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1. Introduction. Solving band linear systems of equations is among the most frequent operations in
practice of scientific and engineering computations, and has long been a subject of intensive research (see
[GL] for a survey and further bibliography). A k x h matrix is called banded if k and h largely exceed its
bandwidth, which is defined in terms of its lower bandwidth and its upper bandwidth as follows: A matrix
A = (ai;) has lower (respectively, upper) bandwidth m_ = m_(A) (respectively, my = m,(A4)) if m_
(respectively, my) is the minimum nonnegative integer such that a;; = 0 for i > j + m_ (respectively,
j > i+my). The sum m = my + m_ = m(A) is called the bandwidth of A. If a;; # 0 as long as
i =j+ m_(A) (respectively, j = i+ m;(A)), then the matrix A has a lower (respectively, upper) edge.

Our main focus in this paper is the computational problem denoted LIN -SOLVE = L-S(n,m): Given
a nonsingular n x n matrix A, with bandwidth m, and a vector b of dimension n, compute the solution
T = A-'D to the linear system AT = b .

The nonsingularity assumption of LIN - SOLVE can be verified by solving the following two problems
(also of independent interest):

DET = D(n,m): Given an n x n matrix A, with bandwidth m, compute its determinant, det A,
or alternatively, if the computation is in the complex field or in one of its subfields,

|DET|? = |D(n,m)|*: Given an n x n matrix A, with bandwidth m, compute |det A|°.

Frequently, one has to solve several linear systems AT = T(:) with the same nonsingular banded
matrix A and several vectors ?(z)

We will solve this problem in two stages:
1°. PREPROCESS = P(n,m): given a nonsingular n X n matrix A with bandwidth m, compute a set

of parameters, implicitly defining the inverse matrix A~!(various choices of the set G will be specified

in sections 3 and 7).

2° . BACK - SOLVE = B(n,m): given a nonsingular n x n matrix A with bandwidth m, a vector ?(i),
and the set G of parameters output by PREPROCESS P(n,m), compute the vector A‘IT(i).

Besides the solution of LIN -SOLV E, DET, |DET|*, PREPROCESS and BACK -SOLV E, we will
present improved algorithms for two special cases of LIN -SOLVE, PREPROCESS and BACK -SOLVE:
In one case, denoted LIN -SOLVE*, PREPROCESS" and BACK - SOLV E", the input matrix A has at
least one edge; in another case, denoted LIN - SOLVE**, PREPROCESS*" and BACK - SOLVE"", the
input matrix A has both (lower and upper) edges. These requirements hold for a large class of band matrices;
in particular, they typically hold for the matrices encountered in applications to PDE’s and ODE's (see
[A] and [LP]).

We will state all the complexity estimates in the form (¢,,p,) = O(t,p), which shows that a computa-
tional problem A = A(n,m) can be solved in time t = ¢(n, m) using p = p(n, m) processors, both ¢ and p

estimated within constant factors, under the arithmetic PRAM models of parallel computing [KR], [PP).
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We will assume a variant of Brent’s scheduling principle [KR], [PP], hereafter referred to as B-principle and
expressed by the implication: O(f, sp) implies O(st, p) for any s > 1.

We recall the known estimates (from [BP], [P], [CW], [P91], [P92], [KP], [KP,a]) for the parallel com-
plexity of the computational problems M(n,q,r) and I(g), of n x ¢ by ¢ x r matrix multiplication and of

g x g matrix inversion, respectively:

(tarcmray Prtcmarry) = O(log g, ngrh®=2), (1.1)

(i Pri) = O(qﬁ(F],th.qbq)), (1.2)

provided that A = min{n,q,r}, 2 € w < 2.376, and that the computation is performed over the field of
constants F; ¢(F) < log?q if F has characteristic 0, ¢(F) < log® ¢ for any F. The bound (1.2) has been
obtained in [P91], [P92], [KP), [KP,a], by using Las Vegas randomized algorithms. |

The most recent results on the complexity of LIN - SOLVE and DET are due to [E]:

(t D(n,m}’pD(n,m}) = O(T'{ﬂ}, P‘(nrm))!

(tL-ﬁ[n.m)’vaS(n,m)) = O(T'(n},P"(n,m)),

where

" (n) = (log® )i (n)t,

i n
P*(n,m) = (H)p”"" logom n,
1 if[F|2n;
P(n) =
(1 4 loglogjg| n) logjzy n, otherwise.

In this paper, we substantially improve these estimates of [E], to the Las-Vegas randomized bounds

n (%)
O((log(;))i!(m}‘@pf(m}) (1.3)
for DET and for LIN - SOLVE (over any field of constants), which means that our parallel algorithms are

in RNC (and even in RNC" if m is a constant) and are optimum according to the definition of [KR], since
their potential work (that is, the product of the associated time and processor bounds) does not exceed the
record sequential time bounds for DET and LIN - SOLV E.

Moreover, if we solve more than an order of m linear systems AT = _b.(z) with the same n x n matrix A
having bandwidth m, we obtain a further improvement: We solve PREPROCESS at the same randomized

Las-Vegas cost (1.3), and we give a solution of BACK - SOLVE at an optimum deterministic cost
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To obtain these improvements, we applied several techniques distinct from the ones of [E]. In particular,
we introduced special preprocessing based on a 2 x 2 block factorization of the banded input matrix A
(thus avoiding a more complicated 3 x 3 approach of [E]) and on utilizing some auxiliary matrices, such
as Ip(n,m), Ir(n,m) defined in section 2, which helped us to reveal and to exploit the sparse structure
of the input matrix A and its diagonal blocks. In addition, we achieved the required nonsingularity of the
auxiliary block matrices at a substantially lower computational cost than that would have been required by
the techniques of [E], since the symmetrization and the randomization technique of [Sc] and [Z] enable us to
avoid the auxiliary computation of matrix ranks.
Under some mild additional assumptions, we obtain stronger results:

a) We deterministically obtain (1.3) for LIN - SOLVE and |DET|? over the fields of characteristic 0.

b) For the problems LIN . SOLVE" and LIN - SOLVE"", we use a completely distinct approach, based
on the reduction of these problems to the block bidiagonal linear systems, and we exploit some structural
properties of the inverse of a block bidiagonal matrix (compare [BP]). This alternative way enables us

to obtain the improved deterministic computational cost bounds:

n tf{m]

O (lo 2V (log m A= , 5
R e 3y ) el
for LIN - SOLV E**, and
n n t.l m
0 (10g(2))108 ) + tmy ()10 108 (37) e o =), (16)

for LIN - SOLVE*. The same estimates (1.5) and (1.6) apply to the problems LIN - SOLVE* and
LIN . SOLVE, respectively, when the input matrix is block bidiagonal (which includes the banded
triangular case).

c¢) Furthermore, regarding the solution of several linear systems AT = T(i) with the same n x n matrix A
that has bandwidth m and has both lower and upper edges (respectively, has a lower edge), we show how
to solve the problems PREPROCESS**, PREPROCESS™, BACK-SOLVE"" and BACK-SOLVE*®
at a deterministic cost bounded by (1.3), (1.6),

mn

O(logn, logn)’ (1.7)
and
mn
0 (logn, log-m)' (1.8)

respectively. We also deduce the same deterministic bounds (1.5)-(1.8), for the problems
PREPROCESS*, PREPROCESS, BACK - SOLVE* and BACK - SOLV E, respectively, in the

case where the input matrix A is block bidiagonal (banded triangular).
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Let us summarize: By using various new techniques, we substantially improved the algorithms of [E].
In particular, unlike [E], we reached processor optimality and, if m is a constant, the RNC? time bound
O(logn). Moreover, we obtained improved and deterministic complexity estimates for LIN - SOLV E when
the input matrix is block bidiagonal (banded triangular) and, with a general input, for LIN - SOLV E**
and LIN -SOLV E", and we improved the solution of several linear systems with the same band matrix, by
using preprocessing algorithms.

We organize our presentation in the following order: After some preliminary results in section 2, we
preprocess a strongly nonsingular input matrix A in section 3. We use the results of this preprocessing for
the solution of BACK - SOLVE in section 4 and DET in section 5. In section 6, we relax the assumption
about the strong nonsingularity of the input matrix A. In sections 7 and 8 we treat the block bidjagonal
case and solve PREPROCESS*, BACK -SOLVE**, PREPROCESS* and BACK -SOLV E". A proof
of an auxiliary result from [E] is given in appendix A. Appendix B includes Figures 1 and 2, which show the

output of preprocessing for a nonsingular block bidiagonal matrix.

2. Definitions and auxiliary results. Hereafter, 0 denotes the null matrices, Iz the k x k identity
matrix, Ir(k; 7) (B > p) the kx b matrix (‘g’ g) Eelkn) (65 o) khe bx b matein (8 f ) diag(U, V)
p
u o
0 Vv
Proposition 2.1. Let p,r,s,r),5,73,5; be seven positive integers such that » = r; + ry, s = 5y + 59,

Wi Wiy
W Wa

the matrix ( ), WT and WH the transpose and the Hermitian transpose of a matrix W, respectively.

p<r,p<s;Bbeapxpmatrix, W= ( ) be an r X s matrix, where Wiy is an r; x s; matrix;

then

% W 0 0
Ip )W = ( 0” 012)1 Ingrr)W = (Wm WQ?)’

Win 0 0 w
Wip(,s,) = (Wn 0) y Wlpssy = (0 W;;) ;

0 0 w
IF'{r.f‘l)"VIF(S.s:) — ( 0 0) ) I.F‘(r‘rl)l"r’f.[,(a.sz) = ([] 012) 4

0 0 0 0
Itirr)WIp(s,ey) = (H”?l 0) v )W) = ({] WEE).

Moreover, if the matrices (B 0) and (0 B) (respectively, (g) and (g)) have size p x r (respectively,

s X p), then
(B O)W:(B U)IF(,.'P)‘V, [0 B}LV:[U B)IL[r,p)W:
B B 0 0
W(0)=Wfp(,rp)(0), IV(B)=WIL("P)(B)
Definition 2.1. A k x k submatrix of a matrix W formed by rows and columns iy,...,7 of W for any

k-tuple (iy,...,4) is called principal A matrix is strongly nonsingular if all its principal submatrices are

nonsingular.



Proposition 2.2 [GL, p.140]. In the field of complex numbers (and in any of its subfields), WH W and
(WHW)=! are strongly nonsingular matrices for any nonsingular matrix W.

Proposition 2.3. m(WHW) < 2m(W); m(W,) < m(W) for any principal submatrix Wy of W.

3. Preprocessing for the solution of a banded linear system (using a 2 x 2 block decompo-
sition of the input matrix). Hereafter, A denotes an n x n banded matrix having bandwidth m; Ay,

Ai2, A2 and Ay denote the blocks in the 2 x 2 block representation
Au Ay;
A= “
(Azl A
where the matrices A;; and Aoy have sizes ny x n; and nj x na, respectively, with n; = [n/2], n3 = n—n;.

Until section 6, we assume that A is strongly singular, so that 4 and A~! have the factorizations

wi In, 0 An 0 I, AQR'An
A= (it ) (5 8) (% 50) @
o (L, =-AFAR) (A7 0 L 0
4 “(0 Lu; 0 S ') \=AnAyl L, )’ (3-2)
S=AnY, Y=1I,_—A; AnATl Ars, (3:3)

where S is called Schur complement of Ay; in A.
Note that nonsingularity of ¥ follows from nonsingularity of the matrices A, 4;; and Aas.
Proposition 3.1. If the first m and the last m columns of the matrices A7}’ and Ay, are known, then

the matrix ¥ can be computed at a cost bounded by

O(!M(un.m.m)lpM(n.rz,m,m))s (3-4‘1)

and the matrix Y =1 can be computed at a cost bounded by

t

Piimy TP ¢

I{m)Er{m) Minf2,m,m) Minfd,m,m)

O(t.l'(m) +tM[nf2,m,m}1 t "I"t ] (3'4b}
I{m} Minf2,m,m)

Proof. Observe that the matrix A;2 has the form (g g) and Aj; has the form (g g) , where L

and U are m x m matrices, and apply proposition 2.1 to deduce that
Ayz = IL(n1,m)Ar2 = Ayalp(ne,m) = Ir(ny,m)A12Ip(nz, m), (3.5a)
Aoy = Ip(na, m)Ay = A Ir(ny,m) = Ip(ny, m)An Iz (ny, m). (3.56)

Then combine (3.5a), (3.56) and (3.3) to deduce that ¥ = In,—A;;IL(nl,m]Agllp(ng, m)AI'IIIL(nl, m)Ajs.

Therefore, the cost of computing Y is bounded by (3.4), and Y is a block triangular matrix of the form

Yi1 0 )
Y= ; z



where Yi; is an m x m matrix. It follows that the block Y7, is nonsingular and that

b fy 0
¥-1l= 5 ) . 3.7
(_}21},’11.1 Ing-—m ( )
This immediately implies the bound (3.5) on the cost of the computation of Y ~1. (Note that only the first

m columns of Y and of ¥ =1 need be computed). .

 Definition 3.1. We define preprocessing-2 of matrix A (based on 2 x 2 block decompositions (3.1),
(3.2) and (3.3)) as the computation the triples of matrices (A~!Ip(n,m), A~ I (n,m), Y1)
Theorem 3.1. The complexity of preprocessing-2 is bounded by (1.3).
Proof. The first m and the last m columns of A~! are given by the first m and the last m columns of
the matrices A~'Ip(n,m) and A~1I;(n, m), respectively. Expand (3.2) and then apply (3.5a) and (3.5}) to
deduce that

-1 _ Aﬁl}p{nl,m)+A;llAmY'lA;?lAglA;llIp(nl,m) 0
A I.F(ﬂ; m) - ( —Y'IAE;AnAl’fIF(nl,m) 0 (3 8)
_ (A;‘llfp(nl,m)+Al'llfy_,(nll,m)Ang‘lA;:{l{p(ng,m)AglAl'llIp(nl,m) 0 ) .
—Y_lA-_Tz Ip[ng,m)AglAl_l Ip[nl,m) 0o/’
i (0 AT ALY 1A I (ng,m)
wnem= (o R (39)
_ (0 —Afp(ny,m)AyY "tAZ I (ny,m) '
T\ 0 Y-1Az, IL(n2,m) '

Let t;(n, m) denote the number of parallel steps and let p;(n, m) denote the number of processors needed
for the computation of all the triples (A=1Ir(n,m), A~ 1Ir(n,m),Y=1) and, recursively, (A7 Ip(ny, m),
AI“IIIL(nl,m), Y7Y), (A5 Ir(na,m), A;zlf,g(ng,m}, Y5'), ... etc. Clearly, this computation includes
preprocessing-2. Combining (3.8) and (3.9) with proposition 3.1 leads to the following estimates, where ¢,

and ¢, are two constants:

tl’(m}’
tl(nrm} <

t1(n/2,m) +city .y + €2ty (n ammyy Otherwise,

n<2m

Primys n<2m

pl(n! m) < {

max(2p1(n/2,m), Pyys Prsiasamm)r Otherwise.

Recursive application of the latter estimates and the B-principle yields the desired complexity bound (1.3).m
Remark 3.1. The computation of each triple at each step involves only the results obtained at the

previous recursive step. Therefore, the current results can override the previous results, so that the storage

complexity for the entire computation is bounded by O(mn).

4. Solving a preprocessed band linear system.
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Theorem 4.1. If the matrices A7} Ip(n, iy, m), AT I(ng,. 4, ,m), and YJl:k (k>0)of

R TOORTR 1 f16. . 0xig

preprocessing-2 have been precomputed, then the complexity of the subsequent computation of A“'_b’, for

a given vector b, is bounded by (1.4).

—_— E‘: —_— —_— - L L
Proof. Let b = [ _, | where b; and b, are two vectors of dimensions n; and no, respectively.
bz

Expand (3.2), multiply by b and apply (3.5a) and (3.5b) to deduce

- o il S e d - I -1
A-VE = (“111l by +A111A12YF1A221A21A11151 —AUIAIZY lAzzl 52)

~YTLAG AN AT b + Y AR S

K (A;fb_{ + AT (ny, m)ArY = A5t Ip(ng, m)Ag ATy — AT IL(nl,m)AwY—lA;;b_;)
137 )

Y147 Ip(ng, m)Ag AT} by + Y 1A b,

Due to preprocessing , the matrices Y1, Al‘ll Ir(ny,m) and Az_gl.{f‘(ﬂ.g, m) are available. Therefore, given the
results of preprocessing-2, Al'lrb_; and A;}b—;, the computation of AT only requires a constant number
of multiplications of matrices of sizes at most m X ¢ by vectors of dimensions at most ¢, where ¢ < [n/2].
Let 3(n, m) denote the number of paralle] steps and p»(n, m) the number of processors needed for the
computation of A“l?, assuming that preprocessing-2 has been performed. The above argument leads us to

the following estimates for the pair (t2,ps), where cg is a constant:

tM{rn.m.l)’ n S 2m
tg(ﬂ,m] 5
t2(n/2,m) + cet s 5,mays Otherwise,

pM(m.m,l]’ n S 2m

p2(n,m) <
max(2p2(n/2,m), Pyynjamyy) Otherwise.
Recursive application of the latter relations and the B-principle yields the desired complexity bound (1.4).g

Remark 4.1. We can easily exploit Remark 3.1 while computing the solution vector A‘ly, to keep

the storage complexity for this computation bounded by O{mn).

5. Solving DET.
Theorem 5.1. Under the assumptions of theorem 4.1, the complexity of DET is bounded by (1.3).

Proof. Deduce from (3.1) that
det A = det A;; det Asgdet Y (5.1)

Due to (3.6), det Y=det¥};. Moreover, each of the matrices A;; and As» has bandwidth at most m.
Therefore, solving DET is reduced to two problems of half size each, at the cost of computing the determinant

of an m x m matrix.



Let {3(n, m) denote the number of parallel steps and ps(n,m) the number of processors needed for solving
DET, given the precomputed matrices. The above argument leads to the following complexity estimates for

the pair (t3(n, m), pa(n, m)):

ooy n<?2m
t3("1m) S
ta(n/2,m) +1t, ., otherwise,
p!(m)’ n S m
pS(n!m) <

max(2ps(n/2,m), p,,. ), otherwise.

Recursive application of the latter estimates and the B-principle yields the complexity bound (1.3). n

6. How to relax the strong nonsingularity assumption. Shifting from A and DET to A¥ A and
IDET|? (over any subfield of the complex field) enables us to relax the assumption about strong nonsin-
gularity of A, due to propositions 2.2, 2.3 and the equations A~! = (A¥ A)"1A¥ | det(AH A) = |det A]%.
More precisely, our algorithm of section 5 (for DET) computes, as a by-product, the determinant of all
the matrices A;,i,  iyiys Yigiy..ixix defined in the proof of theorem 3.1, unless at least one of these matrices
is zero. In the latter case, we just output det A = 0 [this equation follows, due to (5.1) and its recursive
extension]. Otherwise, if det A # 0, all the matrices Aijiy . iyiny Yiyiy...ixic are nonsingular and our algorithms
of section 3 and 4 solve PREPROCESS and BACK -SOLVE.

To relax the strong nonsingularity assumption in the case of anv field of constants, we apply an al-
ternative argument. Again, we only need to ensure nonsingularity of the matrices A, Y, 411, Y11, Ao,
Y22, ..., defined in the proof of theorem 3.1. Furthermore, since the nonsingularity of Yi,i,. 4,0, follows
from the nonsingularity of A; i, iy, Aiiy . deictt 30d Aj, iviv22, 1t 1s sufficient to ensure nonsingularity
of  Ajiy.iwic11 and Ag i 022, assuming that A; ;. 4, is nonsingular. We will next show how to yield
nousingularity of the two largest diagonal blocks (a similar argument applies to all other diagonal blocks
). Towards this goal, we will shift from A to PA, with P = diag (In,—m,(a), R, In,—m_(a)), where R is
a random m X m matrix. Observe that m(P) < 2m; det P is readily available, det A = det(PA)/det P,
and A~! = (PA)~!P. Moreover, we immediately verify by inspection that the equations (3.5a), (3.5b) and
consequently the proofs of proposition 3.1 and theorem 3.1 remain valid after the transition from the matrix
A to the matrix PA, as long as (PA)11, (PA)zs, the two principal submatrices of PA (corresponding to
the submatrices A;; and Aj;) are nonsingular, and, therefore, PA and (PA)~! have decompositions of the
format (3.1), (3.2) and (3.3). We will show this fact in appendix A, by using a certain assignment of the
random entries of R (which turns R into some permutation matrix employed in a more complicated argument
of [E]). By the standard argument of [Sc], [Z], the nonsingularity of B;; and of By follows (with a high

probability) for a random assignment of the values (from a large set) to the entries of R.
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7. Preprocessing and the solution of a block bidiagonal linear system.

Notation. In this section, A = (A4,;), i, = 0,1,...,k — 1, denotes a nonsingular bidiagonal k x k
block matrix with m x m blocks A;;, such that A;; = 0if j+1>iori> j; A; = Ay, i=0,...,k=1;
Bit1 = Ajj41,3=0,..., k=2, X = A"V =(Xy;),1,7=0,...,k— |, where X;; denotes the m x m blocks
of X. Observe, that

Xi;=0if i>5 X;=(-1)*a! f‘[ BrATY if i <. (7.1)

h=itl
Preprocessing of a k x k block bidiagonal matrix A (with nonsingular superdiagonal blocks).
If Xp -1 (the northeastern m x m block of 4~1) is nonsingular (which is equivalent to simultaneous non-
singularity of all the blocks By, ..., Bi—; of A), then we define preprocessing of A as computing the m first
rows of A~!, the m last columns of A~!, and the matrix XU':;. ¥
Theorem 7.1. The complexity of preprocessing of a k x & block bidiagonal matrix A with nonsingular

block Xo_,;—1 is bounded by

tf m
lofg:n)(log k)}' (7:2)

O((Iog m)(log k) + t!(m}‘ kp.i'{mjt % [
I{m})

Proof. Perform the following
Algorithm 7.1 (see Figure 1):
1°. Concurrently compute Xj; = Al-'l, 1=0,...,k—1, at the cost O(t,(m),kp”m)}.
2°. Combine (7.1) and the parallel prefix algorithm to compute the first block row and the last block column

k
of the block matrix X at the overall cost O(log mlog k, p—”,‘c;;‘s}ﬂl).

3°. Compute Xﬂ_,i—l’ at the cost O(t; 1P (m)-

Combining the above estimates and using the B-principle, we deduce the bound (7.2) of theorem 7.1. u
Solving a preprocessed block bidiagonal linear system (with nonsingular superdiagonal

blocks). We next extend Algorithm 7.1 to the evaluation of the solution vector T = XD = A~'D to the
5 —_ =) ()
linear system A7 = b,where b =(b ), b are vectors of dimension m i =0,...,k— 1.

Algorithm 7.2: Successively compute
i —(f)
10, ?”:Xg,-b , i=0,...,k=1;
i) Bl _amy : :
2. w =% v ', i=0,...,k—1 (by applying the parallel prefix algorithm);
=i

—{1) — ()

3.z =X,-,k_1X0'I;_lu , 1=0,...,k=1;
4° . Qutput the vector = = (?{‘)), i=0,...,k=-1.
\

The correctness of this algorithm follows from (7.1). Its parallel complexity is bounded by

kPM(m.m‘l} km2 _ mn
“Tog(km) ) = O(log(km), ) = Ologn, Ten

O(log(km) o)

), for n=km.
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Remark 7.1. There are various ways to exploit (7.1) in order to effectively compute X also when

only few blocks B; of A are singular (which implies singularity of Xg_3). For demonstration, assume that

- — _(C E {0 0 e Y A4
only one block B}, is singular. RepresentAandbasA_(U G),whereE_(Bh 0), b_(?),

—_

so that X 5 = (i), T =CY T -E7) 7= G-1'd. This reduces the solution of the linear system
v

AT = to solving two linear systems with matrices C and G.

Preprocessing of a k x k block bidiagonal matrix A (general case). Even if all the blocks B},
are singular, we still may extend our solution at the price of increasing by factors of log(%) and l—lggﬂ% the
estimated processor bounds for the preprocessing and the subsequent solution of the preprocessed linear
system, respectively. Specifically, to extend the preprocessing, we will again apply algorithm 7.1 but will
remove its stage 3° and modify its stage 2°. This modification is summarized by the following algorithm,
where, for simplicity, we assume that k = 2% — 1 for some integer h:

Algorithm 7.3 (see Figure 2):
1°. Concurrently compute X;; = A,-'l, i=0,...,k—1, at the cost O{t”m), KD s(my)-
2°. Combine (7.1) and the parallel prefix algorithm to compute the blocks Xij of A~1, at the overall cost

O(log mlogk, 7. T

a)forj=i+1,...,i+q(})=1;i=1,....k-1,

b)yfori=j—1,....i—¢D+1;j=1,....,k=1,

provided that ¢(s) denotes the largest power of 2 that divides s + 1.

Solving a preprocessed block bidiagonal linear system (general case). We will extend algorithm

7.3 by the following

Algorithm 7.4. Successively compute

0 =@ i+eli)-1 () _

1°°w "=b +A 3 Xyb , i=0,...,k—1 (by applying the parallel prefix algorithm);
=i+l
o —li) () —(k=2") () : . e .
20 & =0 KA where 3"’ denotes the sum in s, s taking the values for which i, = 1 in
L] 3
[logy (k—1)]
the following binary representation : k—i= Y ,2°,i=0,...,k— 1.
a=0

3°. Output the vector T = (?m) ;

The correctness of this algorithm follows from (7.1). Its parallel complexity is bounded by

O(log(km), kp,,, ) = O(logn, 22, for n = km.

m,m,1}) ' logm

8. Reduction of LIN - SOLVE" and LIN - SOLVE** to the block bidiagonal form. We first
note that if m divides n, we may represent any band n x n upper triangular matrix A as an - X Z block
bidiagonal matrix, with m x m blocks, where m = m(A) and, moreover, all the superdiagonal blocks are

triangular matrices, which are nonsingular if A has an upper edge. Furthermore, we may always shift from

10



Ato A= diag(A, 1) with h such that m divides n+h, 0 € h < m, and then m(A) = m(ﬁ). It remains to
reduce LIN - SOLV E* to the band triangular case, which we will do next.

Let A, the nxn input matrix of LIN - SOLV E®, have a lower edge and let p denote m_(A) < m = m(A).
Consider the following approach to the solution of the linear system AT = b First define the (n+p)x(n+p)
matrix B = (V A ), where V = (I” ), W =(0 1), and consider the auxiliary linear system

0 w 0
(3)-(3)

Note that B is a nonsingular triangular matrix [with a bandwidth m = m(A4) > p]. Denote B~! = (g IE),

(i) = (g ’E) (i) where H is a p x p matrix. [Since m > p, we may apply algorithm 7.1 and
z z

evaluate'G and H at the cost bounded by (7.2) for £ = Z]. Furthermore, from the nonsingularity of A and

the factorization

_ % BN _f T w\fa' o AW 1yt
B‘(o W)"(WA“ r)(o —WA“‘V)( I 0)*”“("” ¥l

we deduce the nonsingularity of H.

Now we compute the vector 2 = —H~!G b and substitute it into (8.1). This computation, to which

we will refer as to algorithm 8.1, turns (8.1) into the solution of a banded triangular system, AT = b
The computational cost of this transition, that is, of computing the vector Z", is bounded by

Pintie) T Parin.py 1087

et 20) p<m. (52)

O(tf(p) + log n,

Lis)
Combining (8.2) with the estimates of section 7, we arrive at the following result:

Theorem 8.1. A nonsingular n x n matrix A, having bandwidth m = m(A) and having upper and
(respectively, or) lower edges, can be preprocessed at a computational cost bounded by (1.5) [respectively,
(1.6)], by means of algorithms 8.1 and 7.1 [respectively, 8.1 and 7.3], and after that, for any fixed vector T
of dimension n, the linear system AT = T can be solved, by using algorithm 7.2 (respectively, 7.4) at a

computational cost bounded by (1.7) [respectively, (1.8)].
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Appendix A. How to ensure nonsingularity of the diagonal blocks.

Theorem A.1. Let A be a nonsingular band matrix of size n x n, with bandwidth m = m(4). Let n;
and n; be defined as in section 3. Then there exists a permutation matrix R, of size m(A) x m(A), such
that the matrix B = PA = diag(l,,-m,(a), R, In,—m_(4))A has the block representation of section 3, where
By and By, are nonsingular (B;; denote the blocks of B corresponding to the blocks Aj;), whereas the last
ny — m columns and the first n; — m rows of By, as well as the first n; — m columns and the last ny — m
rows of Bgy, are all zeros.

Proof. Let A; denote the n x n; matrix (j“). Without loss of generality, we will assume that
21

m4(A) = m_(A) = k. Since 4 is nonsingular, Ay has full (column) rank n;. The top n; — & rows of A
are linearly independent, since the top ny — k rows of A are linearly independent, and since these rows have
no nonzero entries outside Az. The top n; + k rows of Az have full rank, ny, as well, because A; has this
rank and has no nonzero entries below these rows. It follows that there exists a set of n; rows of Ay, that
includes the first n; — k top rows, as well as k of the next 2k = m rows, that form a nonsingular n; x n;
matrix. Consequently, there exists a permutation matrix R of size 2k x 2k such that the leading principal
n1 X ny submatrix of the matrix B = diag(ln, -k, R, In,-%)A is nonsingular. With no loss of generality, we
may assume that all the rows, moved down in the transition from A to B, keep their relative row order.
Then m(B) < 2m(A), m(B11) < m(A), m(Baz) < m(A). Moreover, the rows that are moved down have no
nonzero elements in any column with the number less than n; — m and, therefore, the last n, — m columns
and the first n; — m rows of Bj, will remain filled with zeros as well as the first n; — m columns and the
last ny — m rows of By;. The nonsingularity of Bj; follows from the nonsingularity of B and of By;. The
same argument can be applied to the matrices By;, B22 and so on. m
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Appendix B. Figures

Figure 1. Output of preprocessing for a nonsingular 15 x 15 block bidiagonal matrix A with nonsingular
blocks.

Wr G B = O WD 0 =] O B LW R = O
-
[
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Figure 2. Output of preprocessing for a nonsingular 31 x 31 block bidiagonal matrix A (general case).
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