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1 Introduction

This paper is a (biased) survey of some work in derandomization of randomized algorithms.
Perhaps the most famous open problem in Computer Science is whether or not NP is equal
to P, i.e., are efficient non-deterministic algorithms more powerful than efficient determinis-
tic algorithms. An analogous question is whether nor not RP is equal to P, i.e., are efficient
randomized algorithms more powerful than efficient deterministic algorithms.

These two questions formally are quite similar, as the only difference between the def-
initions of NP and RP are that for an NP language L, there is only required to be one
witness for each ¢ € L, whereas for RP a constant fraction of strings are required to be
witnesses.

Nevertheless, it is my belief that NP is more powerful than P, and on the other hand
RP is equal to P. Paradoxically, there is some hope that an eventual proof that shows that
NP is not equal to P will be strong enough to also show that RP is equal to P.

Definition (function ensemble):  Let f : {0,1}}™ — {0,1}¥®) denote a function
ensemble, where t(n) and E"(n) are polynomial in n and where f with respect to n is a
function mapping {0, 1}™ to {0, 1}4™), &

Definition (P-time function ensemble): Call £ : {0,1}%® x {0,1}4™) — {0,1}™") is
a T'(n)-time function ensemble if f is a function ensemble and there is a Turing machine
such that, for all z € {0,1}!®), for all y € {0,1}¥"™), f(z,y) is computable in time T'(n).
Call f is a P-time function ensemble if T(n) = n®). &

Definition (language): Let L : {0,1}" — {0,1} be a function ensemble. One can view
L as a language, where, for all z € {0,1}*,c € Lif L(z) =1 and z & L if L(z) = 0. &

In the following, definitions of a variety of complexity classes with respect to a language
L as just defined are made.

Definition (P): Say that L € P if L is a P-time function ensemble. o

Definition (NP): Say that L € NP if there is a P-time function ensemble f : {0,1}" x
{0,1}4®) — {0,1} such that for all z € {0,1}",

z€L implies Prye (o1em[f(z,Y)=1]>0.
z ¢ L implies Pryg, to1ymlf(z,Y)=1]=0.

&

Definition (RP): Say that L € RP if there is a constant € > 0 and a P-time function
ensemble f : {0,1}" x {0,1}4") {0,1} such that for all z € {0,1}",

z€L implies Pryg io1ym[f(z,Y)=1]2¢
T Q L implies PrYEy{D,l}”"‘) [f(x,Y) = ].] =qQ.
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There are a few philosophical reasons to want to show that RP = P, e.g., does random-
ization help in the general context of efficient computation? There are also some practical
reasons, e.g., in practice if one uses a Monte Carlo algorithm then there should be great
concern about where the source of random bits comes from. In practice, what one typically
does is to take a very small number of random bits and stretch them into a large number
using a simple pseudorandom generator, e.g., a linear congruential generator, and then use
these bits as the source of randomness for the Monte Carlo simulation. The problem in
practice is that there is no guarantee that these pseudorandom bits are random enough to
make the Monte Carlo simulation behave as if though they were truly random. In practice
sometimes the answer turns out to be that this is good enough, sometimes it has turned
out to be not good enough, and in many cases the answer is not known. One of the moti-
vations behind the work on derandomization of randomized algorithms is to put this entire
question on a much firmer scientific footing, i.e., to be able to say authoritatively which
pseudorandom generators can be provably used for which Monte Carlo algorithms.

1.1 Randomness and Pseudorandomness

The notion of randomness tests for a string evolved over time: from set-theoretic tests
to enumerable [24, Kolmogorov], recursive and finally limited time tests. There were some

preliminary works that helped motivate the concept of a pseudorandom generator including
[38, Shamir].

[9, Blum and Micali] introduce the fundamental concept of a pseudorandom generator
that is useful for cryptographic (and other) applications, and gave it the significance it has
today by providing the first provable construction of a pseudorandom generator based on the
conjectured difficulty of a well-known and well-studied computational problem, the discrete
log problem. [41, Yao] introduces the now standard definition of a pseudorandom generator,
and shows an equivalence between the this definition and the next bit test introduced in
[9, Blum and Micali]. The standard definition of a pseudorandom generator introduced
by [41, Yao| is based on the fundamental concept of computational indistinguishability
introduced previously in [18, Goldwasser and Micali]. [41, Yao] also shows how to construct
a pseudorandom generator from any one-way permutation.

Another important observation of [41, Yao] is that a pseudorandom generator can be
used to reduce the number of random bits needed for any probabilistic polynomial time
algorithm, and this shows how to perform a deterministic simulation of any polynomial
time probabilistic algorithm in subexponential time based on a pseudorandom generator.

The results on deterministic simulation were subsequently generalized in [10, Boppana and
Hirschfeld].

The robust notion of a pseudorandom generator, due to [9, Blum and Micali], [41,
Yao], should be contrasted with the classical methods of generating random looking bits as
described in, e.g., [23, Knuth]. In studies of classical methods, the output of the generator
is considered good if it passes a particular set of standard statistical tests. The linear
congruential generator is an example of a classical method for generating random looking
bits that pass a variety of standard statistical tests. However, [11, Boyar] and [25, Krawczyk]
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show that there is a polynomial time statistical test which the output from this generator
does not pass.

2 Circuits

A convenient way to view computation is via boolean circuits.

Definition (Cjy*™): For all n € N, let Cjy*™ be the set of all circuits with £(n)

boolean input variables z = (21,...,2yn)) of depth d(n) with a total of at most s(n) gates.

A circuit C € Cg((%)‘s(ﬂ] consists of “and”-gates and “or”-gates, where each gate is allowed
unbounded fan-in. C consists of d(n) levels of gates, where all gates at a given level are
the same type. All the gates at level 1 have as inputs any mixture of variables and their
negations. For all i € {2,...,d(n)}, all gates at level 7 receive their inputs from the gates

at level 1 — 1. The set of gates at level d(n) are considered to be the output of C. &

For example, let f : {0,1}* x {0,1}¥™ — {0,1} be the P-time function ensemble
associated with an RP language L. One can think of f as a family of boolean circuits as
follows. For each n, there are 2" circuits in the family with £(n)-bit inputs, one circuit
for each of the 2™ possible values of z € {0,1}". The circuit C; associated with the input
& computes the value of f(z,y) on input y € {0,1}%™), The circuit C, can be derived
from the description of f and from z. Since f is a P-time function ensemble, without
loss of generality one can say that C, consists of at most a polynomial number p(n) of
alternating levels of “and” and “or” gates, with a single output gate at the bottom level.
The property that C; has is that if z € L then Pry[Cp(Y) =1] > 1/2 and if z € L then
Pry[C.(Y) = 1] = 0, where Y € {0,1}¥™). One can view this circuit family for L as a

subfamily of C5n) ™.

In terms of circuits, the approach to derandomization explored in this survey is to
construct a pseudorandom generator g that can be used as the source of randomness for all
C € C. This approach was initiated by [9, Blum and Micali] and [41, Yao].

Definition (e-pseudorandom generator for a circuit family C): Let g: {0,1}"™ —
{0,1}" be a P-time function ensemble, where r(n) < n. Let C be an infinite family of
circuits, and let C € C be a circuit with n inputs. The distinguishing probability of C for
g is

5= |BHC(Y) = 1] - BrC(e(2)) = 1],

where Y €g {0,1}" and Z € {0,1}"™, in which case g is said to e-approximate C for any
€ > 4. Say that g is a e-pseudorandom generator for C if g e-approximates C for all C € C.
Say that C has time-success ratio S(n) for g if the minimum over all circuits C € C with n
inputs of the ratio of the number of gates in C divided by the distinguishing probability of
C is at least S(n). &

Given g, the derandomization for the RP circuit family described above is straightfor-
ward: For any z € {0,1}", one can approximate the fraction of the 24" inputs on which
C, outputs 1 as follows. Let g : {0,1}7™ — {0, 1}4") be a 1/2-pseudorandom generator
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for ng)} 2(") For all 2 € {0,1}") | compute Cz(g(2)), and if any of the answers is 1 then
conclude that z € L, and otherwise conclude that x ¢ L. Note that by the properties
of g this procedure is guaranteed to correctly classify x with respect to membership in L.
The smaller r(n) is in relationship to n the stronger the pseudorandom generator g. For
example, if r(n) is O(log(n)) then the entire procedure runs in deterministic polynomial
time, showing that RP = P.

One way to view the above approach is to find a small set S of £(n)-bit strings such
that the average value of Cz(y) over y € S is close to the average value of C,(y) over all
y € {0,1}¥(™), In the above, S can be viewed as the set {g(2) : z € {0,1}"™}. The other
important ingredient to the derandomization is that the set S can be efficiently enumerated.
This is true in the above approach because g is a P-time function ensemble, and thus S can
be enumerated simply by sequencing through all z € {0,1}"(™ and computing g(2).

Suppose one is only interested in the property that S be small and drop the (crucial)
requirement that S is easy to enumerate, Then, it is not hard to see that there is such a
small set S. To see this, suppose that one chooses randomly a set S of sizen+ 1. If z € L
then, independent of S, z is correctly classified. On the other hand, if z € L, then z is
incorrectly classified with probability at most 2~(*1), Since there are at most 2" such z, the
probability that there is an 2 € {0, 1}" that is correctly classified is at most 1/2. Thus, there
is a set S of size n + 1 that correctly classifies all z € {0,1}" with respect to membership
in L. This is the approach that [1, Adleman] took to show that RP C P/poly, i.e., in a
non-uniform sense randomization is no more powerful than deterministic computation. The
problem with this approach is that there is no clue of how to efficiently generate the set S
in deterministic polynomial time. Thus, the uniform version of the “RP = P7” question is
far from resolved.

3 Derandomizing Particular Algorithms

In some applications, the goal is to completely derandomize the algorithm to produce a
deterministic solution. However, in other cases the basic goal is only to drastically reduce
the number of random bits used by the randomized algorithms, e.g., reduce from O(n) bits
to O(log(n)) bits. The philosophical and practical import of this is that it is hard in practice
to produce high quality independent random bits at a high rate.

3.1 Pairwise Independence

One of the key ideas in derandomizing randomized algorithms is the observation that some-
times it is the case that the randomized algorithms works just as well if there is not full
independence between the random variables. One special but important case is when pair-
wise independence between the random variables suffices.

Consider a set of random variables indexed by a set U, i.e., {Z; :7 € U}, where Z; € T
For finite ¢ = |T|, a uniform distribution assigns Pr[Z, =] =1/t, forallz €U, a e T. If
this distribution were furthermore pairwise independent, one would have: forall z # y € U,



foralla,f €T,

Pr{Z; = a,Z, = §] = P1[Z, = o] - Pt[Z, = f] = 1/

This is not the same as complete independence, as evidenced by the following set of three
pairwise-independent variables (U = {1,2,3}, T = {0,1}, t = 2):

3 ] Zl Zg .Z3
00 0 0 0
01 0 1 1
10 1 0 1
11 1 1 0

Each row s can be thought of as a function hg : U — T. Let S be the index set for these
functions, where in this case S = {0,1}2. Forallz # y € U, for all o, 8 € T,

sg';s[hs(m) =aAhs(y) =0l =1/4 =1/t

(Notice in particular that Pryeps(hs(z) = hs(y)] = 1/2 = 1/t.) Any set of functions
satisfying this condition is a 2-universal family of hash functions.

Definitions and explicit constructions of 2-universal hash functions were first given by
[40, Carter and Wegman] . One simple way to construct a general family of hash functions
mapping {0,1}" — {0,1}" is to let S = {0,1}" x {0,1}", and then for all s = (a,b) € S,
for all z € {0,1}" define hy(z) = az + b, where the arithmetic operations are with respect
to the finite field GF[2"]. Thus, each h; maps {0,1}" — {0,1}" and S is the index set of
the hash functions. For each s = (a,b) € S, one can write:

hs(z) _[( =1 a
hs(y) y 1 b
When z # y, the matrix is non-singular, so that for any z,y € {0, 1}", the pair (hs(z), hs(y))

takes on all 22" possible values (as s varies over all §). Thus if s is chosen uniformly at
random from S, then (hs(z), hs(y)) is also uniformly distributed.

One can view S as the set of points in a sample space on the set of random variables {Z :
z € {0,1}"} where Z,(s) = hy(z) for all s € S. With respect to the uniform distribution
on &, these random variables are pairwise independent, i.e., for all z # y € {0,1}"*, for all
a,p€{0,1}"

PriZa(e)=anZ(s) = Bl = PriZ(s) = o] - Pr[Z,(s) = B] =1/2

To obtain a hash function that maps to k£ < n bits, we can still use § as the function
index family: The value of of the hash function indexed by s on input = is obtained by
computing hs(z) and using the first k bits. The imporant properties of these hash functions
are:
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e Pairwise independence.

e Succinctness — each function can be described as a 2n-bit string. Therefore, randomly
picking a function index requires only 2n random bits.

o The function hy(z) can easily be computed (in LOGSPACE, for instance) given the
function index s and the input z.

In the sequel, unless otherwise specified, references to pairwise independent hash func-
tions refer to this construction, and S denotes the set of indices for the hash family.

3.2 Applications to Particular Algorithms

The original applications described in [40, Carter and Wegman| were applications to hash-
ing. Subsequently 2-universal hashing has been applied in surprising ways to a rich variety
of problems. For a survey of some of these applications, see [31, Luby and Wigderson)].

Consider, for example, the MAXCUT problem: given a graph G = (V, E), find a two-
coloring of the vertices x : V' — {0, 1} so as to maximize ¢(x) = |{(z,y) € E : x(z) # x(¥)}].
The following is a description of a solution to this problem that is guaranteed to produce a
cut where at least half the edges cross the cut.

If the vertices are colored randomly (0 or 1 with probability 1/2) by choosing x uniformly
from the set of all possible 2!V colorings, then:

Bei)] = 3 Prlxe)#xG)] = o

(z.y)eE

Thus, there must always be a cut of size at least J—‘;'ﬂ Let & be the index set for the
hash family mapping V' — {0,1}. Since the summation above only requires the coloring
of vertices to be pairwise-independent, it follows that E[c(hs)] = %1 when s €p S. Since
|S| = |V|?, one can deterministically try hs for all s € S in polynomial time (even in the
parallel complexity class NC), and for at least one s € 8, h; defines a partition of the nodes
where at least J%l edges cross the partition.

This derandomization approach was developed and discussed in general terms in the
series of papers [13, Chor and Goldreich], [27, Luby], [5, Alon, Babai and Itai]. There, the
approach was applied to derandomize algorithms such as witness sampling, a fast parallel
algorithm for finding a maximal independent set, and other graph algorithms. This work
was extended to more efficient parallel approaches in [28, Luby], and generalized in [8,
Berger and Rompel] and [32, Motwani, Naor and Naor] to apply to parallel solutions of
other combinatorial problems.

Other examples include the use of five-wise independent random variables to choose
the pivot elements for quicksort while still maintaining the O(nlog(n)) running time [22,
Karloff and Raghavan]. Extending the work of [22, Karloff and Raghavan], [33, Mulmuley]
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reanalyzes many classical computational geometry problems, including trapezoidal trian-
gulations, convex hulls, Voronoi diagrams, and hidden surface removal. The new analysis
shows that only limited independence between the random variables suffices for the ran-
domized algorithm.

Other ideas that have been used to derandomize particular algorithms include using
expander graphs, and combining expander graphs with pairwise independence techniques.
An example of this approach is [21, Karger and Motwani].

4 Derandomizing Depth Two Circuits

In this section depth two unbounded fan-in boolean circuits are considered. The circuit
subfamily of cﬁ’m{“)“ with a first layer of m = m(n) “and” gates all feeding into a single
output “or” gate can be viewed as a formula F in disjunctive normal form (DNF) on n
variables with m clauses. Let ¢ be the maximum length of a clause in the formula, and
let Pr[F] denote the probability that a random, independent and uniformly chosen truth
assignment to the variables satisfies F. The problem of computing Pr[F] exactly is known
to be #P-complete [39, Valiant]. On the other hand, for many applications a good estimate
of Pr[F] is all that is needed.

[29, Luby and Velickovi¢] introduces several ideas which can be combined with known
results to obtain approximation algorithms for the DNF problem. The first idea is that
of sunflower reduction in a way similar to the way that [37, Razborov] uses it to prove
exponential lower bounds for the size of the smallest monotone circuit for finding the biggest
clique in a graph. Given a DNF formula F, one looks for a large collection of clauses
which form a sunflower, i.e., the intersection of any two distinct clauses in this collection
is the same. Then, all the clauses in this collection are replaced by their common pairwise
intersection, thus obtaining another formula which has probability of being satisfied close
to that of F.

This procedure is repeated until no large sunflowers can be found, obtaining a new
formula F'. A theorem of [14, Erdés and Rado] implies that at the end of this procedure
there are not too many clauses in F'. Because F' is so small, it turns out to be easier to
approximate Pr[F"], and because of the properties of the reduction this approximation is
also a good approximation of Pr[F]. This reduction can be combined with the algorithm
from [36, Nisan and Wigderson] (using the improvement based on an observation from [30,
Luby, Veliékovi¢ and Wigderson]) to produce a polynomial time e-approximation for Pr[F]
when ¢ = O(log'/8(nm)) and € is not too small.

The second approach relies on special constructions of small probability distributions.
Given a distribution D let Prp[F] denote the probability that F is satisfied by a truth
assignment chosen according to D. The goal is to find a distribution D with a small sample
space such that Prp[F] is close to Pr[F]. Then, Prp[F] can be calculated by exhaustive
consideration of the points in the space. An easy counting argument shows that such a dis-
tribution exists. The results of [29] can be viewed as progress towards finding a polynomial
time construction of such a distribution.
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Recall that a probability distribution D on the truth assignments is k-wise indepen-
dent if any variable is equally likely to be 0 or 1 independently of the value of any other
k — 1 variables. [29, Luby and Veli¢kovié¢] shows that if ¢ is bounded by a constant and
k = clog(1/e) for some constant ¢ then for any probability distribution D which is k-wise
independent Prp[F] is a good approximation of Pr[F]. The proof works if D is only k-wise
almost independent in a certain technical sense. This combined with the results of [34, Naor
and Naor] and [6, Alon, Goldreich, Hastad and Peralta], which produce such distributions
with small sample spaces, yields a polynomial time approximation algorithm for Pr[F] if
t is bounded by a constant, a result previously obtained by [3, Ajtai and Wigderson] by
different means.

The main contribution of [29, Luby and Veli¢kovi¢] consists of the coloring algorithm.
A proper k-coloring of F is a coloring of the variables of F using at most k colors such
that no clause of F contains two variables of the same color. For all ¢ € {1,...,k}, let
D; be a probability distribution on the variables in color class 7 such that there is f-wise
independence between the variables, and let D = x;¢ {1,...k}Di be the product distribution
defining a distribution on all variables of F. It is shown that |Prp[F] — Pr[F]| < k/2%.
This suggests the following approximation algorithm for Pr[F]. Given a proper coloring of
F, for all ¢ € {1,...,k}, explicitly construct sample space S; for distribution D; and let
the sample space for D be S = X;ef;  x)S;. By exhaustive enumeration of S, compute
Prp[F| exactly. This yields an algorithm with running time dominated by Xie{1,...,.k}| 5| for
approximating Pr[F]. The running time of the algorithm depends in an exponential way on
the value of k. In general it may not be possible to find a proper k-coloring for F where k is
small. Instead, the idea is to find a proper coloring for a subformula G of F such that Pr[G]
is close to Pr(F]. This general approach is used to design deterministic algorithm that on
input F' and e produces an e-relative approximation of Pr[F] in polynomial time for fixed
¢ and ¢t = log"~°)(nm). For fixed € and unrestricted clause length the running time the
algorithm produces an e-approximation in time polynomial in nm and Qlog**M(nm) pop 5
fixed € this algorithm is faster than the algorithm in [36, Nisan and Wigderson], but, unlike
[36, Nisan and Wigderson|, the running time grows exponentially with 1/e.

5 Derandomizing Constant Depth Circuits

In this section polynomial size boolean circuits of constant depth with unbounded fan-
in are considered. This class of circuits is commonly referred to as AC’. This section
describes a pseudorandom generator for this class. The pseudorandom generator runs in
time exponential in log®(n) time, where the constant ¢ depends on the depth bound on the
circuit family. Note that this is much better than a straightforward exhaustive enumeration
procedure, which would take time exponential in n. The pseudorandom generator is based
on the difficulty of computing parity with a constant depth boolean circuit.

Definition (predicting the parity of its inputs): Forz € {0,1}*, 2@z = Bie{1,...n}Ti
is the parity of the number of ones in z. For any circuit C € C¢, let pc be the prediction



probability of C for the parity of its input, i.e.,
pc = |Pr{C(Z) = Z© Z] -1/2|,

where Z €g {0,1}". Let T¢ be the total number of gates in C. The time-success ratio of
C for predicting the parity of its inputs is S¢ = T /pc. &

The following beautiful lower bound theorem is a culmination of a number of papers,
i.e., [15, Furst, Saxe and Sipser], [2, Ajtai], [42, Yao], [12, Cai], [20, Hastad].

Parity Theorem : There is a constant £ > 0 such that for any C € C;f’“, the time-success

ratio Se of C satisfies S¢ > 27/,

Based on this lower bound, [35, Nisan], [36, Nisan and Wigderson], describe the following
simple but elegant generator g. Set

r= ]Og(n)c(d-i—l),
where ¢ > 0 is a fixed constant. Let t1,...,t, C {1,...,7} be sets that satisfy the following
two properties:

(1) For all i € {1,...,n}, |t = /.
(2) For all 4,5 € {1,...,n}, i # j, [taNt;| < log(n).

It is an exercise to find an efficient construction of the sets %1, ...,%, with these two prop-
erties. For all s € {0,1}", for each i € {1,...,n}, define function b;(s) = e, s;, i.e., bi(s)
is the parity of the number of ones in the bits of s indexed by #;. Finally, let

g(s) = (b1(s); - -, bn(s)).
The following theorem is due to [35, Nisan], [36, Nisan and Wigderson].

Theorem : Let g(n) = 2980 /n3 For all C € C%™, the time-success ratio Sc of C for
distinguishing g satisfies S¢ > ¢(n).

This theorem shows how to derandomize any constant depth boolean circuit. Consider
an alternate derandomization question where the circuit can be over any type of gates (i.e.,
not restricted to “and” and “or” gates). The techniques of [35, Nisan], [36, Nisan and
Wigderson| do not apply to this problem even in the case when the depth is restricted to
two, as one of the gates can be a “parity” gate, and the entire construction is based on
lower bounds of boolean circuits for computing parity.

[30, Luby, Velickovic and Wigderson] provide the first subexponential simulation for
circuits with parity gates. This paper shows how to e-approximate the accepting probability
of any GF[2] polynomial of size n in deterministic time double exponential in /log(n/¢).
The technique is strongly based on the pseudorandom generator of [35, Nisan] used for AC°
circuits described previously. [30, Luby, Velickovic and Wigderson] are able to apply this
idea, and use the lower bounds on multiparty communication complexity of [7, Babai, Nisan
and Szegedy].



6 Derandomizing General Circuits

In this section pseudorandom generators for polynomial size boolean circuits of unrestricted
depth are considered. If, for each fixed polynomial n¢, there is a e-pseudorandom generator
g : {0,11™ — {0,1}¥™) for C2°™°, then for any C' € C*™ one can e-approximate the
probability that C outputs 1 on a random input in deterministic time polynomial in n
times 2"(™). Thus, if 7(n) = O(log(n)) then this is polynomial time overall. There is no
proof in sight of this result at this point in time, and in fact it is easy to see that such a
result is impossible if NP = P. On the other hand, as described below, it turns out that
there is pseudorandom generator for this class if there are strong enough one-way functions.

Intuitively, a one-way function is easy to compute but hard to invert on average.

Definition (one-way function): Let f : {0,1}* — {0,1}¥"™ be a P-time function
ensemble and let C be a circuit family. The success probability (inverting probability) of
C € C (with £(n) input bits and n output bits) for f is

§ = Bflf(C(FCN) = £(X))

where X €g {0,1}". Then, f is a S(n)-secure one-way function for C if the time-success
ratio of C is at least S(n). &

The definition of a one-way permutation is exactly the same as the definition of a one-
way function, except that f : {0,1}" — {0,1}" as a function of z € {0, 1}" is a permutation.

[9, Blum and Micali] introduce the concept of a pseudorandom generator that is use-
ful for cryptographic (and other) applications, and gave it the significance it has today by
providing the first provable construction of a pseudorandom generator based on the conjec-
tured difficulty of a well-known and well-studied computational problem, the discrete log
problem.

Discrete log problem : Let p € {0,1}" be a prime number and let g be a generator of
Z;", ie, forally € Z;’, there is a unique z € Z,_; such that g* = y mod p. Given p, g and
z € Zp_, define f(p,g,z) = (p,g, 9" mod p). It is possible to compute g* mod p given p,
g and = in n®®) time. The discrete log function is a permutation as a function of z, i.e.,
the unique inverse of f(p,g,z) is (p,g,z). The values of p and g are not necessarily chosen
randomly. The prime p is selected to have special properties which seem in practice to make
the discrete log function hard to invert. An example of such a property is that p is selected
so that that p — 1 has some fairly large prime divisors. For a large class of primes p and
generators g there is no known P-time function ensemble that on input p, g and ¢g* mod p
can produce z on average for z €g Z,_1.

The original construction of a pseudorandom generator based on the discrete log problem
is quite complicated. The following elegant theorem, due to [17, Goldreich and Levin], sub-
stantially simplifies all previously known constructions of pseudorandom generators based
on one-way functions. The simplest known proof of this theorem is due to C. Rackoff, R.
Venkatesan and L. Levin, inspired by [4, Alexi, Chor, Goldreich and Schnorr)].

Definition (inner product bit is hidden): Let f : {0,1}* = {0,1}¥™ be a P-time



function ensemble. Let = € {0,1}" and 2z € {0,1}". Then, the inner product bit of f(z) is
z® z. The success probability (prediction probability) of circuit C € C (with £(n) +n input
bits and one output bit) for the inner product bit of f is

i=PriC(fiX).4) =40 2] - PrlC(f(X),2) # X © 2).

where X,Z €gr {0,1}®. Then, the inner product bit of f is a S(n)-secure for C if the
time-success ratio is at least S(n). &

Hidden Bit Theorem : If f is a one-way function then the inner product bit of f
is hidden. In particular, if there is a circuit family C with time-success ratio S(n) for
predicting the inner product bit then there is a circuit family C’ with time-success ratio
S(n)¢ for inverting f for some constant ¢ > 0.

;From the Hidden Bit Theorem, it is not hard to show that if f(z) is a one-way permu-
tation for C then g(z, z) = (f(z), 2,z © 2) is a pseudorandom generator for C that stretches
by 1 bit. This simple construction of a pseudorandom generator was one of the motivating
forces behind the work of [17, Goldreich and Levin].

One can construct a pseudorandom generator that stretches by an arbitrary polynomial
amount based on any one-way permutation.

Theorem : Let f:{0,1}" — {0,1}" be a one-way permutation. Define P-time function
ensemble g : {0,1}* x {0,1}* — {0,1}¥™, as

9(z,2) = (2,20 2,f(2) O 2, fP(z) O 2,..., fEI™ V(1) @ 2),

where f() is the function f composed with itself ¢ times. Then g is a pseudorandom
generator.

Note that since the discrete log is a permutation as a function of z for a fixed value of
p and g, the construction described in this theorem can be immediately applied to yield
an extremely simple pseudorandom generator based on the discrete log. This theorem is a
combination of a theorem due to [16, Goldreich, Goldwasser and Micali] and the Hidden
Bit Theorem of [17, Goldreich,Levin].

There is a generalization of this work that shows a more complicated reduction from
an arbitrary one-way function (e.g., a function that is far from being a permutation) to a
pseudorandom generator, due to [19, Histad, Impagliazzo, Levin and Luby]. For a more
complete history and description, see [26, Luby].
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