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Summary: We observe that polynomial evaluation and interpolation can be performed
fast over a multidimensional grid (lattice), and we apply this observation in order to obtain
the bounds

M(c,m) < c™(1+m+ 1.5m + 2log, c)

over the fields of constants supporting FFT on ¢ points, ¢ being a power of 2, and
M(c,m) = O[N log N loglogc) ,

over any field, where N =¢™,and M(c,m) denotes the number of arithmetic
operations required in order to multiply (over any field F) a pair of m-
variate polynomials whose product has degree at most ¢ — 1 in each variable, so that
M(e,m) = O(NlogN) if ¢ = O(1), m — oo (over any field F'), versus the known bound
of O(N log N log log N).

* This work was supported by NSF Grants CCR-8805782, CCR-9020690 and by
PSC-CUNY Awards #661340, #662478, #668541 and #669290.
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1. Introduction. A common approach to multiplication over any fixed field F of a
pair of m-variate polynomials v = u(z1,...,%m) and v = v(zy,...,Zm) of degrees at most
d(i) in z;, i = 1,...,m, is to map them first into univariate polynomials in x, according

to Kronecker’s map
Tpy1 = 2 D(1)...D(k) ; k=0,....m—1, (1)

then to multiply these two polynomials by using the known algorithms, and finally, to

recover the coefficients of the polynomial p = uv,

P=p(T1,...,Tm) = Z BE b L v B (2)

il I"'!im

by applying the map (1) again. It suffices to set
D(t) =2d(i) + 1, b= Loowa M,

to ensure the correct answers, since the degree of p in z; is at most 2d(3).

Hereafter, we set
d=maxd(i)+1>1, ¢>2d-1=max(2d(i))+1), N=c",
T 1

and let M(c,m) = Mp(c,m) denote the minimum number of arithmetic operations re-
quired in order to multiply u and v over a field F.

The univariate image of the multivariate polynomial p = uv has degree at most N,
so that we may apply the known algorithms for multiplication of univariate polynomials

([BM], [CK], [N], [S]) and deduce that
Mp(c,m) = O(Nlog N) (3)
if F' supports FFT on 2" points, for n = [log, N1, and

MFp(c,m) = O(Nlog N loglog N) (4)
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over any field (or even ring or algebra) F.

Decreasing the bound (4) to the level of (3) over any field I(ring or algebra) F is a well
known challenge, both for the computational complexity theory and for the computational
practice. [The known lower bound is Q(N) over any field.]

In this short paper we achieve the above goal of reaching the bound (3), in the multi-
variate case where ¢ = O(1) and m — oo [see (13)]. Our approach does not give any good
results in the univariate case (see Remark 2), being a rare (if not the only) example of
techniques whose power is lost in the transition from multivariate to univariate polynomial
computations.

To understsand the reason for this, observe that the algorithms of [N], [CK] and all
other known fastest algorithms for univariate polynomial multiplication over any field (or
ring or algebra) perform several arithmetic operations in order to reduce the problem to
multiplication of multivariate polynomials of lower degrees, which exactly reverses what-
ever Kronecker’s mapping (1) does. Our idea is to avoid such a back-and-forth transition,
thus saving the arithmetic operations involved. This gives us the desired bound (13).

Remark 1. For completeness, we shall cite an alternative algorithm of [CKL], which
reaches the bound O(M (N, 1) logN) for multiplication of polynomials over the fields of
constants having characteristic 0, provided that N bounds the overall number of monomials
of the dense polynomial product. This makes the algorithm of [CKL] superior to ours (over
the fields of characteristic 0) for multiplication of the m-variate polynomials whose terms
have total degree in all the variables bounded by a single fixed value d.

2. The Improved Computation. We will rely on the following very simple identity:

U(-'Ulu---afcm) =ux1($2:---a$m) (5)
where
Un (T2y- 00 Tm) = ) Ui (@1)8F o B s Ui (B1) = ) Uity BT
1:2:'":1:"; i1
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and on the similar identities for v(z1,...,Zm) and p(z1,...,Tm)-
Let G = G(c(1),...,c(m)) denote an m-dimensional grid (or lattice) G where the
variable z; takes c(j) distinct values in F' or in its algebraic extension K modulo an

irreducible polynomial of degree a over F' such that
|K| = |F|**,a+1 = [logc(j)/ log | F]] . (6)

To simplify the subsequent estimates, assume that c(j) = ¢ for all j and let E(c, m)
denote the number of arithmetic operations required in order to evaluate on the grid G
an m-variate polynomial [such as u(zi,...,Zwm) or v(z1,...,Zm)] whose degree in each
variable is less than d. The identity (5) reduces the latter problem for u(z1,...,2y) to the
evaluation of d™~! univariate polynomials u;, ;_(z1) at ¢ points z; and of ¢ polynomials
Ug, (T2, ..., Tym) in m — 1 variables z2,...,Zm at ¢™ ! points of an (m — 1)-dimensional
grid, so that _

E(c,m) <d™ 1E(c,1) + cE(c,m — 1) < (d+ c)d™ ?E(c,1) + 2 E(c,m — 2)

m—1 _ m
<...< Z d'e VB, 1) = cmld—(f/fz—E(C, 1) £ 2¢™E(e,1) .
i=0

The same bounds apply to the evaluation of v(zi,...,Zm,) on G, and similarly, we
deduce the bound I(c,m) < mc™ 1I(c, 1) where I(c,m) denotes the number of arithmetic
operations required in order to solve the interpolation problem of computing the coefficients
of an m-variate polynomial of degree less than ¢ in every variable, provided we are given
its values on the grid G.

Given two multivariate polynomials, we may apply the evaluation-and-interpolation
technique of [T] and compute the coefficients of their product. Since d(j) bounds the
degrees of the input polynomials in z;, their product has degree at most ¢ —1 in z; for all

J, so that
M(c,m) —c™ < 2E(c,m) + I(c,m) < ™ 1 (4E(c, 1) + mI(c,1)) (7)

arithmetic operations in F' suffice if |F| > c.
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Over the fields of constants that contain a principal e-th root of 1, and thus support
FFT on c points (assuming that c is a power of 2), we choose the grid G so as to perform
the evaluation and interpolation on a set of the c-th roots of 1 by means of FFT [so that
E(c,1) and I(c,1) — c are replaced by 2clog, c in this case ([BM, pp. 84-85])] and arrive

at the bound

M(c,m) <c™(14+m+42(m+4)logyc) .
Over any field F, such that |F'| > ¢, we substitute into (7) the known bound
max{F(c,1),I(c,1)} < yM(c, 1) logsc, (8)
for some fixed constant v, and obtain that
M(c,m) < v¢™ (logy ) M(c,1)(m +4) = O(N(log N)M(c,1)/c), (9)
where N = ¢™. We may substitute the known upper bound
M(s,1) = O(slogsloglogs) (10)
([CK], [N], [S]) and obtain from (9) that
M(c,m) = O(N log Nlogclogloge) , (11)

ifN=c" |F|2c If |F| < ¢, we may shift to an algebraic extension K of F with the
increase of the complexity bound (11) by the factor of M (logc/log|F|,1) [see (6)], which
turns into O(1) if ¢ = O(1).

Instead of increasing the bound (11), however, we may decrease it by removing the
factor of log ¢ if we recursively generate roots of 1, as in [CK], [N], and choose the points
of the grid G having their coordinates equal to such roots. This way, we may replace

4E(c,1) + mI(c,1) in (7) by O(mclogcloglogc) and obtain that

M(c,m) = O(c™mlogecloglogc) = O(Nlog Nloglogc) . (12)
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Note that both of the bounds (11) and (12) lead to the bound
M(c,m)=0(NlogN) if e¢=0(1) and m—oo, (13)

over any field F, versus O(N log N loglog N) of the approach based on (1).

Remark 2, applications to the Univariate Polynomial Multiplication over any Field of
Constants. We may substitute into (7) the classical bound max{E(s,1),I(s,1)} = O(s?)
(over any field F'), rather than (10); then we may apply the homomorphism from the
class of univariate polynomials p(z) of degrees at most ¢™ — 1 to the class of poly-
nomials p(zi1,...,Zm) of (2) given by the substitution of variables ©; = =z, 2 = z°,

2

T3 =30, Tm =2 [compare (1)]. The resulting upper bound on M(s, 1), however,

is inferior to (10).
Acknowledgement. I thank Erich Kaltofen for his helpful comments.

References
[BM] A. Borodin and I. Munro, The Computational Complezity of Algebraic and Numeric
Problems, American Elsevier, New York, 1976.

[CKL] J. F. Canny, E. Kaltofen and Y. Lakshman, “Solving Systems of Nonlinear Polynomial
Equations Faster,” Proc. ACM-SIGSAM Int. Symp.. on Symb. and Alg. Comp. (1989)
121-128.

[CK] D. G. Cantor and E. Kaltofen, On Fast Multiplication of Polynomials over Arbitrary

Algebras, Acta Inf. 2 (1991) 693-701.

[N] H. J. Nusbaumer, Fast Polynomial Transform Algorithms on Digital Computers, IEEE
Trans. on ASSP 28 (1980) 205-215.

[S] A. Schénhage, Schnelle Multiplikétion von Polynomen iiber Kérpern der Characteris-
tik 2, Acta Inf. 7 (1977) 395-398.

[T] A. T. Toom, “The Comﬁlexity of a Scheme of Functional Elements Realizing the
Multiplication of Integers,” Soviet Math. Doklady 3 (1963) 714-716.

6



