INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. @ Suite 600 @ Berkeley, California 94704-1198 e (510) 643-9153 e FAX (510) 643-7684

Complexity Issues for Solving

Triangular Linear Systems in
Parallel

Eunice E. Santos™*
TR-94-065
December 1994

Abstract

We consider the problem of solving triangular linear systems on parallel distributed-memory
machines. Working within the LogP model, we present tight asymptotic bounds for solving
these systems using forward/backward substitution. Specifically, in this paper we present
lower bounds on execution time independent of the data layout, lower bounds for data
layouts in which the number of data items per processor is bounded, and lower bounds
for specific data layouts commonly used in designing parallel algorithms for this problem.
Furthermore, algorithms are provided which have running times within a constant factor
of the lower bounds described. Finally, we present a generalization of the lower bounds to
banded triangular linear systems.

*Research supported by a DoD-NDSEG Graduate Fellowship and NSF Grant CCR-90-17380.

11

1 Introduction

In this paper we consider the problem of solving triangular linear systems on distributed-memory
machines. While much research has been spent exploring this problem on distributed-memory
machines, virtually all of these papers deal with designing and analyzing algorithms on specific
types of networks such as the ring or hypercube [5, 6, 12, 13]. Therefore little has been done
on developing lower bounds on the running time for solving triangular linear systems for specific
networks much less developing lower bounds for distributed-memory machines in general. With
such lower bounds, we can determine what types of data distributions are needed to achieve efficient
running times.

In order to derive upper and lower bounds on the running time for distributed-memory ma-
chines in general, we consider a recently proposed model for parallel computation, called the LogP
model[2]. LogP has the important feature that the interconnection network of the machine is mod-
eled by its performance as viewed by the user, rather than its detailed interconnection structure.
By using the parameters in LogP, many important characteristics of parallel machines can be rep-
resented. Algorithms designed on this model are portable from one distributed-memory machine
to another and the running times of these algorithms will vary from machine to machine according
to the parameter values associated with these machines.

In this paper, we focus on deriving lower bounds for the time required to solve triangular linear
systems and provide algorithms which achieve these bounds all within the LogP model. The bounds
we prove are applicable to algorithms which utilize forward/backward substitution. Using these
bounds, we are able to determine which types of data layouts should be assumed in order to achieve
an optimal or near-optimal running time.

Among other things, we shall show that the communication parameters of a network have a
significant effect on the complexity of this problem. We also show that near-optimal algorithms can
be obtained using common data layouts and straightforward communication patterns. Of particular
interest, we show that block data layout and block cyclic layouts can incur much higher running
times then those of many other common data layouts, such as row/column wrapped. Also, we
shall see that restricting the proportion of data items assigned to a processor does not result in a
significantly higher complexity than assuming that all processors have access to all data items.

The paper is divided as follows. In Section 2 we describe the LogP model. In Section 3 we
list and give a brief discussion of the results obtained in this paper. In Sections 4 and 5 we
present tight asymptotic bounds for solving triangular systems using forward/backward substitu-
tion. Specifically, we present lower bounds on execution time independent of the data layout, lower
bounds for data layouts in which the number of data items per processor is bounded, and lower
bounds for specific data layouts commonly used in designing parallel algorithms for this problem,
including among others, block data layout and block cyclic layouts of High Performance Fortran
(8] and SCALAPACK [4]. Furthermore, algorithms are provided which have running times within
a constant factor of the lower bounds described. Finally, we present a generalization of the lower
bounds to banded triangular linear systems. Section 6 gives the conclusion and summary of results.

2 The LogP Model

LogP is a model of a distributed-memory multiprocessor in which processors communicate by point-
to-point messages [2]. The model specifies the performance characteristics of the interconnection
network, but does not describe the structure of the network. We have tailored the description

of the model using terminology specific to the problem of solving triangular systems. The main
parameters of the model are:

P: the number of processor/memory modules.

L: an upper bound on the latency, or delay, incurred in communicating a message containing a
numerical value from its source module to its target module.

o0: the overhead, defined as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

g: the gap, defined as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. [Note : 0 < g]

Arithmetic operations not requiring communication between processors execute in unit time
(a processor cycle). The parameters L, 0 and g are measured as multiples of the processor cycle.
Furthermore, it is assumed that the network has a finite capacity, such that at most [L/g] messages
can be in transit from any processor or to any processor at any time. If a processor attempts to
transmit a message that would exceed this limit, it stalls until the message can be sent without
exceeding the capacity limit. All algorithms discussed in this paper satisfy the capacity constraint
of the Log P model, and we do not mention it henceforth.

3 Discussion of Results

In this section we discuss the results obtained in the following sections of this paper. As stated
before, we are deriving upper and lower bounds on the running time of substitution algorithms.

Three components are needed in order to determine running time : the algorithm, the data
layout, and the communication pattern. We view an algorithm simply as a set of arithmetic
operations where each processor is assigned a sequential list of these operations. A data layout
is the initial assignment of data to the processors. A communication pattern is a list of message
transmissions and receptions between processors.

Clearly any substitution algorithm must have at least n? operations and therefore requires a
minimum of % time steps.

We begin by considering data layouts in which (1) no data item is assigned to more than
one processor and (2) no processor is assigned more than half of the data items. Clearly the
most common data layouts used by algorithm designers fall into this category. We show that any

substitution algorithm using such a data layout will have a running time of at least max([[%)n +

ilg, 3}—,2-) In Subsection 4.5 we present substitution algorithms using these types of data layouts and
straightforward communication patterns. The running times are within constant factors of the
lower bound given above.

We next derive bounds on the running time independent of the type of data layout used. We
show that when n < [,/g| the lower bound is n?, when |,/g] < n < g the lower bound is fﬁ}“—‘@]

and when n > g the lower bound is maz([%]g, E;) In Subsection 4.5 we provide algorithms whose
running times are within a constant factor of these bounds. In fact, since the straightforward
uniprocessor algorithm achieves a running time of n?, the case n < |,/g] achieves a tight bound
on running time. Analyzing these bounds, we see that when n < g there is no significant benefit in
using multiple processors. When n > g, we see that near-optimal running times can be achieved
using straightforward communication patterns.

The last set of lower bounds for triangular systems are for very commonly-used data layouts. In
particular we consider row/column wrapped, row/column contiguous, block and block cyclic data
layouts. We formally define these data layouts in Subsection 4.3. We show that for the row/column
wrapped and row/column contiguous, the running times are @(ng + %) and the communication
patterns are simple. The precise values of these bounds are given in Subsections 4.3- 4.5. We show
that block and block-cyclic layouts have higher complexities.

Lastly we consider the problem of solving banded triangular systems. Again, we assume the
algorithms all utilize substitution. As before, we are able to deduce that there is no significant
benefit in not choosing a straightforward communication pattern.

4 Forward/Backward Substitution for Solving Triangular Linear
Systems

We solve triangular linear systems using the forward /backward substitution method. Our decision
to focus on this method is based on the fact that while there have been many methods for solving
triangular linear systems [1, 7, 10, 14], many of these methods have been shown to be numerically
unstable and/or require a number of arithmetic operations which is not optimal [3, 9]. On the other
hand, substitution algorithms have been shown to have perfect numerical stability and clearly use
the minimum number of arithmetic operations [9]. In addition, substitution is a standard method
utilized by algorithm designers.

The Problem : Given Tx = b solve for x, where T' = (a; ;) is a (lower) triangular nXn matrix,
b = (b;) is a vector of size 7, and x = (z;) a vector of size n.

Definition 4.1 For all i < n, a psum of z; has the following form :
Eij[z_’i —1 a;;Z;] or a= = 224 a; ;T ;
where Gi; = a;; or 1, E'j = bJ‘ or 0, and Z; =z; or(.

We now define our class of algorithms. An algorithm is viewed as a set of arithmetic oper-
ations where each processor is assigned a sequential list of these operations. Since we focus on
the forward /backward substitution method, we clearly deal only with algorithms whose arithmetic
operations create linear combinations (psums) of z;’s either by (1) multiplying/dividing data items
or (2) using an arithmetic operation on two psums to form a new psum. Below is a more formal
definition.

Definition 4.2 We say an algorithm A is a substitution algorithm if each arithmetic operations
is one of the following : (1) multiplying some a;; and z; where j < i, (2) adding/subtracting two
psums of some z; resulting in another psum of z;, or (3) dividing a psum of some z; by a; ; to form
another psum of z;. We denote the class of substitution algorithms by A.

It follows from the above definition that processors can only receive or transmit the following

values : some b; or a; ; or a psum of some z;. Moreover, since we are working in the LogP model,
we assume that

1. if processor p transmit a message to p at time ¢ then

(a) it takes o steps for p to place the message into the network,
(b) at time ¢ + o to ¢t + 0 + L, the message is in transit in the network, and
(c) it takes o steps for p to retrieve the message.

2. if processor p receives (transmits) a message at time ¢, p cannot receive (transmit) another
message until time ¢ + g and cannot perform any type of operation until time ¢ + o.

All the algorithms we present satisfy all the constraints of the LogP model. Moreover, our
lower bounds hold even under the stronger assumption that any value computed by a processor p
15 available to that processor immediately and to all other processors L steps later.

Definition 4.3 A data layout is the initial distribution of data onto the processors. The class of
all data layouts is denoted D. A data layout D is said to be a single-item layout if each matriz
entry a; ; ts initially assigned to a unique processor.

Definition 4.4 For any algorithm A € A and data layout D, define Ty p(z;), i = 1,2,---n to be
the time at which z; is computed using algorithm A and assuming data layout D. (If z; is computed
more than once, T4 p(z;) is the time at which z; was first computed.)

It follows that for all A € A and D € D, and any ¢ < n, T4 p(zit+1) > Ta,p(z:)-

Definition 4.5 Let A € A. Foralli < n, Tp(%;) = minpepTa,p(z:) and Ta(z;) = minaeaTa(z:)
(i.e. Ta(z;) is the minimum time needed to compute z; by any algorithm in the class A regardless
of data layout).

In the following sections we shall prove lower bounds on T4 p(z,) for algorithms A € A and
certain types of data layouts D. The lower bounds hold regardless of the choice of communication
pattern. For simplicity, we state our results in the special case L = g of the LogP model. In
Section 4.1 we prove lower bounds on A assuming D is a single-item data layout in which the
number of data items a processor is initially assigned is bounded. In Section 4.2 we assume D is
the data layout in which every processor has a copy of every data item (i.e. all a;; and b;). We
present a lower bound on T4 p(2n). Since D is the most favorable layout, there is no algorithm
A € A and data layout D € D which can complete earlier than this bound. In Section 4.3 we
prove some lower bounds for A € A where D is a standard data layout such as the row/column
wrapped data layout. Although the proofs of the lower bounds In Sections 4.1- 4.3 are based on
the assumption that o = 0, they are clearly applicable to arbitrary o. In Section 4.4 we present an
extension of the class of algorithms where the lower bounds are still applicable. In Section 4.5, we
discuss algorithms for various data layouts. These algorithms all Tun within a constant factor of
the lower bounds shown in this section.

4.1 Lower bounds for A € A where D is a £ - data layout

Many algorithms designed for solving triangular systems assume that the data layout is single-item
and that each processor is assigned roughly %th of the data items of T where P is the number of
processors available [5, 6, 12, 13]. In this subsection we consider single-item data layouts where
each processor can be assigned at most a fraction £ of the data items of T where 1 < ¢ < %.

Definition 4.6 Consider ¢ where 1 < ¢ < %. A data layout D on P processors is said to be a
£-data layout if D is single-item and no processor is assigned more than a fraction F of the a;;’s
of T'. Denote the class of £ data layouts by D(§).

In this section we prove the following result :

Theorem 4.1 If D € D(3), then for any A € A,
Ta,p(2r) 2 maz([(1 - \/g)n+ 1]g, %)_

In order to present the proof of Theorem 4.1, the following definitions are needed.

Definition 4.7 Let D be a single-item layout, then for all 1 < n, define p; p to be the processor
which is initially assigned item a; ;.

Definition 4.8 For any algorithm A € A and data layout D, define Vi < n, pap(i) to be the
processor(s) which computes z; in time Ty p(z;).

Definition 4.9 Let in,& be the smallest integer i such that LGE+1) > ﬂnz—ﬂ)-%

Clearly in,_% — 1 is the largest possible number such that all data items in rows 1 to z'n'?c_, —1of
T are assigned to a single processor. z

It follows immediately that \/%n -1< z’n,}c; < \/}:n.
Proof: (Theorem 4.1) We begin by showing that for all A € A and D € D(§), if 3¢ > in,g Such
that

. TA'D(mi) < (i-— ?:n,-)%- + 1)97 and
o forall j where i, ¢ < j <4, Tap(z;) 2 (§ —ing +1)g

then z1,---,z; must all be received or computed by ps p(7).

We prove this using contradiction. Suppose k is the highest index in which z; is not re-
ceived/computed in p4 p(%). This implies that pa, p(7) must receive at least ¢ — k messages after
time T4,p(zx). This requires at least (7 — i, £ + 1)g time steps which is a contradiction.

Next we prove that forall Ae A, D € D(g) and i > i, ¢, Tap(z:) > (i— in,s + 1)g.

The proof is by induction. The base case is evident. For the induction step, suppose T4 p(Zi1)
< (z’—z’n,% +2)g where i +1 > in,& and for all j where i, £ < j <i+1, Tgp(z;) 2 (- in, & +1)g.
From above, z1,- -+, z;41 must be computed/received by ps p(i+ 1). Since p4 p(i+ 1) can receive
at most ¢ — i, ¢ + 1 messages, the numbers of items initially assigned to p4,p(¢ + 1) must be at

least M;ﬁ— which is a contradiction. Lastly, it is clear that %2 is a lower bound. O

Since ¢ < £, every & - data layout is a 1 - data layout. This leads to the following corollary :
P P 4 2 Y g y

Corollary 4.1 If D e D(g), then for any A € A,
Ta,n(za) 2 maz([(¥Z=1)n + 1]g, %),

The complexity of any algorithm A in our class using a §-data layout is Q(ng + %Di); we see
that the “communication part” of the bound, ng, is independent of P(> 1). In addition, although
the number of data items assigned to different processors may vary from no data items to % of the
total number of data items, the above results and the algorithms provided in Section 4.5 show that
the skewness of the distribution of data has no significant effect on the complexity.

4.2 A general lower bound for all A€ A

In the previous subsection we proved lower bounds for data layouts in which the number of data
items assigned per processor is bounded. In this subsection we assume the data layout is the one
in which each processor has a copy of every a;; and b; where ¢,7 < n. We denote this layout by
D. Since D is the most favorable data layout, T4(z;) = mingeaTy p(z:).

In this section, we prove the following result :

Theorem 4.2
n? ifn < /9]
Ta(zq) > § [EH3E=2] if Vgl <n<y

maz([2]g,%) fn>g

Proof: We begin by proving that for all A € A and for all ¢ such that i < min(n, |\/7]),
Ty,p(z:) 2 2.

The proof is by contradiction. Assume i < min(n, |,/g]) such that T p(z;) < ¢%. Since i* < g
thus each i, --z; must be computed directly and locally in the processor. This takes at least 22
arithmetic steps which is a contradiction.

We now observe that for all A € A, if A has the following properties :

1. 37 such that

E440281 i j <
T, pz;) < [- 4 =g

2. Vi<y,

12 43'—3" ifi<
T, p(ai)>{ L4 et
A,D()—-{I'%'Ig lfizg

then 1,23, -z; must all be computed or received by p4 p(J)-

We prove this observation using contradiction. Let ¢ be the highest index where z; is not
received/computed in py (7). This means that py p(j) must receive at least j — ¢ message after
time Ty p(z;). But T4 p(z:) + (4 — i)g = T4 p(=;) which is a contradiction.

Using the above observation, we next show that for all A € A and for all ¢ such that |,/g] <
3 A 2 § —

1 < mzn(n:g): TA,D(zi) > (%]

The proof uses induction. The base case is evident. For the induction step, suppose T p(zi+1)<

f%ﬂ'—l)_—al From the above observation, z,s,---z;41 must all be either received or com-
. 2 . o X . . .

puted by py p(i + 1). Since [Lﬂ)ﬂ:ﬂﬁ] < 34, thus py p(i + 1) receives less than 2

messages. Therefore p, p(i+ 1) must scan at least [-@r—l&i(ﬂ)_—ﬁ items which is a contradiction.

Using a proof similar to the one above, we see that for all A € A and for all ¢ such that g <: < m,
Ty p(=:) > [£lg-

From the results obtained so far and from the fact that -‘},—2 is a lower bound, we see that for any
algorithm A in the class A,

n? if n < [\/3]
Toplea) 2 [P i |Gl <n<yg
2 .
mas([2]g,%) ifn>g
Since D is the best data layout possible, no other data layout could have a lower bound less
than the lower bound for D. Therefore, these bounds also hold for T4(z,). O

Comparing the bounds from Sections 4.1- 4.2 and considering the algorithms in Section 4.5, we
see that for n > g, the restriction to $-data layouts increases complexity by only a constant factor.

4.3 Lower Bounds for A on standard data layouts

In this section we present lower bounds on the running time for algorithms using specific data
layouts which are commonly used by algorithm designers. The data layouts we consider are the
following : row/column wrapped, row/column contiguous, block decomposition, and block-cyclic.
Formal definitions of these data layouts are given below.

Definition 4.10 The row[column] wrapped data layout on P(< n) processors py,pe---pp is de-
fined as follows : for all i < n, a;1,---ai; [a14,- - ai;] is assigned to processor p; where j+1=1
mod P. We denote this layout by Dr,[Dc,]

Definition 4.11 A single-item data layout on P = Ml (where P < n) processors is said to be
a block data layout if each processor is given a contzguous block of T consisting of a square matriz

of size -_%. We denote this data layout by Dpp.

Definition 4.12 A single-item data layout on P(< n?) processors is said to be a (square) block-
cyclic data layout if there exist a 1 < K < V’,‘—F : T is divided into contiguous square blocks of size
%. Furthermore, each such block is divided into smaller contiguous square sub-blocks of size -~
Each processor is then assigned a sub-block of each block of size ﬁ}? such that each sub-block is in
the same position for each block. We denote this data layout by Dk pc.

Definition 4.13 A single-item data layout on P(< n) processors p;,---pp is row[column| con-
tiguous if for all i < P, p; is assigned the matriz items in rows [columns] (i — 1)+ 1 to i5. We
denote this layout by Dg (D¢, J.

We show that block decomposition and clock-cyclic data layouts have higher lower bounds than
row/column wrapped or row/column contiguous.
In this section we prove the following result :

Theorem 4.3 Let A be an algorithm in the class A. The following are true :

Ta,Dg, (zn) 2 max([[%}Ln] — 1]g, ;) Row Wrapped Layout

Tane,(2a) 2 max([[f‘_—l‘ﬂ llg, ip) Column Wrapped Layout

Tapgp(2n) 2> maz((n — & =1y, %, iy Block Data Layout
min(2E5t(3 4 1), (3 + 1))

T4,px 5c(zr) > maz((n — —\}% -1)g, %, Block-Cyclic Layout
min(2EE (2 7+, MEVEL (2 4+ 1)g))

Ta,pg, (2) > maz([EF n]g, P) Contiguous Row Layout

Ta.pe, (zn) 2 max([Lnlg, 2 B) Contiguous Column Layout

=1

Proof: (1) We begin by showing that for all A € A and D is one of either row or column wrapped.
if 3¢ such that

o Typ(z:) < (f%;—la_] —1)g, and
o for all j where j < i, Ty p(z;) > (f%ﬂ ~1)g

then 1, -, ; must all be received or computed by pa p(i)-

We prove this using contradiction. Suppose %k is the highest index in which z; is not re-
ceived/computed in py p(z). This implies that p4 p(7) must receive at least ¢ — k messages after
time T4 p(zx). This requires at least ([%z’] — 1)g time steps which is a contradiction.

Next we prove that for all A € A and D is one of either row or column wrapped then T4 p(z;) >
(154 - Dy.

The proofis by induction. The base case is evident. For the induction step, suppose T4 p(zi+1)<
([%(i-{-l)] —1)g and for all j where j < i+1,Ty4 p(z;) > (|'f§*1-3'| —1)g. From above, 21, -, Zi+1
must be computed/received by ps p(i+1). WLOG assume pag p(i+ 1) = pm p. Consider z; where
Ps,D # Pm,p- If 5 is computed by p,, p, then p,, p must receive a, . Else z; is received by p, p-
Since there are [£52(i + 1)] — 1 such @4’s, pm,p must receive at least [£51(i + 1)] — 1 messages

which is a contradiction. Lastly, it is clear that ’1%2 is a lower bound.

(2) Using a similar argument as in (1), we can prove that max(l‘—z-,(n — £ —1)g) is a lower bound
for both block data layouts and block-cyclic layouts.

(3) We now prove that min(ﬂfﬁ;il(P + 1)g, M(nf’ + 1)) is a lower bound for block data
layout.)
Suppose n_:;zl (P +1)g < _P.—il(np 4+ 1). Thus g < P. We prove using induction that

TApDED($%+1) > ”'Z(P +1)g for i < p.

The base case is evident. For the induction case, consider ¢ = m. Processor PEE Dpp has
3p(F +1) items initially assigned to it. For each item assigned to this processor, it can either send
the item to be computed in another processor or keep it to be used in computing the z,’s. If it
sends out at least 255(3 + 1) messages then we achieve our bound. Suppose the processor sends out
s messages where s < #75(% +1). Since any item which is not sent must now be computed within
this processor and these items cannot be computed until after time T4 p,,, (€ nim=1 +1)' Therefore,

we see that T4, ppp (Z2241) 2 §5(5 +1)g-

The proof that M(RP +1) is a lower bound when ﬂgﬁz—ll(% +1)g > ﬂ%;—ll(np+ 1) follows
using a similar argument.

(4) The lower bound for block cyclic layouts can be proved using similar arguments as those
given for block layouts.

(5) Suppose D is row contiguous and the lower bound stated above does not hold. Consider
pn D Clearly, less than n] messages were sent out by p, p. But this 1mphes that at least
|' £21n] z;’s where i < P n must be received or computed by p, p. Since Vi < Ely Pi.D # Pn,D,
Pn,D Iust receive [P = n'| messages which is a contradiction.

The proof also applies to column contiguous except the processor we consider is p; p. O

Analyzing these lower bounds, we see that row/column wrapped and row/column contiguous
have lower bounds of Q(maw(ng,%)). We have shown that the lower bound for block data layout
is Q(maz(ng,%,mz’n(%zg, \—’;—;))) Clearly maz(ng, -’};) < maz(ng, %,min(%g,%)) only when

8

n2

K
5 2 2 . 712 '.'1.2 2 T
Again, clearly maz(ng, %) < maz(ng, %,mzn(R—.}gg,,—ﬁj-)) when K < min(v/P, B ﬁ,g).

)))-

P < min(n, %f,—) Now, the lower bound for block cyclic layout is Q(maz(ng, %, min(}%g,

R

4.4 Extended Class of Algorithms B

In this subsection we define an extended class of algorithms B which we call no-cost inference
algorithms to which all the results obtained in the previous subsections are applicable. The class B
contains all algorithms in which a processor is allowed to infer the value of a variable z; from the
psums it has computed or received and from data items in its local memory. Such an inference is
possible if and only if z; can be expressed as a rational combination of such psums and data items.
When proving lower bounds on complexity we do not charge any cost for such an inference (see
Example 4.1).

Example 4.1 Suppose s, and s, are psums received or computed by processor p where
s1.= by — @i 51T — iy pThy 52 = G Ti T i 5T

If biy s Giy i » @iy ja s Big g 5 iy j, GTE BN the local memory of p then we assume that p can infer (at
no cost) the values of z;, and z;,.

4.5 Algorithms

In this section we provide algorithms and communication patterns where when used with the
appropriate data layout has running times nearly matching the lower bounds presented in Sec-
tions 4.1- 4.3, i.e. the running times differ from the lower bounds by at most a constant factor.
We assume that the items of vector b are available to all the processors. In Section 4.6 we discuss
why this assumption does not affect the complexity of the problem beyond a constant factor. We
assume that the value of z; will be in the variable b[¢] which initially contained the value b;.

Algorithm Ap,, and Communication Pattern Cp,, for Row-Wrapped Data Layout
Every processor p; pp,, (Where 1 < ¢ < P) do in parallel :
foril=1ton- P+ido
if p1,Daw 7 Pi,Daw then
receive b[l] from pi—1 Doy il =1 then si-v:pse=Penss "]
send b[!] to pit1,Dpw /*if i = P then pit1 Dpw = P1.0aw ¥/
else

B[l] « 21

api
send b[l] t0 Pit1,Dpy
fors=0to%—ldo
if apsy; # 0 then
b[Ps+ 1] « ll[Ps + 1] — aps+i1b[l]

Running Time : PZ;?;1 maz(g,2j+0+2)+(n—1)(20+ g+ 1) = O(ng + r-}_j_)

Algorithm Ap.,, and Communication Pattern Cp_,, for Column-Wrapped Data Layout
Every processor p; p.,, (1 < i< P) do in parallel :
for{=0to$—1do
if I # 0 then

form=1i4+1to P do
receive temp[Pl + 1] from pm Doy
b[Pl + i] « B[Pl + i] — temp[Pl + i]
form=1toi—-1do
receive temp[Pl + i] from pm p.yy
[Pl + 1] « B[Pl + 3] — temp[Pl +1]
B[Pl + 4] — B[PI4i]

@PL4i, Pl4i

form=Pl+i+1tondo
if l = 0 then
temp[m] < apiyimb[Pl + i
else
temp[m] «— temp[m] + apiyimb[Pl + 9]
if m < P(l4+ 1)+ ¢ then
send temp[m] t0 Pm Doy

Running Time : %’%i +(3n - £)(g+ 20) + Zil E_f?:l maz(iP — j,g) = O(ng + 3‘}—;)

Algorithm Ap,. and Communication Pattern Cp,. for Contiguous Row Data Layout
Every processor Pnii1,Dpe do in parallel :

for [= 1 to % do
receive b[!] from PE_Lj_;_llH,DRc
for m = %+1toiﬁgﬂdo
b[m)] — b[m] — @ 1b[!]
send b[l] to P'“-L_l*;l +1,Dpe

for!l = ﬂ?"+1_tc:| 2l do
form=F+4+1tol-1do
b[m] — b[m] — @ 1b[!]
b1] — 24

if 2 <« P then

send b[l] to Patidt) 1 b

Running Time : (3)*+25) mas(%+0+2, 9)+(3P—4)o+(P-1)g+E5in+ P—2 = O(ng+%)

Algorithm Ap.. and Communication Pattern Cp,_ for Column Contiguous Data Layout
Every processor Pty pee do in paralle] :
for/ =1toido
form =1to % do

receive temp[% + m] from =
PP +m] from pagn

b[% + m] — b[% + m] — temp[% + m]
forl =1 to % do
form =1tol—1do
b + 1] — B[+] - aniyy ,b[m]

i

ni - b[E+Z]
b[P +'£] Snip i
forl = ﬂ%r—ll—}-lto:rz,do

10

temp|l] — azj%‘-ﬂb[% + 1]
form = 2 to 3 do '
temp[l] — temp[l] + ai'%_!_mb[% + m]
send templl] to p1.p.
Running Time : %2 - ﬁ;lmax(% +0,9)+ (2P-2)o+(P-1)g+P—-1=0(ng+ %)

For block data layout assume that the processors are labeled as p; ; where j < i < P. Processor
i j is the processor which is initially assigned items @, ; where # <m< “-.55 and 5-(";,;11 <Il< %.
We present two possible sub-algorithms A})BD 5 A%HD and communication patterns C'bED, Ch -
for block data layout. The first is the straightforward algorithm. The second redistributes the data
into the row contiguous layout and calls the row-contiguous algorithm Ap,. with communication
pattern Cp,.. For the second sub-algorithm the processor mapping between the two layouts is as

follows : p; ; = p(‘(*;11+j—1}%+1.DR¢'

Subalgorithm A}~ and Communication Pattern Cp__
Every processor p; ; do in parallel :
if = ¢ then
forl=1toi—1do
form=1to % do

receive 15e:rira;p[ﬂiﬁ,_—l1 + m] from p;
B[RS + m] — B2 4] — temp[2ESH) 4 m]

for/ =1to % do

fors;ltol—ldo_
B2l 1) o p[2ECE 4 -

" ni=1
b[n!:—l! 4 I] — b[_('_b_l"r'd
P Tif1—1 nft—1

+1, +1

i—1
angi;i)_H! ngi;11+s b[% + 8]

if 1 # P then
send b[ﬂ%ll + 1] to piy1,i
else ' _
for!l = w-[—lto n-}';ldO
receive b[l] from p;_; ;
if i £ P then
send b[l] to piy1,;
for m = @-klto% do
temp[m] — a_ g—1)+lb[mﬁ_—ll +1]
. ¥ P .
forl = ﬂi}-:i)-—]-Qto ¥ do
temp[m] — tempm] + @, 1b[!]
send temp[m] to p;;
Running Time : (2P — 1)gmaz(% +0,9)+ (2P - 3)g+ (4P - 3)o+ P-2=0O(ng + %)

Subalgorithm A% and Communication Pattern C},_
Every processor p; ; do in parallel :
if P even then

11

for/ =1 to 55 do
form:lto%do
if 7 odd then

receive a:;‘+i 1=Un o from Pit1,3
else
send @(i-1)n IR to pi—1,;

/* For the next steps, sending and receiving are done simultaneously */
/*t—1= (5 + jmod(P + 1)jmod[E£L] */

for!:jtoL—‘t—'ﬂj—
form—ltopdo
fors—lto—do

send “"5"‘;1"+!‘-;1“+m,£'—;!“ &5
to pgi—11n+gl—;1n oD

forl =1to min(j—l,[%J—
form:lto%do
fors:lto%do

3] do

forl_tto%-)_l%d

for m = 1to % do
fors:lto%do

Teceive a, ‘f“‘3+j~1)l+m,[“13“+s
from p (=1

|_ +ij- I)E-f-mJ i

[-%_])do forl = 1tot—1 do

formzlto%do
fors:lto-}’%do

send a,(,-_;)n_{_(;_;)n receive {1{ :'g:‘—11+,_1)_;_+m, {1 ns

from p O .

(e,

+mTU_Pl)“ +s

o Pl n 4 U=n 4 Do

/* End of send/receive phase */
Call Apy. and Cp,.

2 n D
}%§+§f+'ﬁ239+[-%ti
= a2 . n?
%n+P—2:O(ng+?+ﬁg)

Running time : 'IP%;; -+ ﬂ%lmax(% +0+2,9)+3Po+ (P-1)g+

Algorithm Ap,, and Communication Pattern Cp,, for Block Data Layout

if \/_ P < g then
Call ADBD and C})ED
else
Call A}, and C}_
Running time : O(ng + -’}; -+ mzn(\’/‘—; + %;g)) (for precise values, see the sub-algorithms)

For block-cyclic data layout assume that the processors are labeled as pfﬂ where i < /P and

j < +/P. Processor pf{_, is the processor which is initially assigned items a,,; where T;(' = < m<
; n(7-1 nj
K«/P = KV»P’

We present two possible sub-algorithms ADR agi ADK sc and communication patterns CDK se

CDK s for block-cyclic data layout. The first is the straightforward algorithm. The second parti-
tions the matrix into two sections. The first section uses the stra.lghtforward method and the second
section is solved by redistributing the data so that for every % rows, every processor receives
contiguous rows.

KFP

Subalgorithm A}, and Communication Pattern C},

WBC

12

Every processor pf‘; do in parallel :
for!=0to K —1do
if 7 # 7 then

form=1to K:}}—:do

receive b[1Z + %%1 + m] from pX, ; /*if i = 1 then receive from pf,}—:,,j */
if (> 1andi# j)or (j =1andi# +P) then
send t';[%{’l + ff%% + m] to pﬁl‘j /* if i = /P then send to pf{ */
fors=[to K -1
form =1to K:}? do

forr=1to K?/F do
ifl=1and r = 1 then
temp[% + _L_IK\/? +m] — a%+%__§l+m,‘;—’+%+rb[}f + 7 + 7]
else) _
temp[3 + 1}({:_1_1 + m] — temp[%¥ + EI({L\;_;?I + m]+
-1 n(7—-1
MU el s v R

Qns , n(i—1

bid —I
K+

= tm, B+
send temp[¥ + '}{—('—\}y + m] to pf¥
if i = j then
if [# 0 then
form =i+ 1to VP do
fors=1to K%—j do

n{1—1

receive temp[Z + “LVT—l + s] from pf

b[—]—7“ +] <—b[ln+47-1ml+s] tempm-]—n—%-lt_ + 3]

ifl#ﬂandzyélthen
form=1tot—1do
fors_ltoK\/—do |
receive temp{% + %({‘7_-:;1 + 5] from Pf,{m
ki i— o) j— n i—1
bz +M+S]4_5[%+%‘T}1_:l+s]—-temp[%+%27ﬁl+s]

v’_

fors=1tom—1do

[In+u+m](_b[f;ﬂ+%({‘7_ll+m]

=1
Uy nl=t) 1 e+ “+sb[fn + n;ﬁ +]
b_l_nl nl—l +
g+ 3) oS
"l "("1)+m 53+‘;;1,’_"+m

send b[f:; + % 2 1 +m] to P:+13 J¥if i = /P then send to pK *

fors—l-l—ltok-ldo
K\/_

forr-—lto

do

sn_L 1—]}n . f_n i-1)n
T Gpynym tp Ul R+ % Tl

13

Running Time : 2K[(2vP - l)Kv,_ma:c 7/E o9+ (2vP -3)g+ (4VP - 3)o+ VP -2) +
SIS maz(2K ~ i) p + 2250 759) = O(ng + 2+ F)

Subalgorithm A%K,BC and Communication Pattern C}_’]K,Bc
Every processor p,KJ do in parallel :
k2
forf-fz{)to [ﬁj —1do
if i # j then
form=1to /B do

receive b[12 + “Kj'; + m] from pff_llj /* if i = 1 then receive from p}v(,— ey)

P,j
if(j)la.ndizgéj)or(j=1a.ndi9é\/?)then
send B[4 + % + m] to pf-{i-l,j J* if 4 = +/P then send to p{‘:j */
fors=[lto K -1
form—ltoKﬁdo
for r = 1 to %= do
S T "
s 1 n{J—
temp[2 +—(7-l’” +m]<—am+n._1 m e R+ % + 7]
else _)
temp[% + %ﬂl + m] — temp[E + 31‘-(’—:—1‘1 + m]+
K

n{i—-1

Ftm, B B bl

’_;;+
i-1
send temp[% + 1}%—\/—}—} + m] to P;‘,z
if i = 7 then
if [# 0 then

form =i+1to P do
fors:lto;—\/}—,do ’
receive temp[i2 + P-L'—_ll + 5] from pX |
b[%{’l+—(7.i"‘ L +s]<—b[‘}?+i—1"':,}13 +s]—temp[%+-(-lf}{’\/1— + 3
if £ 0 and ¢ # 1 then

furmHItoi—Ido

K\/_)
receive temp[i2 + 252U 4] from pK
. K K P - ! .
bR + 57+l bR+ P+]~ templ +) 4 o]
form =1to V,— do
for s = 1tom-1 do

K\/_ K\/_
in 4 n{3-1)
G',g;_i_ :-—1+m;’1+ j—1)n b[fi-l-K\/—T]
In ﬂfi—ll
:'n n(i— R+%T +m]
%+ 47- +m] —
42 i— 1 s ln+(+m
send b[% + %({L\/%l + m] to p:+1,j /*if i = V/P then send to p*

fors=[1+1tok—1do
form_ltofw,_do

14

forr =1 to =2= do

K\/P
sny (iZl)n ; , In | (=D
b[K + EVP +m] ha%+%+m,%+%—?+rb[ff + TP + 7]

ifé:jthen
form =i+1to+/P do

o n
fors_ltoK\/}_,do

-2
. L95ln | ngi1 K
receive temp[~F— + 22 4 3] from pK,

i n . K2 n . K2 n :
(VO DS oo\ R R L2 2V

/* For the next steps, sending and receiving are done simultaneously*/

K2 K?
forI:[ﬁjtoK-Ki.do forl:LﬁJtoK—Kido
form =0tol-|Js] do form:OtoI—]_—-v,—};Jdo
fors=itovP—-1do fors =itovP—1do
for r = 1to g do for r = 1 to 5 do
- n = n
fort_ltowﬁdo fort....ltoKv,I—Jdo
send a%}j ;1Ln+%+rlg:+;1n+ ;C_lPﬂ+t receive a%; ;1;+gg;§))n+r,g:+;3n+ﬁ;+t
10 Pisi1 from p;’o4q
fors=0to:—2do fors=0toi—2do
for r = 1 to g5 do for r = 1to #p do
— n = U
fortd_ltoxﬁdo fort'—ltoKﬁdo
sen al;%'l’ ;{—lpn+%+r’!£+f?in+ K—J.Pﬂ +t recelve a;_;%_!_ ;{_1;+(‘;(11:)nn+rv(i+}?)n+}::}§ L
10 Pilsia from p; ;44
/* End of send/receive phase*/
K‘Z
forl = l.ﬁj to K —1do
form =1 to ﬂ%ﬂ do
receive b[% + m] from p{f}_l /¥if 7 = 1 then receive from p{f_l’ﬁ*/
if i # /P and § # /P then '
send b[*2 + m] send to p{:‘;-_,_l /*if 7 = +/P then send to pff;lgl*/

formzltof"ﬁdo
fors=1tom—-1do

b[l_f{l i n((£—1)£+j—1) Ep b[% n n((£—1}£+j-1) tm]-

In | n((i=1)VP+i-1)
a i s i . O[s
%_l_ﬁ[; 1)!}/;%: 1]+m,5k'l+“ﬁ’ 11;{/3-{»; 2 [K + KP I]

b[!ﬂ + ﬂiﬂ)#l + m] « b[%+'ﬂ_‘—11£+3'—11+m1
K P a,ﬁ+ﬂ@£ﬁl+m_%+ nggs_a;ﬁﬁ_llm
Send b{%+ n!!t—ulK!\/;s'l'J“‘l)- + m] to pi(.‘.l'.-l'l /* if _;" = \/? t]lf}]l send to p{-{l-l,l*/
form: ﬂ%""lto%do
IECEive b[% + m] from p{’{j_l /*lf j‘ =] ‘then receive fl-om pf-'l'ﬁ*/
if i # +/P and j # /P then
send b[+ m] to p§j+1 /*if 7 = +/P then send to Pl */

form=101+1to K —-1do

fors:ltoﬁp—do
forr = 1to % do
b +S](—b -I-S]—anm n!+rb[K+T]

Running Time : £ _|(4\/_ 2) [K\/—ma:c([{\/—-i-o 9)+(2vVP-3)g+(4VP-3)o+VP-2]+

(K J)[Kf9+j+xpma$(—+0+2,9)+3(VP-4)o+(VP - 1)g+VP -2+ 25K -
LmJ 1)g]-]-Z maa:[2(K— 3-)'[‘{%-15"1" #ﬁo, K_ﬂ_ﬁg] ZK]_ﬁ [2(K — z)—; + 250, Bp 9]

The running time is O(ng + % + #pg) when K < VP.

Algorithm Apy pc and Communication Pattern Cpy pc for Block Cyclic Data Layout

if K > /P and g > VP then
Call A} and Cp, .

Dg,5c
else
2 2
Can].] ADK,BC &Ild. CDK.BC

Running time : O(ng + l}—f- + min(-R’;;-g, E%)) (for precise values, see the sub-algorithms)

For D, the most favorable data layout, we consider two cases. If n < g, we call sub-algorithm
Ai—) which is the straightforward uniprocessor algorithm. Else, we call Ap,. and Cpg..-

Subalgorithm A}j (no communication pattern needed)
for:=1tondo
forj=1toi—14do
bli] < E1[%'] — a;,;5[4]
bli] — 21

Running Time : n?
Algorithm Ap and Communication Pattern Cp for D
if » < g then
Call A}
else
Call ADRC and CDRC
Running Time : n?ifn<g
(B)Q—I-Mma:n(2""-J—o-i~2 g)+(3P—-4)o+(P- 1)gr+P‘1 n+P-2= O(ng+ P)
ifn>g

Clearly, since o < g, all of these running times are within a constant factor of the correspond-
ing lower bounds. Furthermore, since the algorithms are variants of standard algorithms using
simple communication patterns, it follows that employing sophisticated techniques will not yield a
significant improvement in the running time.

Another point worth mentioning is that block layouts with P < min(n, ;—‘;) and block-cyclic

layouts with K < min(+/P, & ;\”/‘,—F, ¢) incur much higher running times than the other layouts. In

general, these two data layouts are considered for this problem because they are standard layouts
for LU decomposition [3]. Therefore it may be possible to mask the extra running times by the

16

running time needed for LU decomposition. However, if one simply needs to solve Tx = b, it will
probably be better to employ one of the other data layouts or to choose appropriate values of P
and K if using either block decomposition or block cyclic.

4.6 A note about vector b

In this section we have been assuming that the items of b are available to every processor. Under
this assumption, we obtained tight asymptotic bounds on the running time.

Suppose that the items of b (i.e. b;,b2,:--by) are not initially available to all processors. We
can transmit these items to all processors in O(ng) time. One way to achieve this is by (1) sending
all the items to some processor p and then (2) have p broadcast all these items to the remaining
P —1 processors. Clearly it takes at most ng time steps for p to receive all the items of b. Step (2)
is called the n-item broadcast problem has been discussed in [11]. In [11], the running time of the
n-broadcast problem has been shown to be O(ng). Therefore we can re-distribute the items of b so
that every processor has a copy of these items in O(ng) time.

The only bounds in Section 4.1- 4.5 which were smaller than ng were for T4(z,) when n < ¢
which relied on a uniprocessor algorithm. Therefore, the running times of the applicable algorithms
increase by at most constant factors.

5 Banded Triangular Linear Systems

In this section, we generalize the lower bounds presented in the previous subsections from lower
bounds for solving triangular systems to lower bounds for solving banded triangular systems. We
again consider only substitution algorithms.

The New Problem : Given Tx = b solve for x, where T = (q;;) is a k-banded (lower) n X n
triangular matrix, b = (b;) is a vector of size n, and x = (z;) a vector of size n.
We now generalize some of the previous definitions.

Definition 5.1 Let D be a single-item data layout on P processors. Let 1 < ¢ < %. If no
processor is assigned more than a -fs”‘ fraction of the items of T then D is a $-data layout for
k-banded iriangular matriz T'. We refer to the set of § - data layouts as D(5,k).

Definition 5.2 Let D € D(§,k). Define in < to be the smallest integer i such that the number

; : .) _k2
of non-zero items in row 1 to row i of T is greater than M;‘*—k-%
It follows immediately that 7, £ <, < </5n.

Definition 5.3 Define Dy to be the data layout in which every processor is assigned every matriz
item in T and every item in b.

Theorem 5.1 For any A in the class A,

LS ik < |V
Ta(zn) 2 | RITEHED if |G <k<g

maz(| 2|59, %) ifk>g

Proof: Assume that the data layout is Dy. We see that solving a k-banded triangular linear
system using substitution is as hard as solving |} triangular linear systems of size k (that cannot
be overlappingly solved) using substitution. Therefore using Theorem 4.2, we obtain the following
bounds :

| %)% if k < |/g]
Typ(zn) 2§ |B][Etbb=3] if | /3] <k<

maz(|2][%]9,%) ifk>g

Since Dy, is the most favorable layout, Tip, ()= Talzs). O

Theorem 5.2 Let Aec Aand D € D(%,k), Ifk > g then
Ta,p(zn) > maz((n — \/gn +1)g, 35).

Proof: Follows using a similar argument as that for Theorem 4.1. O

Since ¢ < %, every £ - data layout is a - data layout. This leads to the following corollary :

Corollary 5.1 If D € ‘D(f;, k), then for any A € A,
Ta,p(zn) 2 ma,a:([@%_;—l)n +1]g,2).

We see that for n > g, the lower bound is Q(ng + EPIE)

6 Conclusion

In this paper we considered the problem of solving triangular linear systems on parallel distributed-
memory machines using substitution. Working within the LogP model [2], we were able to derive
tight asymptotic bounds on the execution time for this problem and provided algorithms which
achieve these bounds.

Specifically, we proved that for sufficiently large matrices (n > g), the running time of any
substitution algorithm is Q(ng+ -J,—_.—) When we then restrict attention to data layouts in whlch the

number of data items assigned to a processor is bounded, the lower bound is still Ung+) Since
these bounds are achievable, this shows that simply restricting the proportion of data items asmgned
to a processor does not result in a significantly higher complexity than assuming all processors have
all the data items.

We also derived bounds for several specific data layouts which are commonly used by algorithm
designers for tlus problem. In particular, we showed that block -cyclic data layouts with K <
min(v/P, 2 P P’ g) and block data layout with P < min(n ,—f) have much higher complexities
than all the other data layouts we considered.

We showed that there exist substitution algorithms for these data layouts whose running times
are within constant factors of the corresponding lower bounds. Since all of these were variants of
standard algorithms using simple communication patterns, this shows that utilizing sophisticated
techniques, and designing communication patterns which greatly minimize communication between
processors yield no significant benefits toward the running time of a substitution algorithm.

Lastly, we generalize the problem to k-banded triangular linear systems. We showed that
for k > g, the running time is Q(ng + %k) Therefore, as before, we see that designing sparse
communication patterns gives no significant benefits.

18

All lower bounds obtained in this paper hold for an extended model with multi-broadcast
capability, i.e. the lower bounds hold even under the assumption that any value computed by a
processor p is available to that processor immediately and to all other processors L steps later.

19

References

[1]

2]

8]

(5]

[6]

[10]

(11]

(12]

(13]

[14]

A. Borodin and I. Munro. The computational complexity of algebraic and numeric problems. American Elsevier,
New York, 1975.

D. E. Culler, R. M. Ka,-rﬁ, D. A. Patterson, A. Sahay, K. E. Schauser, E. E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, May 1993. Also appears as TR No. UCB/CS/92 713.

J. W. Demmel, M. T. Heath, and H. A. van der Vorst. Parallel numerical linear algebra. Technical Report
UCB/CSD 93/703, University of California at Berkeley, 1993.

J. Dongarra, R. van de Geijn, and D. Walker. A look at scalable dense linear algebra libraries. In Scalable
High-Performance Computing Conference. IEEE Computer Society Press, April 1992.

S. Eisenstat, Heath M., C. Henkel, and C. Romaine. Modified cyclic algorithms for solving triangular systems
on distributed memory multi-processors. SIAM J. Sci. Stat. Comput., 1988.

M. T. Heath and C. H. Romaine. Paralle]l solution of triangular systems on distributed - memory multiprocessors.
SIAM J. Sci. Stat. Comput., 1988.

D. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM J. Numer. Anai., 29(4), 1987.
High Performance Fortran Forum. High Performance Fortran Language Specification, Version 0.4, 1992.

N. Higham. Stability of parallel triangular system solvers. Technical Report Numerical Analysis Report. 236,
University of Manchester, 1993.

R. M. Karp and V. Ramachandran. A survey of parallel algorithms for shared memory machines. Technical
Report UCB/CSD 88/408, University of California at Berkeley, 1988.

R. M. Karp, A. Sahay, E. E. Santes, and K. E. Schauser. Optimal Broadcast and Summation on the LogP
Model. In Fifth Annaul ACM Symposium on Parallel Algorithms and Architectures, 1993.

G. Li and T. Coleman. A new method for solving triangular systems on distributed - memory message - passing
multiprocessors. In SIAM J. Sci. Stat. Comput., 1989.

C. Romine and J. Ortega. Parallel solution of triangular systems of equations. Parallel Computing, 6:109-114,
1988.

A. Sameh and R. Brent. Solving triangular systems on a parallel computer. STAM J. Numer. Anal., 1977.

20

