

Theorem 4. BPP-reductions are ezponentially more powerful than nondeterministic
(and than v-) reductions (cf. [AM 77]):

(1) VX € AyEXPTIME, X <gpp B

(2) Yk, VT € O(2™), Ay TIME(T)B 2 AyEXPTIME.

Proof.

(1) follows from Lemma 3.

(2) as Proof of Theorem 3 using Lemma 4. O

Since the oracle queries used for the <yg and <gpp are extremely simple, they can be
computed by NC*-circuits. Thus <yp and <pgpp in Theorems 3 and 4 can be replaced
even by Las Vegas NC'-reducibility and Monte Carlo NC*-reducibility (defined in an
obvious way).

Since Monte Carlo machines have small nonuniform circuits it is an easy consequence from
Lemma 3 that relative to oracle B, A;EXTIME has linear size circuits (for the weaker
version of it see [W 83], cf. also [K 82]).

We list some other consequences for our oracles with hints how to prove them (to shorten
the formulas we denote EXPTIME by E):

14

(1) PAGZPP =N =PHA=FE=F* G ZPE"'= E® = DIIME(2").

(2) P2 ¢ NPPNcoNPE ¢ NPE ¢ A,PP G BPPP =5,PP = PHP = AZ)E =
AsEB G BPEE=Y,EB= EHB= FA2E= A, TIME(2?").

(The inclusions 1 to 4 are strict because otherwise the polynomial hierarchy collapses
and AyPB = $,PB = AyEB, which is impossible.)

(3) If E +# ZPE, then P4 2 ZPP.
(PA D ZPP = E = EA = EP* 5 EZPP = ZpE)

(4) If AoE # A3E, then P2 2 NP (ie. B is not NP-hard, but complete for AzE
under <ppp). (P2 2 NP = AyE = AEP” D A EVP = ASE.)

(5) If AgE # A3E, then NP? 2 coNP.
(NPE D coNP = NPNP C NP8 = A3E C AyEB = AyE)

(6) If AQE 7& EQE, then AQPB ;_j EQP
(AsPB D 5P = AyE = A,EB = B22:P? 3 2P — T, F)

6 Conclusion

Qur results show that the randomized computation can be extremely powerful when com-
pared with deterministic computation in a relativized context, even though randomization
has almost no additional power in the presence of random oracles.

We have constructed oracles A and B with maximal collapse between polynomial and
exponential classes without known strict inclusion:

ZPP4 = T, PANIL P4 = AE*=AE (= EXPTIME),
BPP? = X,PPNI,PE = AEP = AE.
(BPPB C %, PE NTI,PB, see [S 83])

It is an open question, if such oracles with maximal collapse exist also on other levels
of the polynomial and exponential hierarchies, i.e. whether there exists C such that for
some k > 2,

TP NILPC = ALEC = A4E.

15

It seems that the methods presented in this paper cannot be applied directly to higher
levels, since no probabilistic class is known below £ P and not below AxP (k > 2).

Acknowledgments. We thank Eric Allender, Klaus Ambos-Spies, Richard Beigel,
Yuri Gurevich, and Johan Héstad for the number of interesting discussions connected to
the topic of this paper.

References

[A 78] Adleman, L., Two Theorems on Random Polynomial Time, Proc. 19" IEEE
FOCS, 1978, pp. 75-83.

[AM 77] Adleman, L., Manders, K., Reducibility, Randomness, and Intractibility,
Proc. 9** ACM STOC, 1977, pp. 151-163.

[ABHH 92] Allender, E., Beigel, R., Hertrampf, U., Homer, S., Almost-Everywhere Com-
plezity Hierarchies for Nondeterministic Time, Manuscript, 1992; A prelim-
inary version has appeared in Proc. STACS ’90, LNCS 415, Springer-Verlag,
1990, pp. 1-11.

[BG 81] Bennett, Ch. H., Gill, J., Relative to a Random Oracle A, P* # NP4 #
co — NP# with Probability 1, SIAM J. on Computing 10, 1981, pp. 96-113.

[F 92] Fortnow, L., Personal Communicaiion, 1992.

[FS 89] Fortnow, L., Sipser, M., Probabilistic Computation and Linear Time, Proc.
91°t ACM STOC, 1989, pp. 148-166.

[F 79 Freivalds, R., Fast Probabilistic Algorithms, Proc. MFCS'79, LNCS 75, 1979,
Springer-Verlag, pp. 57-69. '

[Jo 90] Johnson, P.S., A Catalog of Complezity Classes, in Handbook of Theoretical
Computer Science, Vol. A., Algorithms and Complexity, Elsevier-MIT Press,
1990, pp. 69-161.

[K 82] Kannan, R., Circuit-Size Lower Bounds and Non-reducibility to Sparse Sets,

Information and Control 55, 1982, pp. 40-46.

16

[KV 87]

[KV 88]

R 82)

S 83]

[St 85]

[W 83]

[Y 90]

Karpinski, M., Verbeek, R., On the Monte Carlo Space Constructible Func-
tions and Separation Results for Probabilistic Complezity Classes, Informa-
tion and Computation 75, 1987, pp. 178-189.

Karpinski, M., Verbeek, R., Randomness, Provability, and the Separation of
Monte Carlo Time and Space, LNCS 270, Springer-Verlag, 1988, pp. 189-207.

Rackoff, C., Relational Questions Involving Probabilistic Algorithms, J. ACM
29, 1982, pp. 261-268.

Sipser, M., A Complexity Theoretic Approach to Randomness, Proc. 15t
ACM STOC, 1983, pp. 330-335.

Stockmeyer, L., On Approzimation Algorithms for #P, SIAM J. Comput.
14, 1985, pp. 849-861.

Wilson, C., Relativized Circuit Complezity, 24t* IEEE FOCS, 1983, pp. 329-
334.

Yao, A. C., Coherent Functions and Program Checkers, Proc. 22" ACM
STOC, 1990, pp. 84-94.

17

