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Abstract

We present a simple meta-level inference system based on a non-ground representation of both base
and meta-knowledge given under the form of omega-ordered Horn theories. Processing is done via
an extension of the traditional "vanilla” interpreter for logic programs, whose novel lifting
mechanism allows one to hop up and down the hierarchy of theories. The resulting computational
system ressembles very much the tower architecture defined for functional programming. While
lifting does prevent infinite recursion, successful termination depends on the actual ordering of
theories. At the end, this situation amounts to facing yet another, meta-meta-level search problem.

The expressive power of this system is illustrated with the solutions to various problems from the
current litterature, including the 3 wise men problem. It looks like a reasonable assumption to
hypothesize that most (if not all) specialized reasoning performed under the label of "proofs in
context” can be formulated within this system.
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1. Introduction

The quest for the Grail in Al, i.e. computer equipped with common sense, has been
on for quite some time, but has failed yet to come up with significant results.
Numerous formal systems for performing the kind of reasoning presumably
required for the task have been proposed. Although some of them have been
implemented as computer programs, they are not generally available as user-
friendly subsystems. Futhermore, as they now stand, they would not be able to
cooperate with other subsystems. These shortcomings, we think, do represent one of
the major reasons for the present disappointing state of affairs.

The requirement for effective system integration is particularly critical at a time
when vast amounts of computerized common sense knowledge may soon be
widely available (if we take for granted that projects like CYC will eventually
mature to the point of becoming viable commercial ventures). Without matching
common sense reasoning capabilities, we believe, computer systems will not be able
to take full advantage of this new breed of data bases.

What is then needed, we conclude, is a kind of a general architecture or facility (not
another language, not another formal system) for implementing advanced
knowledge representation and processing models. This facility should be provided
on existing software platforms and be easily interfaced with available knowledge
sources.

As a first step toward this goal, we have been looking for a prototyping system that
could allow one to easily transcribe and experiment with models of beliefs [10],
reflective [14] or context dependent [11] reasoning. The kind of systems we have
in mind is best described by the following lines taken from A. Hutchinson's recent
book on Algorithmic Learning [9]:

" A clever learning program which can work at meta-levels might include a
procedure for generating successive meta-levels. Whenever something within the
program suggests that its present system is inadequate, the program could hop
up a level, define an extension of its current object system, and then hop down
again."

On the theoretical side, F. Gunchiglia & al. [6] , working on a possible foundation
for meta-reasoning in the field of Al, introduced the concept of a hierarchical meta-
logic. Given any axiomatized object theory expressed in propositional logic, this
formal system produces theorems both in this base theory and in a related meta-
theory. To quote from them, "the assumption of uniformity throughout the
hierarchy leads to the possibility of capturing the whole infinite tower of theories
with in a single all-encompassing formal system schematic on the levels".

Introduced in the early 80's by B.C. Smith [13] in the context of functional
programming, the concept of a tower architecture has not proved so far to lead to
significant practical applications. As Hutchinson points out, "considered as a meta-



system, it is not very expressive" , and, as such, does not allow to tackle significant
problems. To overcome this limitation, Gunchiglia & al. first define a system where
the property expressed at each meta level is theoremhood. They allow non logical
axioms to be added at appropriate levels, ending up with a natural deduction
system for the whole hierarchy. Finally, they prove that the resulting formal system
has a proof theory which is sound and complete with respect to a particular
semantics capturing the desired relationship between object and meta theory.

An essential hypothesis made throughout these developments, allowing in particular
to ensure consistency in theories from a certain level up, is that the conclusion from a
derivation made at a certain level never depends on an assumption relating to a
lower level. As it did turn out, our own developments (which do enforce this very
hypothesis) very much look like a Prolog implementation of the above theoretical
ideas, extended to the first order case. We had indeed decided at once that our
investigation would be based on Prolog, which readily allows one to quickly
develop and test various meta-level schemes using the non-ground representation
[8]. At the same time, it provides a modern interface to leading commercial software
applications (were these going to be needed for later developments that have not
been yet attempted).

The good news are that we have been able to do this in a rather straightforward way,
coming up with a 15 lines interpreter (not counting the set primitives and system
declarations) for a simple meta-level inference system we call lifted resolution of
omega-ordered Horn theories. The bad news are that at the end, we are left facing a
meta-meta-level search problem concerning the proper ordering of the various Horn
meta-theories defining search control for object domains.

The rest of this paper is organized as follows. In the next section, we describe a
simple meta-level inference system through its corresponding Prolog interpreter. In
a subsequent section, we relate this system to the usual approaches in the field, and
present our solutions to selected problems from the current litterature (including
the 3 wise men problem). In the last section, we stress some of the limitations of our
own work, and discuss possible extensions to overcome these limitations.

2.- A Simple MetaLevel Inference System and its Prolog Interpreter

2.1 A Prolog Interpreter for Flat Horn Theories

Let us first introduce a simple variant of the traditional Prolog interpreter for logic
programs, intended to deal with named definite logic programs (or flat Horn
theories) using a non-ground representation. Toward this end, we shall use the
following syntactic conventions:

- named definite logic programs, or flat Horn theories, will be represented as
Prolog structures built with the binary operator ": “, and comprising an atom



as first operand, standing for the theory's name, and a list of assertions as
second operand, standing for the theory's definition;

- assertions themselves can be either facts, represented by single terms, or rules,
represented by terms built with the binary implication operator " <- ", and
comprising a single term as rule head and either single or multiple terms
standing as rule conditions, with multiple conditions enclosed in parentheses
and linked by conjunctive "," or disjunctive “;" operators (which both have a
higher precedence than the implication operator).

Example:

theoryl: [us (clinton),
non binational (clinton),
european (X) <- swiss(X),
non european(¥X) <- (us(X), non binational(X))].

Note the use, in the above theory, of the unary operator "non" for representing true
negation, in order to avoid interference with Prolog's "not" operator implementing
negation based on the closed world assumption.

A Prolog interpreter for solving goals prefixed with the name of a theory can
readily be written as follows:

solve (Theory:Goal) :- Theory:T,
interpret (Goal,T).

interpret ((A;B),T):-!, {interpret (A, T) ;
interpret(B,T)}.

interpret ((aA,B),T):-!,interpret(A,T),
interpret (B, T) .

interpret (A, ) :-system(a), !,call(a).
interpret (A,T) :— match(A,T);

match (A<-C,T),
interpret (C,T).

where match (X,T) retrieves the assertions in the list T which can be unified
with X

Example:

?- solve(theoryl: non european(X)).
¥X=clinton;

no
Without any axiomatic treatment of negation, this interpreter cannot deduce further

logical consequences of the above theory, such as the fact that us president clinton,
being non european, is also necessary non swiss.



2.2 A Prolog Interpreter for Omega-ordered Horn Theories

As a first extension, let us now consider theories made up of ordered sets of flat
theories, i.e. comprising lists of lists of assertions with possibly many implication
operators associating to the left , thus defining "higher order" conditions for meta-
rules. We call the resulting construction omega-ordered Horn theories.

Example:

theory2:[[us(clinton),
non binational (clinton),
european(X) <- swiss(X),
non european(X) <- (us(X), non binational(X))],’

[non P(X) <= (Q(X)<-P(X), non Q(X))1].

Following [6], the first theory corresponds to an object theory, and the second one
(comprising just one meta-rule, i.e. a simple case of negation introduction),
corresponds to a meta-theory intended to derive conclusions that otherwise would
not be obtainable. |

Our interpreter can be extended to do this as follows:

interpret (A, [T1|Tn]) :- match(a,T1):
1ift (A<-C, [T1|Tnl),
interpret (C, [T1|Tn]).

1ift (A, [T1,T2|Tn]) :- append(T1,T2,T12),
interpret (A, [T12|Tn]).

?= solve(theory2: non swiss(X)).
X=clinton;

no

A few words of explanation about the "lifting" mechanism just introduced, and
which stands at the heart of our interpreter's extension, are in order here. After
failing to match the initial query with an assertion in the object theory, the
interpreter will call on lift to first merge the object theory with the meta-theory
(using append), and then go through a recursive call to interpret. After matching
the lifted query (i.e. non swiss(X) <= C) with the head of the meta-rule,
execution of the initial query will resume and go on interpreting the corresponding
meta-conditions, i.e. (european(X) <- swiss(X), non european (X))
While the first of these conditions will follow a direct matching with the object
theory, the second one will in turn require a lifting, leading to a match of the
second lifted query (i.e. non european(X) <- C)with the lifted object theory.

The following is another simple example embodying a case of "heterogeneous
knowledge compilation" in a system operating with a decision theoretic
formulation, as advocated by S. Russel [12]. Note that in this case, access to the
lifted object theory is required in order to satisfy the conditions of the meta-rule
for opportunity (following two consecutives lifting). Note also the versatility



allowed in the grouping of assertions within theories , which are ordered here
according to their complexity .

trade:[[cargo(oil,venezuela, 100000),
price(oil,venezuela,10),
price(oil,us,12),
shipping(oil, venezuela,us,0.5),
utility (profit(_, )).,
action(contract( , ,_,_)}1,

[contract (X, T,P,0) <- (cargo{(X,0,T),price(X,0,P)),

profit (F,D) <- (contract(X,T,P,0),
price(X,D,M),
shipping(X,0,D,S),
F is T* (M-P-8),
F >0)1,

[opportunity( (Action, Utility))
<~ Conditions
<- ({action(Action),

utility(Utility),

Action <- ActionCond,

Utility <- UtilityCond,

compile (Action <- ActionCond,
Utility <- UtilityCond,
Conditions))]1].

?- solve(trade:oppertunity ((X,Y))).

X = contract{oil, 100000, 10,venezuela) ,
Y = profit (150000,us) ;
no

While the unspecified compiling procedure which produces Conditions simply
involves the partial evaluation of possible actions (here, just the contract
assertion) with respect to given utilities (here, the profit assertion) , the overall
computation amounts to learning and applying the rule given in [12], i.e " if the
current US market price of crude oil is M then buying a cargo of T tons in
Venezuela at price P will yield a net profit f(M,T,P)" for some known f.

A careful analysis of our preceeding examples leads to the conclusion that a flat
theory comprising all assertions, together with a traditional interpreter, will do the
job (in our last example, the derived Conditions would then have to be relegated
at the end of the meta-rule). However, the pattern "guarding” the lifting procedure
(i.e. [T1,T2|Tn]), associated with the merged pattern commanding the recursive
call to the interpreter (i.e. [T12]|Tn]), plays another essential role, i.e. prevents
infinite recursion. This will prove necessary in the more complex examples yet to
come.

As a conclusion, our lifting process encompasses both the matching process for
retrieving rules from theories and the merging of object and meta-theories. By
itself, it does embody the one and only extension needed to answer queries against
omega-ordered theories. We call the resulting interpretation process lifted resolution
of omega-ordered Horn theories.



3. Meta-level architectures and application models: a review

3.1 Meta-level architectures

Meta-level architectures, as described extensively in [7], are by now well defined
systems enjoying common properties (foremost, the explicit representation of control
knowledge). At the same time, they can be further classified according to specific
characteristics (such as the "locus of action”, the linguistic relation between levels,
and so on).

By the obvious virtues of its associated interpreter, the system introduced in the
previous section falls into the category of monolingual * , declarative, meta-level
inference system. As such, it does not require the use of a naming relation (as opposed
to similar, amalgated systems like Alloy[2]). As argued in [7], nothing prevents the
use of a unique language, both at the object and meta-levels, the only requirement
being "that the two languages, although of the same type, are syntactically distinct".
The layered structure of the tower of omega-ordered theories, we believe, does
account for this requirement.

The relation of our system with a sound and complete formal system (i.e the
hierarchical meta-logic of [6]), has already been stressed in the introduction.
Standing on top of an incomplete inference system, i.e. Prolog (for a discussion of
other sources of incompletness, see below), our construction is itself necessarily
incomplete. As for soundness, we refer to the results obtained in [6], which pertains
to the propositional case, and to the perspectives given there for the first order case.

N.B. Logical completeness and soundness, as accounted for here (i.e. relating a given semantics
and proof theory), are not to be confused with the concepts of combinatorial completness
and soundness. These later concepts are used in particular in [7] to classify meta-level
architectures whose primary purpose is to "prune parts of the object level search space”.
Combinatorial soundness, being the property enjoyed by conservative extensions of object
theories (which do not allow new theorems to be added by the meta-theory), is required for
such a specific task. It is not however a desirable property of meta-level inference systems
intended, as described in our introduction, to extend the results of an object theory.

Being based on the non-ground representation of object knowledge within meta-
knowledge, our system stands in strong contrast to the more versatile approach
using the ground representation pioneered in [3]. This is not surprising, since the
goals systems based on this later approach usually pursue, " namely the
development of software tools (the metaprograms) that manipulate other programs
(the object programs) as data, such as debuggers, compilers, program transformers,
etc" [4] , are quite different too. When they aim, as we do, at representing and
processing application knowledge, systems using the non ground representation,
such as Alloy [2] and Reflective Prolog [5], seem to be unnecessarily cluttered by
naming relations.

2 [8] refers to this property as the non-ground representation



3.2 Application models

As all architectures, our simple system represents nothing more than an empty
shell, i.e. a tool that should possibly be used to model situations and solve
practical problems. Potential applications which have already been extensively
studied in the literature include, among others, the modelization of agents beliefs
including self referential statements about truth or knowledge, which arise
naturally in common sense reasoning.

As a tentative assessment of the expressive power enjoyed by omega-ordered Horn
theories, we present the formulation, within our formalism, of recently published
solutions to problems involving such modelizations. This will allow us, at the same
time, to relate our proposal to competing formalisms.

3.2.1 Encoding of private beliefs

The first problem involves the modelization of an agent's private beliefs. The original
formulation goes as follows [2]:

"...Mary has the following five basic beliefs: anyone who she believes is thinking
they like her, she finds charming; all men think all women are irresistible;
everyone think that Mary is a woman; John is a man; everyone think that if they are
irresistible then everyone likes them".

The solution given in [2] makes use of a special predicate Name " intended to mean
that an atomic sentence Name(t,<t>) can be proved for any term t in any theory".
A specialized proof system is then needed to carry the "interleaving of
computations at different meta-levels". Our formulation, which does not resort to
such a special predicate, otherwise closely follows [2]'s original solution, as far as
the object theory is concerned; apart from the two meta-assertions that are required
in order to account for the nesting of beliefs, there is no need for a specialized

proof theory. It goes as follows:
charm: [ [believe (mary, believe (X, female (mary))),
believe (mary, male(john)),
believe (mary, (charming(X) <- believe(X,likes (X, mary)))),
believe (mary, believe (X, (likes(Y,Z) <- irresistible(Z)))),
))
)

believe (mary, (believe(X, (irresistible(F) <= female (F)
<- male({X)))]1,

[believe(X,P) <- believe(X,Q) <- believe (X, P<=Q)1,

[believe (X, believe(Y,P)) <- believe(X,believe(Y,Q))
<- believe(X, believe(Y, P<-Q))1,

[11.
/* N.B. last empty theory needed for lifting space see discussion below */
?- solve{charm:believe (X,charming(Y))).
X = mary ,
Y = john ;

no



3.2.2 Encoding of common knowledge

Our next problem, i.e. the so-called " three wise men problem", is often regarded as
a benchmark in the field of meta-reasoning, so we will refrain from restating it here.
Among the numerous proposals for solving this problem, we have chosen to try
and reproduce the elegant solution given by G. Attardi and M. Simi. In this solution,
"common knowledge is grouped in a single theory and lifting rules are provided for
each agent to access it" [1]; the required proof is then carried out by hand, following a
well defined process of natural deduction in and out of nested contexts.

Whenever possible, our formulation also closely follows Attardi & Simi's original
solution. Our axioms for getting in and out of contexts are transcriptions of their
own axioms. In order to make up for the limitations of lifted resolution of omega-
ordered Horn theories with regard to natural deduction in full first order theories,
we introduce for the following fixes:

- disjunctive facts are broken down into corresponding implications

- double nested negation introduction (or reductio ad absurdum) are rendered
through a meta-rule relying on a simple interpreter's extension allowing to
carry out a proof under a given assumption

This straightforward interpreter’s extension is as follows:

interpret ( (A=>B), [T1|Tn]) :-!,append (A, T1,AT1),
interpret (B, [AT1|Tn]).

Common knowledge and meta-rules for accessing common knowledge and
defining reductio ad absurdum can then be expressed as follows:

wise: [[answer (X,Answer) <- (possible(X,Answer), believe (X,Answer)),
possible(l,whitel), possible(l, non whitel),
possible(2,white2), possible(2, non white2),
possible (3,white3), possible(3, non white3),

believe (X, non believe(2,white2)),
believe (X ,non believe(l,whitel)),

believe(X, (whitel <- (non white2, non white3))),
believe (X, (white2 <- (non white3, non whitel)}),
believe (X, (white3 <- (non whitel, non white2))}),

believe (¥,believe (2,
believe (X,believe (3,

whitel)) <= whitel,
whitel)) <- whitel,

believe(X,believe (2, non whitel)) <- non whitel,
believe (¥X,believe (3, non whitel)) <- non whitel,
believe(¥X,believe (3, white2)) <- white2,
believe(X,believe(l, white2)) <- white2,

believe (X,believe(3, non white2)) <- non white2,
believe (X,believe(l, non white2)) <- non white2,
believe (X,believe (1, white3)) <- white3,

believe (X,believe (2, white3)) <- white3,

believe (X,believe(l, non white3)) <- non white3,
believe (X,believe (2, non white3)) <- non white3],



10

[believe (X, believe(Y, (A,B))) <= (believe(X,believe(Y,A)),
believe (X,believe (Y,B))),
believe (X, believe(Y,P)) <- (believe(Z,P), var(z))]l,

[believe (X, believe(Y,P)) <- believe(X,believe(Y,Q))
<- {believe(Z,P<-Q), var(z))l,

/* schema for nested double reductio ad absurdum */
[believe(¥X,P) <= true
<= ([non P,non Q] => believe(X,believe(Y,non believe(Z,R))),
[non P,non Q] => believe(¥X,believe(Y,believe(Z,R))}))
<= ([non P] => believe(X,believe(Y,non P)),
[non P] => believe(X,non believe(¥,Q)))}1].

?=- solve(wise:answer(X,Y)).

W o= 3

Y = white3 ;
X =3

Y = white3 ;
no

N.B. The order in which wisel and wise2 have expressed their beliefs being not
taken into account results in duplicate solutions.

4. Conclusions: perspectives, limitations and possible extensions

The ease with which we were able to transcribe the above models is a good
indication of the expressive power enjoyed by our own system. Although we are
not in a position to back up any serious claim, we are led to believe that most (if not
all) all the formal reasoning that can be carried out by hand within the framework of
"proofs in context" [1] can be automated using lifted resolution of omega-ordered
Horn meta-theories.

As already mentionned in the introduction, lifted resolution of omega-ordered
Horn theories is very sensitive to the actual ordering of the meta-theories defining
control knowledge. As an example, the successful termination of the example
encoding private beliefs (see above 2.3.1) not only requires the two meta-rules
expressing nested beliefs to be in separate theories, but also calls for an extra empty
meta-theory to accomodate lifting . This situation amounts to facing a meta-meta-
level search problem topping the infinite tower defining the application domain. As
a possible way out, one might consider the following extensions, leading to a meta-
interpretation process:

- first, reifying the interpretation process itself into a (flat) theory I; this theory
should include our Prolog interpreter as well as meta-rules for ordering
theories in the application tower T
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- then modifying our Prolog interpreter to process the theory I, which, in
turn, should process the application tower T.

As a simple example of such a meta-interpretation process, we give below an
interpreter theory that will allocate lifting space in the application tower on
demand:

interpreter: [interpret (P) <- (P=(A;B), (interpret (A):
interpret (B) ),

P=(A,B), interpret(d),
interpret (B) ;

system(P), call(P):

match (P) ;
1ift (P<-Q),
interpret (Q))),

solve (P) <- (interpret (P) <- Cond,
Cond) ,

solve (P) <— (write('stretch ? (y/n) '),nl,
read(R) ,nl,
(R=y',
stretch(P):
R=‘1-']'|r
write ('stop’),nl, fail))].

This theory reproduces our Prolog interpreter implementing lifted resolution,
extended with an interactive dialog allowing the user to "stretch" the application
tower by allocating more lifting space. As the lifting process itself is now taken care
of by a control theory, there is no need to introduce it into the interpreter. We can
thus revert to the basic Prolog interpreter of section 2.1 , which must be modified as
follows:

solve (Theory:Goal) :- Theory:T,
interpreter:I,
interpret (solve(Goal) , T, I).

interpret (A, T,I) :— match(a,I);
match (A<-C, I),
interpret (C,T,I).

The extensions required to process the interpreter theory include the following
procedures:

interpret (match(a), [T1] ], ):- !,match(A,T1).

interpret (lift (A), [T1,T2|Tn],I):-!,append(T1,T2,T12),
interpret (interpret (a), [T12|Tn],I).

interpret (stretch(a),T,I):- !,append(T,[[1],TS),
interpret (solve(a),TS,I).

Whereas the overhead associated with such a meta-interpretation process should not be
overlooked, the above example accounts well for the open-ended facilities offered by our
architecture.
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