Accelerated Solution
of the Tridiagonal Symmetric
Eigenvalue Problem

Victor Pan
TR-93-016

March 1993

Accelerated solution of the tridiagonal symmetric eigenvalue problem

Victor Pan |
Mathematics and Computer Science Department

Lehman College, City University of New York

Bronx, NY 10468
and International Computer Science Institute
Suite 600, 1947 Street
Berkeley, CA 94704

(Supported by NSF Grant CCR 9020690 and
by CUNY University Award #662478)

Summary. We present new algorithms that accelerate the bisection method for
the symmetric eigenvalue problem. The algorithms rely on some new techniques, which
include acceleration of Newton's iteration and can also be further applied to acceleration
of some other iterative processes, in particular, of iterative algorithms for approximating

polynomial zeros.

Key words: symmetric eigenvalue problem, bisection algorithm, Newton’s iteration, con-

vergence acceleration, polynomial zeros.

1991 Mathematics subject classification: 65F15, 65Y20, 65B99.

1. Introduction.

In this paper, we propose some new techniques in order to accelerate the convergence
of the bisection method for the eigenvalues of a real symmetric tridiagonal (hereafter rst)
matrix A (compare [Par], [GL], [B], [LPS], [PR]).

We recall (see our section 3) that the bisection algorithm approximates all the eigen-
values Ao, Ap, A 2 A > -00 > An, of an n X n rst matrix 4 within an error bound ¢,

0 <t < A; — An, by using

4n®[H(t)] + O(n) | (1.1)

arithmetic operations where
H(t) = log,y((A1 — An)/t) . (1.2)

Our new algorithms involve
(4n® + O(n)) [(log, H)? + log, n + vlog, H] (1.3)

arithmetic operations where v varies from 4 to 5.5/log, 3 ~ 3.47. (Note the decrease of the
complexity bound from O(H(t)) in (1.1) to O(log H(t)) in (1.3); see the derivation of the
estimate (1.3) and some further comments in section 10 and, for a further improvement,
see section 5 and table 10.6.) Furthermore, some features of our algorithms suggest that
(unlike the bisection method) they tend to perform substantially better on the average
input than the estimate (1.3) indicates.

The techniques used may be of some independent interest. In particular, by employing
Newton’s iteration for a k-fold zero of a polynomial, our algorithm 6.1 ensures a nearly
quadratic convergence, right from the stari, to single and multiple eigenvalues of A or
to their clusters, as soon as each of these eigenvalues or, respectively, of their clusters is
sufficiently well isolated from the other eigenvalues of A. The desired isolation is ensured by
using the bisection procedure and the double exponential sieve algorithm of [BOT] with its

new improvement (see some alternative techniques in [P87], [P89a], [PD]). And we show in

2

section 9 a simple but novel extension of Newton’s iteration techniques, leading to a nearly
cubic convergence rate, right from the start. This makes our techniques potentially useful
for the study and design of other iterative algorithms. Actually, in this paper, we develop
the earlier approach of [P87], originally applied to approximating complex polynomial zeros
and based on Weyl’s construction; our present techniques can in turn be easily extended in
order to improve this approach of [P87] to the latter problem. This direction seems to be
even more promising from the application point of view, because the polynomial zeros are
usually sought with a much higher precision than the eigenvalues of a symmetric matrix.
Another promising extension of this work is apparently to improving the known divide-
and-conquer algorithms for the symmetric tridiagonal eigenvalue problem (see remark 4.1

in section 4).

Our paper is organized as follows: We recall fast methods for the evaluation of the
characteristic polynomial of A and of its derivatives, in section 2, and the bisection algo-
rithm, in section 3. In section 4, we present the structure of our main algorithm, give its
informal description and also define the two basic concepts, of separation and isolation.
In section 5, we recall the double exponential sieve process of [BOT] for the eigenvalue
isolation. In section 6 we describe our algorithm 6.1 for approximating the well-isolated
(clusters of) eigenvalues of A. Rapid convergence of this algorithm is proved in section 7,
and the algorithm is further acceleratedlin section 9. In sections 8-10, we summarize
our study by presenting (in sections 8 and 9) our two algorithms for approximating the
eigenvalues of an rst matrix and (in section 10) their computational complexity estimates,

shown both in formal expressions and in tables (for two samples of specific problem sizes).

2. Definitions and auxiliary results.

Hereafter, A denotes the n x n rst matrix, a; denotes its entry (2,1), B; denotes its

entries (j —1,j) and (j,j — 1); pi(z) = det(z]; — A;) denotes the characteristic polynomial

3

of the ¢ x ¢ leading principal submatrix A; of A,

An=A4, pa(z)=p(z)=det(z], - A) ,

rE)=1, pE)=z-a,
pi(z) = (z — @;) pj-1(2) — B?_1pj-2(z) , (2.1)
where i =1,...,n; j = 2,...,n. Due to (2.1), it suffices to use 2n — 3 multiplications and

2n — 1 additions to evaluate the sequence p;(z),...,pa(z) for any fixed = (assuming that
the values A2 have been precomputed for all A, in n — 1 multiplications). The number of
sign agreements in this sequence equals the number n_(z) of the eigenvalues of A4 that are
less than z ([GL, p. 438], [Par, p. 131)). '

Furthermore, 4n — 8 multiplications and 4n — 5 additions suffice to evaluate both p(z)
and its derivative p'(z) ([BP]). Indeed, introduce an auxiliary variable z, replace p(z), for
h=3,7-1,j -2, by pr(z+2) mod 22 = py(z)+ 2 p}(z) in (2.1), and recursively compute
pr(z) and pj(z) from the resulting expressions for pi(z + z) mod 22. Likewise, we may
replace px(z) for h = j,j — 1,7 — 2 in (2.1) by px(z + z) mod 23 and then recover p(z),
P'(z) and p"(z) from py(z + 2) mod 2° = pa(z) + zp}(z) + 22pl(z)/2.

Remark 2.1. The above approach can be extended to the evaluation of higher order
derivatives of the polynomial p(z) and to computing its coeﬁicientsl.

We will measure the computational complexity by the number of the evaluations of

n—(z), p(z) and p'(z) and will deal with real semi-open intervals of the form
[a,b) = {z,a <z <b}.

Hereafter, all logarithms are to the base 2, and ¢ > 0 denotes the tolerance to the

absolute errors of the output approximations to A; y+=+3An, the eigenvalues of A, where

A2 A2 22 2.

4

3. Bisection algorithm.

Next, we will recall the bisection algorithm for approximating the eigenvalues of A
(compare [B], [PR], [LPS]).

Algorithm 3.1.

Input: an n X n rst matrix A4, two real numbers An+1 and Ag, such that Apy1 < Ap <
A1 < Ao, and an error tolerance ¢ > 0.

Output: approximations (within the absolute error bound t) to the n eigenvalues of
A in the interval [An41, Ao).

Initialize: call the interval [An41,A0) suspect.

Recursive step: for every suspect interval [g,r) such that r —g¢ > 2¢, compute

ﬂ_(m ; call the subinterval [9;-;-'3, r) suspectif n_(r) > n_((g+r)/2); call the subinterval

2
[q, Z£*) suspect if n_(%*) > n_(g); remove the label “suspect” for the interval lq, 7).

Stopping criterion: end the computation when all the suspect intervals have length
at most 2¢; for each of these intervals, output its midpoint and the number of the eigen-
values of A lying in it.

To estimate the computational cost of the bisection algorithm, note that in each its
recursive step, there is at least one eigenvalue in each suspect interval, and thus, there are
at most n suspect intervals at eéch recursive step.

On the other hand, in step s, each suspect interval has length (Ao — An41)/2%, so that
S= [log(%ﬁ)] — 1 steps suffice to arrive at the intervals of length at most 2¢, at which
point we output the soluiton. Each s-th of these S steps requires k(s) < n evaluations of
n_(z), at the midpoints of each of the k(s) < n suspect intervals. This leads to (1.1) since

the extremal eigenvalues A; and A, of an rst matrix can be easily approximated ([GL),

[P90]), so that we may assume, say, that Ap41 — Ag < 2(A; — Ap).

4. Separation and isolation.

Our objective is to modify the bisection algorithm to accelerate its convergence. We

5

will still rely on the recursive partitioning of the input interval [A,41,A0) by its interior
points, but not necessarily by the midpoints of suspect intervals. One of our two major
tools will be Newton’s iteration algorithm, which is well known to have local quadratic
convergence. In fact, we will show (in sections 7 and 9) its superlinear (nearly quadratic
or nearly cubic) convergence right from the start, provided that we start with an approxi-
mation to a single eigenvalue (or to a cluster of eigenvalues) sufficiently well isolated from
all the other eigenvalues of A. We will quantitatively specify the term “sufficiently well”
by using the concept of an isolation ratio ([P87], [P89]), abbreviated as ir. For an interval
J = [m — £,m + {), its isolation ratio, ir(J), equals H/¢, H being the distance from m to
the nearest eigenvalue of A not lying in J itself, so that H > ¢, ir(J) > 1.

Now, if we have a cluster of the eigenvalues of A in a fixed real interval J, containing
no other eigenvalues of A and having its isolation ratio at least 8n, then we will prove (near)
quadratic convergence of Newton’s iteration algorithm 6.1 of section 6 to this cluster. right
from the start. Furthermore, our modified algorithm 9.1 of section 9 reaches nearly cubic
convergence, right from the start, if ir(J) > 2 + 4,/n. Moreover, the same algorithms
remain effective under the above bound on ir(J), no matter whether all the eigenvalues of
A in J form a single cluster or not. In the latter case, the algorithms converge (with the
same speed) not to a common approximation point for all the eigenvalues of 4 in J (such
a point cannot exist in this case), but to a splitting point defined as follows:

A partition of an interval [a,}) by its internal point z is called a separation step if
n_(a) < n_(z) <n_(b), (4.1)

and then z is called a splitting point.

Clearly, there can be at most n—1 separation steps of the bisection or of any recursive
partition algorithm. Due to this bound n — 1, we juﬁt need to devise a recursive partition
algorithm whose every sufficiently long sequence of successive recursive steps, including no

separation steps, rapidly converges to the eigenvalues of A. We will indeed show such an

6

algorithm in the next sections (where “sufficiently long” will be interpreted as the order
of logn), and in fact, the only remaining problem is to ensure high isolation ratios of the
initial approximation intervals. Indeed, if the isolation ratios are high enough, already
the Newton iteration algorithms rapidly converge either to an approximation point or to
a splitting point. Since there can be at most n — 1 separation steps, it follows that at
most 2n — 1 (in the worst case!) applications of these algorithms will give us the desired
approximations to the n eigenvalues of A.

Let us next turn to the problem of isolation. Looking for the increase of the isolation
ratio of the original input interval, we will employ, in particular, the following simple result:

Fact 4.1. Let in(J) = 14 u for a suspect interval J (see algorithm 8.1). Then the
bisection of J either outputs two suspect intervals of half length (and then the bisection is
a separation step) or else defines a single suspect subinterval J* of J (of half length) such
that

ir(J*)>21+4+2u.

If h bisection steps have been successively applied to the interval J of fact 4.1 such
that ir(J) 2 1 + u and if neither of them turned out to be a separation step, then their
output suspect subinterval of J has length |J|/2* and has an isolation ratio of at least
14 24y,

In the next section we will recall an algorithm from [BOT] that, for any interval J of
fact 4.1, rapidly computes either a splitting point in J or a subinterval Jy of J such that all
the eigenvalues of A in J lie in Jg and ir(Jy) > 3, in which case u > 2, 1+ 2ky > 1 4 28+1,
We will also show a further improvement of this algorithm.

Summarizing, our approach has the following structure (compare section 8).

1) apply improved algorithm of [BOT], to ensure (after sufficiently many separation
steps) an isolation ratio of at least 1+ 2v for a fixed v > 1 (v = 1 in the version of [BOT)),
for every eigenvalue or every cluster of the eigenvalues of A;

2) apply the bisection algorithm to increase the isolation ratios to at least 8n or to at

7

least 2 + 4/n;

3) apply Newton’s iteration (algorithm 6.1) or its refinement (algorithm 9.1) to obtain
approximations to the eigenvalues of A within the fixed tolerance to the errors.

The process may be interrupted (at most n — 1 times) by the separation steps, and
then it is recursively repeated.

Remark 4.1. Steps 1) and 2) can be included in all the known divide-and-conquer (d.-
c.) eigenvalue algorithms ([BP], [C], [DS]), to ensure faster convergence of the subsequent
iterative processes (which vary for various d.-c. algorithms). Such an inclusion has been
elaborated in [BP}, but now we may also incorporate new improvements, of step 1 (shown
in the next section) and of the subsequent Newton iteration (by using our algorithm of
section 9). The power of the application of our approach is accentuated in the case of the
d.-c. algorithms because they immediately furnish us with approximate separation of the

eigenvalues of A.

5. Double exponential sieve.

For simplicity, we will study the case where a (single or multiple) eigenvalue A lies in
the interval [0,2) and is the only eigenvalue of A lying in this interval, and we will only
comment on the extension to the general case at the end of this section.

By applying one bisection step, we will first specify in which interval, [0, 1) or [1,2),
A lies. Without loss of generality, let 0 < A < 1. At this point, to see the main difficulty,
assume that A lies very near 0 and that so do some negative eigenvalues of 4. (This
situation so far has no perfect solution in the known implerﬁentations of the divide-and-
conquer algorithms, [C], [DS].) In this case, the bisection process yields the isolation too
slowly. Indeed, it is much more efficient in this case to compute n_(z;) not for r; = 27*
but for z; = 2"2i, t =0,1,.... This is precisely the strategy of our next algorithm, and
this strategy (after its refinement) turned out to be the most effective means for rapidly

ensuring higher isolation.

Let us next formally describe the algorithm.

For a fixed tolerance t, 0 < t < 1, we will seek two real values a and b such that
0<a<i<b<l

and either

b—a < 2t (5.1)

(in which case |A — (a + b)/2| < t, so that the point (a + b)/2 approximates A within the

error bound t) or else

b<2a (5:2)

(in which case the isolation ratio of the interval [a, b) is at least 3).

The double ezponential sieve algorithm of [BOT] computes the desired values a and
b in [loglog(1/(2t))]* evaluations of n_(z). More precisely, the algorithm of [BOT] has
been devised for approximating real polynomial zeros; we will restate it for the symmetric
eigenvalue problem and will then improve it a little.

The algorithm first successively evaluates n_(z;) for z; = 2_2'., i=1,...,¢1, where

g1 = min{[loglog(1/(2t))] , _min {¢, n—(zi) <n-(1)}}.

If g1 = [loglog(1/(2t))], then 0 < X < 2¢, and we satisfy (5.1) by setting a = 0, b = z,,.
Otherwise, A lies in the interval J = {},a; = 75, S A < 2451 = b}. If gi =1, then
ir(J) > 5/3, and we increase this ratio to at least 11/3 in at most 2 applications of fact 4.1.
Otherwise, we apply the same double exponential sieve procedure to the latter interval.
Let g denote the number of the evaluations of n_(z) in these applications. Then we either

satisfy (5.1) by setting a = a;, b =a2 = a; + (b — 01)2_2" or else obtain that
a = a; + (bl — 61)2_2" <A<a + (bl - 01)2—'2”—1 =b.

Since b; — a; < 1, the length of the latter interval, b; — ag, is less than a; if g2 > ¢;, and

in this case, we set a = a3, b = b, and satisfy (5.2). Thus, it remains to consider the

9

case where g2 < g;. Recursively, we arrive at a decreasing sequence of positive integers

{g1,92,93,...} ending with a term g, such that setting

satisfies (5.1) and/or (5.2). Since the sequence {g1,92,...} strictly decreases, we have
u < g1, so that the overall number of the evaluations of n_(z) in the entire process is at
most
u _
To=) gi<1+2+--+g =(91+1)91/2, g1 = [loglog(1/(2t))] . (5.3)
i=1

Extension. If the input interval [0, 2) has been replaced by any interval J of length
2L, which may contain several eigenvalues of A, then the above process can be immediately
extended so that, in at most (g} +1)g} /2 (for g] = [loglog(L/(2t))]?) evaluations of n_(z),
we either compute a splitting point z in J [compare (4.1)], thus defining a separation of the
eigenvalues of A from each other, or else output a subinterval J of J containing the same
eigenvalues of A as J and such that lj | < 2t (which ensures the desired approximation to
all the 2L eigenvalues of A in J) and/or ir(J) > 3 (which ensures good initial isolation of
these 2L eigenvalues from the other eigenvalues of A).

Improvement. The double exponential sieve process can be applied with any base
1+ v > 1, rather than with the base 1 4+ v = 2, as in [BOT], that is, we may initially set
= {J +'v)“2i and compute n_(z;) as above, fori = 1,...,g1(v); then we shall recursively
apply a similar process to the intervals {A, 24, () £ A < Zg,(v)-1}, £ =1,2,...,u(v). In
this case, the complexity estimate (5.3) (extended to any interval of length 2L) changes

into the estimate

T (v) = (91(v) + 1) g2(v)/2, 9a(v) < [log (log(L/(2t))/log(1 +v))] , (5.4)

and the lower bound on the isolation ratio of the output interval of the double exponential

sieve process remains equal to 3, except for the case where g; = 1, and then this ratio

10

changes from 3 to 1+ 2/v. In the latter case, h applications of fact 4.1 increase the ratio to
at least 1+ 2'1* /vy, which is at least 3 if h > logv. Thus, we shall extend the complexity

bound (5.3) (adjusted to the interval L) to the following estimate:
TU(U) = max {T{]*(U)a HOE 'U-l} ’ (55)

which we may optimize by choosing an appropriate value for the parameter v. In particular,
consider the two cases:
(a) log(L/(2t)) = 69, (1) = 7,
(b) log(L/(2t)) = 34, ga(1) = 6.
Then we may set v = 512 in case (a), v = 64 in case (b) and obtain from (5.3), (5.5)
that
T =Th(l) =128, To(v) =9, in case (a),
To=To(1) =15, To(v) =6, in case (b),

Due to the influence of the choice of v on the subsequent computations, it turns out

to be more effective to set

v=19, Ty(v)=10, in case a), (5.6)
and

v=34, Ty(v)=6, incaseb). (5.7)

Remark 5.1. The equations (5.3) and even (5.5) give us overly pessimistic estimates,

because for a random A, chosen under the uniform probability distribution on the interval

from 0 to 1, we have that
Probability{gi(v) > i} = (1 +v)™? ,

and similarly, Probability{gi(v) > i} also rapidly decreases to 0 as ¢ grows, for all k.
Moreover, the same effect can be achieved by means of the randomization of the choice of

v, rather than A.

11

6. Accelerated computation in the case of good initial isolation.

In this section we will propose an algorithm that, for a given interval J having a
sufficiently high isolation ratio N, either separates the eigenvalues of A in J or approxi-
mates all of them (within a fixed tolerance ¢ to the errors) at the cost of O(loglog(]J]/t))
evaluations of n_(z). The choice of N will be specified in sections 7-10.

We will first formalize our task as the following computational problem:

Problem 6.1. Input: real a, b, N, ¢ and integers j, k, n_(a), n_(b) such that
t>0, b>a, j20, k21, j+k<n,

A_,-+k+1Sa—C<a§)\j+k§’~§/\j+1<b<b+C§/\j (61)

where C' = (b— a)(N —1)/2.
(Due to the above relations, the interval [a,b) contains exactly k eigenvalues of A,
that is, Aj41,..., Aj4&, and has an isolation ratio of at least N.)

Output: a real y such that
/\j+k -t S f2 S /\j+1 4+t (62)

and the integers n_(u — t), n_(u +1).

Once these output values are available, we have that either
no(utt)=n_(b), n_(u—t)=n_(a)

(in which case

p—t<Ajpp <o <A <p+t,

so that p approximates all the eigenvalues Aj41,...,A;4x within the error bound ¢) or

n_(p+1t) <n_(b) [and then p + ¢ is a splitting point,

A Sp+t <A

12

or n_(p —1t) > n_(a) [and then pu — t is a splitting point,
Ajrk <p—t< A] .

To solve problem 6.1, we will apply Newton’s iteration for computing the k-fold zero
of a function. Since we deal with a cluster of the zeros of p(z), well isolated from the other
zeros of p(z) (because we assume that N and C are large), this cluster should behave like
a k-fold multiple zero of p(z), and Newton’s iteration ils expected to converge rapidly. Our
analysis in the next section confirms this expectation.

Let us next formally describe a recursive algorithm that realizes this idea in order to
solve problem 6.1.

Algorithm 6.1. Initialization: set ap =a, bo = b, Ny = N, t; = (bo — ap)/2.

Recursive step i, i = 0,1,.... Choose a nonnegative h; (according to remark 6.1

below) and compute

¢ = b + (b — @)k (6.3)
e = i = kpes) /ol (c1) (6:4)
tisr = 2(bi — ai)(hi + 1)°M; / (k — 2(h; + 1) M) (6.5)
where |
[S o i] }. (6.6)

N; 41424 N;—1-—2h;
[Note that (6.4) represents Newton’s iteration for approximating a k-fold zero of p(z).] If
tiy1 < i, then output y = y;, compute and output n_(u—t), n_(p+t) and end. Otherwise

compute @i+1 = i — tiy1, biy1 = pi +tiy1, n-(aiy1) and n_(b;44).
n—(a) < n_(aj4+1),
output 4 = @iy, compute and output n_(u —t), n_(p + t) and end. Otherwise, if

n—(bit1) <n-(b) ,

13

output g = biy;, compute and output n_(g —t), n—(g +t) and end. Otherwise, set

Ni —1)(k = 2(hi + 1)M;)
4(h; +1)2 M; T

Nit1 = ((6.7)

where M; is defined by (6.6), and go to step ¢ + 1.

Remark 6.1. Estimating the complexity of our computatioss in sections 7, 8 and 9,
we will focus on the cases where h; = 0 and h; = 1, providing also the analysis in the case
of any positive h; < (N; — 1)/2 (in section 7) and h; < (N; — 2)/2 (in section 9). The
two choices of h; = 0 and h; = 1 for all : lead to about the same complexity estimates
for our algorithms. Due to the symmetry, this analysis can be extended to the chcﬁce of
h; < -1 [after the respective ad.justment of the expressions (6.5) and (6.6) for ¢; and M;].
The choice of h; € —1 in the cases where a; — Aj+k+1 > Aj — b; and of h; > 0 otherwise

should slightly improve the convergence of the algorithm.

7. Analysis of algorithm 6.1.

To analyze algorithm 6.1, we will assume that 2h; < N; — 1 and will first recall that

n

~p'(z)/p(z) = trace((4 —21)7) = 3" 1/(A, - 2)

r=1

a<A,<b, r=j+4+1,...,7+k,
Ar<a-0C, r=j+k+1,...,n,
Ar 2 b+ C, F= 1y g

where C = (b - a)(N —1)/2 [as in (6.1)].

For large C and N and for smaller positive kg, the reciprocals of the eigenvalues of
A — I from the interval [a,b) dominate in the entire sum —p'(z)/p(z) = T"_, 1/(A, —)
if'a < z < b Therefore, —p'(z)/(kp(z)) well approximates the average value Sy/k of
these k largest reciprocals. On the other hand, k/Sy; must lie between A j+1 and Aji,

and consequently, —kp(z)/p'(z) must lie in or near the interval A j+1,Aj+k). When we

14

compute —kp(z)/p'(z), we may include the latter unknown interval in a small subinterval
of [a, b) lying about pg of (6.4) and having a higher isolation ratio than [a, b). We will next
formalize this argument and will apply it recursively, to prove both rapid growth of the
isolation ratio and rapid decrease of the interval length in the recursive process.
Examine step ¢, for 1 = 0; denote that k = hg, My = M (to simplify the notation).

Since co = b+ (b— a)h [see (6.3)], the latter inequalities imply that

(a=Wh+1)< A -co<(a=bh, r=j+1,...,5+k,

Ar—co (N +14+2h)(a-b)/2, r=j+4+k+1,...,n,

Ar—co 2 (N —1-2h)(b-a)/2, = Lad i

Therefore,
i+k 1 k
So = < , 7.1
° r§1 Ar—co ~ (a=b)(h +1) (e
e s (7.1a)
V=t -
2n—j—k) = 1
SS;= Z <0,
(N +1+2h)(a—b) e A
0<S=) < &
2 A —c” (N-1-2h)(b—a)’
|S1 + S2| < 2M/(b - a) ,
_ n—j—k j n—1
M=t oo Tl S
[compare (6.6)]. It follows that
1 _ S .S‘1+Sg _Sn
kp(co k /\—co_k 5%)=+,
2h+1)(n—1
1Pl = 15 + Sal/ISol < 2(h + 1) /e < A2A Dm =) (2)

E(N—1-2h)

15

Consequently,

kp(co) _ k
o)~ TF % (73)

We now deduce from (6.1) and (7.1) that

jtk
1 < E‘i _ 1 Z 1 < 1
/\J+1 — Cp k k — /\J — Cy /\j+k—60
r=3+1 .
and therefore,
(a . b)(h + 1) S /_-H.k - Cp S k/So S AJ'+1 -y < (a == b)h s (74)
Aj+k < (k/So) +co < Ajtr . (7.5)

On the other hand, recall from (6.4) and (6.5), for i =0, that

to = co — k p{co)/p'(co) , (7.6)
t1=2(b—a)(h+1)? M/(k—2(h + 1) M) . (7.7)

Our choice of h and N will guarantee that |p| < 1, and we deduce from (7.2) that

oh+1)M oAb+ DM AR+1)M
o/ Pl S T S Wa =2t F DM = Fo ok T AT

Combining the latter inequality with the bound k/|So| < (b—a)(h + 1), of (7.4), and with

the equations
kol _ gy Ple0) i‘
I(1 + p)Sol P'(co) So

[implied by (7.3)] and (7.7), we obtain that

kol o pleo) | 1
5 I(1+p)So| k'P’(CO) * 50[' (-3

From (7.5) and (7.8), we now deduce that

p{co)
p'(co)

1
Aj+1 +t 2 (k/So) + co + k| + S—0| 2 ¢o — kp(eo)/p'(eo) ,

16

and due to (7.6), we conclude that
Ajt1+ 11 2 po .
Similarly, we deduce from (7.5), (7.6) and (7.8) that
Ajgk —t1 < po

If t; <t, we satisfy (6.2) by setting u = pg. Otherwise, we have 3 cases:

Case a). n_(go — t;) > n_(a). Then
Ajrk < po —t1 < Ajqr

and g = pg — t; satisfies (6.2).
Case b). n_(po — t1) =n_(a), n—(go + t1) < n-(b). Then

Ajrk S po +11 < Ajg

and g = po + t; satisfies (6.2).
Case c). n_(po — t1) =n_(a), n—(go +t1) = n—(b). Then

po—t1 S Atk A < po+t,

and by setting
ay = po —t1 by =pot+t1, | (7.9)

we bracket the eigenvalues Aj4,. .., Aj41 in the interval [a;, b;) of length 2¢;. The distance
from yo to the nearest eigenvalue of A lying outside the interval [a;, b)) is at least C — ¢,
[for C of (6.1)]. Therefore, the isolation ratio of this interval is at least

b—a (N =1)(k=2(h+1)M) _

T et 4(h+12M B (7-10)

Ny =(C/t))—1=

which is (6.7) for ¢ = 0, and we will choose N = 4n so as to ensure that Ny +1 > N —1

and, therefore, 2t; < b — a.

17

Thus, the first step of algorithm 6.1 either solves problem 6.1 or reduces its input
interval [a,b) to a shorter interval [a;,b;), conta.ining- exactly the same eigenvalues of A.
In the latter case, we again arrive at problem 6.1, with a, b, N replaced by ay, b;, Ny,
respectively [according to (7.9), (7.10)], and recursively repeat step : of algorithm 6.1, for
= 1520000

From (6.6), we obtain that

n—1
M. < —
FE N -T2k

Substitute this bound into (6.7) and (6.5) and deduce that

k —2(h; + 1)M;

Nipr 2 (Ni = 1)(Ni = 1- 2}“)4(?;,- +1)2(n—-1)

1,

N; -1 " 4(b; — a;)(hi + 1)*(n — 1)
Nig1 = (Ni—1=2h)(k —2(hi + 1)A5;) °

bit1 — Givy1 = 2tiy1 < 28
fori =0,1,.... It follows that

bit1 —aip1 _ n
b,-—a.; —O(kN,'),

N—?/N§+1 = O(n/k) "

For a sufficiently large N, this implies a superlinear (and actually almost quadratic)
growth of N; (with the growth of) and a respective decrease of ¢;.
To give specific estimates, let us next set h; = 0 for all 7 (compare remark 6.1), apply
the above lower bound on N;4;, and obtain that
(4n — 4)(Niya1 + 1) > (N; — 1)*(k - 2M5)
>Ni—1)*k-(2n—2)/(Ni—=1)) = (Ni = 1)(N; —2n+1).

Assume that N = ygn, 7o > 6, and recursively deduce that

N:'+1 > Vi1l 7i+l=(75_2)75/41 i=0:11"-

18

Set v; = 44? + 2,1 = 0,1,..., and obtain that Wi > ('r;)?" for all integers ¢ > 0 and
7 2 0. It follows that, for any fixed ; > 0,
Nityj > (4(7;)2' +2)n,

471—4 T .
P bin: < =\—2 ;
I+J+1/ 1+J — N;+J _ 2n+ 1 < (7})

ifpitl :
titj41 < (7-)1 2 Ly go= 01550 (711)

In particular, for j = 0, we obtain that
tirs < (19) 77 (b—a)/2.
Hereafter, we will denote that
H = log((b — a)/(21))
[which corresponds to (1.2) with b —a = 2(A; — A,,)], and we now obtain that
T(+43) = Mog(1 + H/log 13)] -1 (7.12)

recursive steps of algorithm 6.1 suffice to solve problem 6.1 assuming that N = yn, v > 6,
Yo > 1, and h; = 0 for all .

In particlar, we have:

T(2) = [log(H +1)] -1, (7.12a)
T(4) = [log(H +2)] -2, (7.12b)
T(8) = [log(1+ H/3)] -1, (7.12¢)
T(16) = [log(H +4)] - 3, (7.12d)

and we need to set N = 10n, N = 18n, N = 34n and N = 66n in order to arrive at

(7.12a), (7.12b), (7.12¢) and (7.12d), respectively.

19

Let us now set h; = 1 for all 7. Then

M; < (n—-1)/(Ni-3),
16(n — 1)(Nig1 +1)/(Ni = 1) > (Ni = 3)(k — 47;) > (N; — 3)(k — 4(n — 1)/(N; = 3))
= k(N;—3)—4(n—1)> N; —4n +1
since k > 1.

It follows that, for N = yn and for a sufficiently large v, we have:
Nit1 > 7vitin,
73‘+1=(71'_4)7f/161 i=011:“'
Set v; = 1647 + 4 and deduce that
* *y2 - : * 2"
Yo 2P Yeai 2
for all integers 1 > 0 and j > 0. Therefore, for any fixed integer j > 0, we have;

Nitj > (16(7;)" +4)n,

16n — 16

<(y)7%,
i+ —4dn+1 (7")

tivjt1/tivj <

which again gives us (7.11), (7.12), (7.12a), (7.12b) and (7.12c), although this time for

a slightly distinct expression of 4§ through 4, = «, that is, for 95 = (70 — 4)/16. In

particular (assuming h; = 1 for all i), we now need to set N = 36n, N = 68n, N = 132n
and N = 260n in order to arrive at (7.12a), (7.12b), (7.12c) and (7.12d), respectively.

Remark 7.1. The same techniques of the analysis would improve the bound (7.12)

for k > 1. A small improvement (with a more difficult analysis job) could also be obtained

based on choosing positive j in (7.11).

8. The eigenvalue algorithm.

20

Combining the algorithms of the previous sections, we will now accelerate the bisection
algorithm 3.1. We will first restate the eigenvalue problem for any fixed interval [a,) as
follows:

Problem 8.1. Input: an n X n rst matrix 4, real @, b, t and the integers k, n_(a),
n_(b) such that ¢ > 0,a< b, k=n_(b) —n_(a) >0,0< n_(a) < n_(b) < n.

Output: a splitting point z, such that (4.1) holds, or an approximation, g, within
the tolerance ¢, to all the eigenvalues of A lying in [a, b).

In the latter case, pu serves as a desired solution to the eigenvalue problem on la, b).
In the former case, we reduce the eigenvalue problem on [a,b) to two smaller eigenvalue
problems on two subintervals. Proceeding recursively, we will arrive (in at most k — 1
steps) at the former case for problems 8.1 on all the subintervals; the solutions on these
subintervals combined define a solution of the original eigenvalue problem on the input
interval [a, b).

An algorithm for the solution of problem 8.1 now follows, with the choice of the
parameters v, N and h; according to the recipes of sections 5-7.

Algorithm 8.1.
1°. Fix an appropriate positive v and apply the double exponential sieve process of section 5
to the interval J = [a,b). The process either solves probiem 8.1 or outputs a subinterval
J of [a,b) containing the same eigenvalues as the input interval [a,b), and in this case, the

process also outputs ir_, a lower bound 3 or 1 + 2/v on the isolation ratio of J.

2°. In the latter case, fix a sufficiently large N and apply [log((N — 1)(ir_ — 1))]
bisection steps to the interval J. This either solves problem 8.1 or else outputs a subinterval
J* of J containing the same eigenvalues as J and having an isolation ratio of at least N

(see fact 4.1).

3°. In the latter case, choose nonnegative h;, i = 0,1,..., and apply algorithm 6.1 to
the interval J*.

Since there can be at most k —1 separation steps, approximating all the k eigenvalues

21

of A in [a, b) requires at most 2k —1 calls for algorithm 8.1, that is, in a pessimistic estimate,
at most (2k — 1)(To(v) + T1(v, N)) evaluations of n_(z), for k¥ < n, and (2k — 1)T>(N)

evaluations of p(z)/p'(z) where

(o) = max (T3 o), logel) - T5(0) = (0:0) + Dor(u)/2 , 01(v) = flog s
)
[compare (5.4) and (5.5)],
1 (0, ¥) = [log((N ~ 1)o/2)] (82)
T,(N) = log(cH +d)] . (53)

H = log((b — a)/(2t)); [a,d) is the input interval, ¢ > 0 is the tolerance to the output
errors, the constants ¢ and d should be defined depending on the choice of the values N
and h;. In particular, by choosing N = (475 + 2)n, h; =0, for all i, or N = (1643 + 4)n,
h; =1, for all i, we arrive at To(N) = ?(75‘), where f('yg) satisfles (7.12).

Remark 8.1. The worst case factor 2k—1 in the above estimates is overly pessimistic.
Indeed, the number of recursive calls for each stage 1°, 2°, 3° of algorithm 8.1 actually
varies from k to 2k — 1, and if it reaches the value 2k — 1, then the number of iteration
steps in each call to stages 1° and 3° must be substantially less than the estimates (8.1),
(8.3) shows (these estimates would have implied the output error of t/(2[log k]), and thus

the algorithm should stop earlier).

9. Acceleration of algorithm 6.1

When we apply algorithm 6.1 at step 3° of algorithm 8.1, we may have available some
approximations to all the eigenvalues of A [not only to Aj41,..., A+, lying in the input
interval [a, b)]. Next, we will use such approximations in order to accelerate the convergence
of algorithm 6.1 and to decrease the value of N used in this agorithm. For this purpose,

we will further weaken the already decayed influence of the reciprocals 1/(A, — ¢;) of the

22

remote eigenvalues A, for r < j and r > j + k, on the value p'(¢;)/p(ci). We yield this
simply by subtracting (from this value) 1/(A¥ — ¢;), the approximation to such reciprocals,
readily available since A% are available. Our further analysis shows that, indeed, this well
serves our purpose. To simplify the presentation, we will only show (in some detail) the
first recursive step (accelerating step 0 of algorithm 6.1) and will assume that we are given

approximations A} to all the eigenvalues A, of A, for r =1,...,n, such that
Ar—As <t*=(b—a)/2. (9.1)

In fact, we may ensure this assumption by arranging the steps of algorithm 6.1 so as to
always work with the largest of the available suspect intervals output at stage 2°.
We now modify algorithm 6.1 by replacing the values g;, involved in the expression

(6.4) of the recursive step z, by the values u} defined as follows:

pi =citklgi,
p'(ci) 4 1 - 1
9 =— N Z x _ . - Z * !
p(ct) r=1 ’\" L =j+k+1 Ar &
it =0,1,.... [The evaluation of the two latter sums and their subtraction from —p'(c;)/p(c;)

requires 3(n — k) extra arithmetic operations for each i.] Hereafter, we will refer to this
modification of algorithm 6.1 as to algorithm 9.1 and will refer to the respective modifi-
cation of algorithm 8.1 as to algorithm 8.1a.

We need to specify the choice of the parameters h; and N in this algorithm. We may
set h; = 0 for all ¢, which should lead to faster convergence of the algorithm, but leaves
the value r(¢;) = —p'(ei)/p(ci) unbounded. To avoid overflow, we should first compute the
reciprocal 1/r(¢;) and end the computation detecting some eigenvalues of A in the interval
(bi — t, ;) if this reciprocal value is close to 0.

Another option is to assign small positive values to h;, which should prevent the

computer from overflow since

n—k
C—=h;°

1
A,-—C,'

P (ci)/p(ea)l =) < hi + C=(b-a(N-1)/2.
r=1 y

23

If V denotes the minimum value that causes overflow, then the bound |p'(¢;)/p(ci)| < V is
guaranteed for any h; exceeding k/(V — -g-:—:‘), and thus it is sufficient to choose positive
h; of the above order.

To ensure rapid convergence of a.lgdrithm 9.1, we need a milder restriction on the

parameter /N than in the case of algorithm 6.1, namely, we will set
N=6n'24+2,

for a constant © to be specified later on.
Next, we will analyze algorithm 9.1 extending our analysis from section 7. Setting

; 1
again Sy = E'H'k

r=j+1 ’\r—_c‘;, we obtain that

i n
o=S+)Y d+ > dr, (9.2)
r=1 r=;3+k+1
d, o ! Ar— A Bt 6l (9.3)

T de—y M—tm el —g)

We recall that, unless j < r < j + k, we have the bound,

1 2
-l S (N=1-28)0-a)

which we extend to the bound

1 2
<
| A2 —co] “ (N—=2—-2h)b-a)’

due to (9.1).
Combine these bounds with (9.1)-(9.3) and obtain that

|90 — Sol < (n = k)/((N =1=2h)(N —2-2h)t").

Denote
- p*=(g90 — S0)/ 50 ,

24

so that go = (1 + p*)So. Deduce from the latter relations and from (7.1a) and (9.1) that
k/|So| < (b—a)(h +1),

10*] < 2(h+ 1)(n — k)/((N = 1= 2h)(N —2 — 2h)k) . (9.4)

Our choice of (small) h and (large) N will guarantee that [p*| < 1, and we will obtain the

following bound:

k/So — k/qo| = |p*(k/So)/(1 + p)| < 11,

for

1 =2(h+1)2(n—k)(b—a)/((N —1—2h)(N —2—2h)k(1+p")) .
We have from (7.5) that

1 So 1
& —
—k—

k
" Aj+kS—U+CoSf\j+1 ,

/\J‘+1 = Co ’\j+k — Cg S

and it follows that

Mk —t] Spg=cot+k/go S At +t .

Thus, step 0 of our modification of algorithm 6.1 [based on the replacement g of (6.4) by
p2] either solves problem 8.1 or else brackets the eigenvalues Aj+x,...,Aj+1 in the interval

(aj, b}) of length 2¢7 where
ai=pg—t1, bi=pmoti.

The isolation ratio of this interval is at least
Ny =(b—a)(N-1)/(2t]) -1
(9.5)
=1+ p*|(N - 1)(N —1—-2h)(N —2—2h)k/(4(h+1)*(n—k)) -1,
which is substantially larger than N;41 of (7.11) for i = 0 and for large N = Np.
Replacing a, b, N by af, b}, N7, we may recursively repeat the computations. The

above estimates for the growth of N and for the respective decrease of the interval length

25

b — a can be recursively extended if we follow the (already pointed out) policy of always
applying our algorithm to the currently largest approximation interval, thus improving the
currently worst approximations to the eigenvalues of A. For N = @ n%*** @ > 1, we have
that

On’’/Nf =0(1),

which shows a nearly cubic growth of the isolation ratio in the transition from [a,b) to
[a},b}). b— a, the length of the interval [a,}), decreases at a similar rate in the transition
to b; — a}, the length of [af, b}).

Let us now set h = 0, denote N = N, and obtain that
(4n—a) (N7 +1) > (Vg —1)[(Ng —1)(Ng —2)=2(Ng —1)] = (N3 —1)((Ng)2 —3Ng —2n-+4]..

Similarly, we may bound the isolation ratios N, , in terms of N at the next recursive
steps 1 = 1,2,... provided that h; = 0 for all 1.
Setting N = N§ = Oonl/? 4+ 2, for Oy > 4, we may recursively deduce from these

bounds that
N >0:an'? 42, 044, =(02-2)0;/4, i=0,1,....
Denote @ = (0,/2) — 1, and obtain that
0,=207+2,
Nig1 > (2074, + 20?2 + 2,
05 > (01)?, i =0l
Therefore, for all integers ¢ > 0, 7 = 0, we have that
i > (05)

Nigj > (203 + 201/ + 2.

26

For any fixed j > 0, we have:

" - 4dn — 4
tivjer/tie; = (Nigj — 1)/ (N +1) < (N7)P —3N%, —2n+4
T3 e

<@,

1 =20,1,..., and consequently,

(1_35+1 312

titvi+1 < (0F) tj, 1=0,1,... (9.6)

In particular, for 7 = 0, we obtain that

(1_35+1

tir <(09)" " (b -a)/2,

and therefore, for H denoting log((b — a)/(2t}), we have that
7(©5) = [(log(1 + 2H/log ©3))/ log 3] — 1 (9.7)

recursive steps of algorithm 9.1 suffice to solve problem 6.1 provided that h; = 0 for all 1
and N = (207 +2)n'/2 42, 03 > 1, 6, > 4.
Remark 9.1. Setting j > 1, we may extend (9.7) to similar bounds for any 0§ >
32 —1.

In particular, we obtain that

T(2) = [(log(L + 2H))/log3] -1, (9.7a)
T(4) = [(log(1 + H))/log 3] — 1, (9.7b)
T(8) = [(log(3 + 2H))/log 3] -2, (9.7¢)
T(16) = [(log(2 + H))/log 3] — 1, (9.7d)

and we need to set N = Onl/? + 2, with O taking the values 4, 10, 18 and 34 in order to
arrive at (9.7a), (9.7b), (9.7c) and (9.7d), respectively.
Let us also supply the estimates in the case where h; = 1 for all ;. In this case. we

deduce from (9.4) and (9.5) that

16(n—1)NF +1 > (N3 —1)[(Ng - 3)(N3 —4) —4n+4] = (N; = D[(N3)2 = 7N} — 4n +16]

27

and similarly bound the isolation ratios N? of the intervals [a;, b;) computed at the next

recursive steps ¢ of algorithm 9.1, for : = 2,3,....

Setting Ng = Ognl/2 42, for Oy > /20, we deduce that
Ni>0in'? 42, 044 =(02-4)0;/16, i=1,2,...
Now, we denote that
O =(0;/4)-2, 0;=40}+2

and deduce that
@:‘+1>(6}')3, 1=0,1,
Then, using the equations

f§+1 _ N:—]. _ 16n — 16
ti N, +1 (N!)?—=TNf—4n+16"

we again deduce the bound (9.6), (9.7), (9.7a2)—(9.7d), although this time we assume a
distinct expression for Qg through O, that is, @9 = 40§ + 2. In particular, we need to set
that N = Ng = Qgn!/? + 2 (for Oy taking the values 10, 18, 34 and 66) in order to arrive
at (9.7a), (9.7b), (9.7¢) and (9.7d), respectively.

Remark 9.1. Seeking convergence acceleration at the expense of performing a little
more work per iteratioﬁ, we may generalize algorithms 6.1 and 9.1 by replacing (6.4) by

more general expressions, such as

fii = c; — (k/@)"?,
n

. 1 L1 1
LD VR s Moty D Ve

r=j+1 r=1 r=j+k+1 VT

for some fixed natural d > 1, say, for d = 3. Note that the value
- 1
z — - e T E
> T trace ((A, cil))

28

can be computed by extending the techniques of section 2. [In the extension of the same
approach to approximating polynomial zeros, pointed out in the introduction, the latter
value can be easily obtained from the d leading coefficients of the input polynomial p(z),

by using Newton'’s identities.]

10. Summary of the complexity estimates.

We are now ready to summarize our previous analysis into the estimates for the
arithmetic complexity of the solution of problem 8.1, assuming that k = n, a < A, <
A1 £ b, b—a < 2(A; — An). We recall (8.1)—(8.3), recall the need for 3n extra arithmetic
operations in every iteration of algorithm 9.1 (versus algorithm 6.1), apply the operation

count for the evaluation of p(z) and p/(z) from section 2,-and obtain that
(4n® + O(n))(2To (v) + 2T3 (v, N) + vT2(N)) (10.1)

arithmetic operations suffice for the solution (for any choice of v > 0 and N, according to
sections 5, 7 and 9) provided that either v¥T5(N) = 47(42) [compare (7.12)] or vT3(N) =
5.5%(@3) [compare (9.7)], depending on which of the algorithms 8.1 or 8.1a we apply. The
estimate (10.1) implies the estimate (1.3) of the introduction.

Next, we will calculate the value
T(N,1)=2T(1)+2T4(1,N) + vIR(N) (10.2)

for both our policies of choosing h; in algorithms 6.1 and 9.1 (that is, for setting h; = 0 or
hi =1 for all). We will consider the two cases:

a) n = 1000, H = log((b — a)/(2t)) = 70,

b) n =500, H = log((b— a)/(2t)) = 35.
We first obtain from (8.1) that

91(1) = [log69] =7, Tp(1) =28, in the case a), (10.3a)

91(1) = [log34] =6, Tp(1) =15, in the case b), (10.3b)

29

The values of Ty (1, N) = [log(/N —1)] — 1 (as the functions in 4 and @) and the values
of vT5(N) (as the functions in 4§ and ©}), associated with the values of N of our interest,
are displayed in Tables 10.1, 10.2 and 10.3. Tables 10.4 and 10.5 relate 4 to v and © to
©g. Table 10.6 collects the values 2Ty(1), 271(1, N) and vT3(N) for all choices of g, OF,
including also subdivision of the values 2T;(1, N) into the two cases, where h; = 0 and
hi = 1, respectively. In the two bottom lines of Table 10.6, we display the values T(1, N),
defined by (10.2), for each of the two cases (where h; = 0 and k; = 1).

The values shown as the numerators of fractions correspond to the case a), and ones
shown as the denominators correspond to the case b).

The data for T(1, N) can be compared to the values 128 (in case a)) and 64 (in case b)),
which represent the complexity of the bisection algorithm. Table 10.6 shows that with a
successful choice of the values 43 and ©f, we may obtain superior worst case estimates. In
parentheses in the third and in the two last lines of Table 10.6, we show these estimates
decreased, due to optimizing the value v [compare (5.6) and (5.7)).

Furthermore, unlike the case of the bisection algorithm (whose worst and average case
complexity is about the same, algorithms 8.1 and 8.1a, for a large class of input matrices,
may actually perform substantially faster than the worst case bounds suggest (compare

remarks 5.1, 7.1 and 8.1).

30

Table 10.1. Ty(1,N) and Ty(v,N) for N = yn and N = On!/2 4.2, v = 19/3.4.

| v | 10 | 18 | 34 | 66 | 36 | 68 | 132 | 260 | |
I N I I I
LT T T
| © I | 4 |10 |18 |34 |66 |
[]
oL T T T T T R
ITAN) I I 13 I8 8 18218 (218 |8 |8 |2 |1
| (Ta(e, MY (5] (B3] G G G G (3] ()] (A1) (32)] (33)] (19)] (13)]
L I Y I R Ay e R R R e e
Table 10.2. vT,(N) = 4T(12).
% 2 4 8 16
4T(73) 24/20 20/16 16/12 16/12

Table 10.3. vT5(N) = 5.5T(0}).

o; 2 4 8 16

5.57(0;) | 22/165 | 16.5/165 | 16.5/11 | 16.5/11

31

Table 10.4.

20} 2 4 8 16

7 (for hi =0) 10 18 34 66

v (for h; =1) 36 68 132 260
Table 10.5.

o; 2 4 8 16

© (for h; = 0) 4 10 18 34

© (for h; = 1) 10 18 34 66

32

Table 10.6.

(the case of v = 19/3.4 is shown in parentheses)

2Ti(1,N)
(273 (v, N))
| (hi = 0)
(Table 10.1)

v 2 | 4 | 8 | 16 l I l
©5	2	4	&	16
2T ()(270()	56/30 (20/12)			
[(10.32), (10.3b)]				
[[I l [

| 26/24 | 28/26 | 30/28 |32/30 |12/12 |16/14 |18/16

|
|

I

| 20/1
I(34/3o) I(ss/ao) I(as/sz) ;(40/34) |(22/16) |(24/20) |(26/20) I (28/2

I

8 |
2){

| 2T1(11N)

I I |
| 30/28 |32/30 |34/32 |34/32 |16/14 |18/16
I

20/18 | 22/20

|
I EiT,_(ul,)N)) I(38/32) I(40/34) I(42/36) I(44/38) |(24/20) I(26/20) (28/22) ; 30/24) I
I (Table 10.1) I I { I I ; I
| | | l | | I | !
| vT3(N) L s e
S T

an i

l I I I I | | | | I
]lT(l N) i 106 I 104 i 02 { 104 i IBS.S ;90.5 I 2.5 i
|(h: j'= 0) | T: I T2 | :0 | :2 | ! 0.5 | 57 l 59 |
I (T(v,N)) I (53) I (%) lI(:.—“) } (32 =(44 5 i(sg—ﬁ) I(%) if%) =
TNy e e (e (s |es (s (s | s |
| (h’ = 1) | T | T6 | T4 | T4 I ‘ 62.5 | 59 I 61 ,
i (T(v,N)) I (53) I (53) {(?) I (8) Jl(.;s X I(%) ’(%-5) Jl (257 {

33

References
[B] H. J. Bernstein, An Accelerated Bisection Method for the Calculation of Eigenvalues
of Symmetric Tridiagonal Matrices, Numer. Math., 43, 153-160, 1984.
[BP] D. Bini, V. Pan, Practical Improvement of the Divide-and-Conquer Eigenvalue Algo-
rithms, Computing, 48, 109-123, 1992.
[BOT] M. Ben-Or, P. Tiwari, Simple Algorithm for Approximating All Roots of a Polynomial
with Real Roots, J. of Complezity, 6, 4, 417-442, 1990.
[C] J. J. M. Cuppen, A Divide and Conquer Algorithm for the Symmetric Tridiagonal
Eigenproblem, Numer. Math., 36, 177-195, 1981.
[DS] J. J. Dongarra, D. C. Sorensen, A Fully Parallel Algorithm for the Symmetric Eigen-
value Problem, SIAM J. Sci. Stat. Computing, 8, 2, 139-154, 1987.
[GL] G. M. Golub, C. F. van Loan, Matriz Computations, Johns Hopkins University Press,
Baltimore, MD, 1989.
[H] P. Henrici, Applied and Computational Complez Analysis, Wiley, 1974.
[LPS] S.-S. Lo, B. Philippe, A. Sameh, A Multiprocessor Algorithm for the Symmetric Tridi-
agonal Eigenvalue Problem, SIAM J. Sci. Stat. Computing, 8, 155-165, 1987.
[P87] V. Pan, Sequential and Parallel Complexity of Approximate Evaluation of Polynomial
Zeros, Computers and Math. (with Applications), 14, 8, 591-622, 1987.
[P89] V. Pan, Fast and Efficient Parallel Evaluation of the Zeros of a Polynomial having
only Real Zeros, Computer and Math. (with Applications), 17, 11, 1475-1480, 1989.
[P89a] V. Pan, A New Algorithm for the Symmetric Eigenvalue Problem, Tech. Report TR 89-
3, Computer Science Dept., SUNYA, Albany, NY, 1989.
[P90] V. Pan, Estimating Extremal Eigenvalues of a Symmetric Matrix, Computers and
Math. (with Applications), 20, 2, 17-22, 1990.
[PR] B. N. Parlett, J. K. Reid, Tracking the Process of the Lanczos Algorithmn for Large
Symmetric Eigenproblems, IMA J. Num. Anal., 1, 135-155, 1981.
[PD] V. Pan, J. Demmel, A New Algorithm for the Symmetric Eigenvalue Problem,
preprint, 1991.
[Par] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, 1980.

34

