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Abstract

The ability to normalize pose based on super-category
landmarks can significantly improve models of individual
categories when training data are limited. Previous meth-
ods have considered the use of volumetric or morphable
models for faces and for certain classes of articulated ob-
jects. We consider methods which impose fewer represen-
tational assumptions on categories of interest, and exploit
contemporary detection schemes which consider the en-
semble of responses of detectors trained for specific pose-
keypoint configurations. We develop representations for
poselet-based pose normalization using both explicit warp-
ing and implicit pooling as mechanisms. Our method de-
fines a pose normalized similarity or kernel function that
is suitable for nearest-neighbor or kernel-based learning
methods.

1. Introduction
Recognition of fine-grained categories is a significant

challenge for contemporary computer vision systems; such
categories may be distinguished by relatively localized
characteristics which may be difficult to learn from limited
amounts of training data in a conventional 1-vs.-all learn-
ing framework. When a set of related classes share cer-
tain structure it is possible to learn pose estimators from
data pooled across the several categories; in general terms,
the ability to normalize for pose based on a super-category
landmark or pose detector can significantly improve recog-
nition of individual categories with limited amounts of
training data.

Approaches to pose normalization have long been used
in face recognition [9, 17]; for convex objects pose can be
modeled as a rigid motion optionally with a non-rigid de-
formation. When the more general class of articulated ob-
jects is considered, the problem of pose estimation becomes
more complex. Recently landmark template or “poselet”
based pose estimation has been a topic of increasing inter-
est [7, 5, 4]; In our previous work[12], we exploited such
models to construct pose-normalized descriptors that oper-

Figure 1. Limitations of Head/Body Volumetric Representa-
tion. A volumetric representation (red ellipsoids) such as that pre-
sented in [12] will be insufficient to determine which of the two
birds in flight the perched bird matches. The wings and tail (both
color and shape)carry nearly all of the discriminative appearance
information, and could be modeled just fine with a poselet ensem-
ble (blue dashed boxes). Can you tell which bird it matches?

ated on articulated objects. However, this model required
the instantiation of 3-D volumetric primitives to form a rep-
resentation, which can be problematic in some cases (see
Figure 1).

In this paper we also tackle the issue of geometric nor-
malization for sub-category recognition but advocate for a
2-D rather than 3-D representation. We presume a detec-
tion model in the style of [7, 5, 4], which results in a set
of poselet-style activations on a given image, and explore
the issue of how such sets of detected features should be
best compared between two images. We develop similarity
functions which take poselet activation “stacks” as input,
and are suitable for use in nearest-neighbor classifiers or as
SVM kernels.
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Figure 2. Comparing Poselet Appearances. For subcategory
recognition using discriminative classifiers (or nearest-neighbors)
we need a mechanism to compare sets of poselets. Three different
poselets may be actually covering the same underlying part in dif-
ferent pose; we therefore need a way to compare appearance based
on those poselets. Can you tell which two are the same?
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The key idea behind our similarity function is illustrated
in Figure 2, where three different poselets are illustrated fir-
ing across different bird instances. The right two images
depict instances of the same subcategory; a whole image
(or whole-bird) comparison, e.g., using spatially pyramid
matching kernel or bag or words, would likely miss the sig-
nificant correspondence in the appearance of the two birds.
However, by exploiting knowledge that the two poselets
in the example are actually overlapping the same part (or
parts), we can define a comparison function that explicitly
compares descriptors formed over the corresponding pose-
let regions in the two images.
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Figure 3. Image Similarity by Poselet Set Similarity. We pro-
pose to measure image similarity by defining a series of poselet-set
similarity measures. Instead of considering image statistics glob-
ally within the image, we advocate the use of poselets as a means
to tie the object appearance within image patches to that of se-
mantically similar parts found in the training data. This effectively
provides a high degree of pose invariance.

We define and compare a series of poselet-set similar-
ity measures, or kernels. One intuitive idea is to use a
greedy match kernel with explicit geometric warping based
on landmark correspondences, constructing a match ker-
nel that greedily estimates a minimum cost correspondence.
This method is elegant, but computationally intractable in
most situations. We then consider representations which
form a fixed length vector: one variant attempts to normal-
ize within the representation per example using a warping
function, while a simpler model pools descriptors over cor-
responding poselets. Our pooling scheme establishes corre-
spondences between poselets based on the degree of over-
lap each poselet exhibits: conceptually, the goal is to pool
descriptors for poselets that actually are covering the same

1Images in Figure 1 (CC) Jeff Whitlock, Ingrid Taylor and Bill Bouton
(http://goo.gl/Kpw4z, http://goo.gl/wf4rO, and http:
//goo.gl/PtNFS respectively).

part or part complex.
We evaluate our methods on the recently introduced

CUB bird dataset, comparing recognition performance of
our various descriptors given noisy detections. Overall, we
find a significant boost from our proposed pooling architec-
ture when compared to baseline methods that do not nor-
malize for pose. Our results demonstrate that effective pose
normalization is possible even for classes that do not ad-
mit a robust volumetric description. While our experiments
have been limited to the bird domain, we expect our pose
pooling kernels to be useful in a variety of other recognition
tasks where there is considerable pose variation yet limited
training data per category.

2. Background
Previous work on subordinate categorization includes

approaches that learn discriminative image features. The
subordinate categories that have been considered include:
subordinate categories of flowers (Nilsback and Zisserman
[24, 25]), also introduced the 17- and 102-category Oxford
Flowers datasets), two subclasses for each of size basic ob-
ject categories, e.g., Grand vs Upright Pianos, (Hillel et al.
[2]), and subordinate categories of stonefly larvae, which
exhibit tremendous visual similarity (Martı́nez-Muñoz et al.
[22]).

A significant literature seeks to leverage similarities
between categories to improve recognition performance.
Methods which exploit class taxonomies or hierarchies
range from constructing latent topic hierarchies [3] to shar-
ing classifiers [1] or visual parts [26] to constructing effi-
cient classification trees [16, 21], and other references too
numerous to mention here. Each such approach provides
insights or advances toward efficiently solving basic-level
classification. These unsupervised approaches, however,
cannot be readily applied to the problem of distinguishing
closely-related subordinate categories which, by definition,
share a common set of parts and yet can have both subtle
and drastic appearance variations.

Several authors have investigated attribute-based recog-
nition, which are relevant for the general problesm of sub-
category recognition, see for example [10, 11, 18, 19, 31].
These techniques often learn discriminative models from
attribute-labeled training data and subsequently apply the
learnt models to estimate the appropriate visual attributes
present in a test image. While attribute-based models are
suitable for addressing the one-shot learning problem (pre-
viously considered in [13, 14, 15, 23] among others), they
typically focus on relatively coarse grained attributes; our
focus is on representations suitable for fine-scale distinc-
tions based on sub-part localization needed for subordinate
categorization.

The work of Branson et al. [8] proposes improving
recognition accuracy by interleaving computation with at-
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tribute queries made to a human subject. Their method eval-
uates recognition in a large, 200-category bird dataset [32],
that is also the subject of our experimentation.

We base our method on the poselet framework, as de-
scribed in [7, 5], see also the related technique of [4]. We
explore the idea of pose-normalization for sub-category ap-
pearance descriptors in this framework, a topic previously
considered by [12]. The paradigm explored here was to em-
ploy volumetric pose normalization using 3-D primitives,
following the line of work established by [9, 17] for the
case of face recogntion. However, in contrast to [12], we
explore a method that has fewer representational assump-
tions: in particular our method does not employ volumetric
representations, and therefore is applicable to object classes
which do not strictly admit such a model. Additionally, and
more significantly, our method does not require 3-D pose
annotation, as does the method in [12]. Recent work in
the poselet framework has considered the task of activity
recognition and attribute description [6]; this work com-
putes feature vectors comprised of the activations of poselet
detectors. In contrast, our method (and that of [12]) forms
descriptors over the localized poselet detections; the contri-
bution of this paper is to define and compare various 2-D
schemes for comparing sets of poselet-based descriptors in
such a way that poselets which correspond to the same un-
derlying part or region of an object are aligned such that the
corresponding descriptors can be effectively compared.

3. Pose Normalization Kernels
Given an ensemble of learned poselets, poselet detection

methods (reviewed above) can infer a set of detections for
each image. Our goal is to use these detections to compute
sub-category level descriptors that are effective at discrimi-
nating, e.g., individual species. In particular, we would like
to explore schemes for comparing the pose-normalized ap-
pearance of two detected instances of a particular poselet
model. We compute descriptors at each poselet activation,
and consider various strategies for comparing these sets of
descriptors in the following subsections.

In order to use discriminative classifiers for subcategory
recognition, we therefore need a mechanism to compare two
sets of poselets. The poselet detection process provides es-
timates of part locations; our conjecture is that comparing
the image descriptors which correspond to the same phys-
ical part (or collection of parts) will improve classification
performance when compared to using just the whole image
without any pose normalization. In general, sub-category
recognition depends on the subtle appearance variations of
some parts: two different poselets may be actually covering
the same underlying part just in different poses or views,
so it is desirable to have a similarity function which can
properly relate descriptors from various poselet detections
when comparing sets of responses. We consider various ap-

proaches to this problem below, including schemes which
compute a poselet to poselet normalization via geometric
warping prior to comparing descriptors, and those which
pool descriptors across corresponding poselets.

To directly apply nearest neighbor and kernel-based clas-
sifiers to our sub-category recognition problem, we define
kernel functions based on sets of detected poselets. These
functions can be used e.g., in SVM or Gaussian Process
based classifiers or regression schemes.

3.1. Preliminaries

Each image Xi has a set of poselet activation windows
with the corresponding activation scores ti = {ti1, · · · , tiN}
where N is the number of poselets. Suppose we extract a
d-dimensional image descriptor φ(Xi

u) from each poselet
u’s activation window, such as bag of words SIFT or spatial
pyramid histogram. Then each image can be represented
as Xi = {ti1, ti2, · · · , tiN , φ(Xi

1), · · · , φ(Xi
N )}. Also, be-

tween each pair of poselets u and v, we compute the trans-
formation function Tuv from poselet u to poselet v and the
confidence score λuv of this transformation.

The affine transformation function Tuv is computed
based on the keypoints locations of two poselets. If two
poselets have less than three common keypoints, there
would not be appropriate affine transformation between the
two sets of keypoints, in that case the Tuvis set to be empty
and the confidence score λuv is set to be zero. Otherwise,
we compute the affine transform Tuv from the keypoint sets
of poselet u to keypoint sets of poselet v and the confidence
score is set based on the overlapping degree of keypoints,
i.e. λuv = K

min{Ku,Kv} , where K is the number of the
common keypoints and Ku is the number of keypoints of
poselet u.

Ideally, we first consider a match kernel in the spirit of
[30], which would compare two sets of poselet activations
by transforming each poselet detection in one image to an-
other poselet detection in a second image, and then com-
paring the corresponding image descriptors. A greedy warp
match kernel would be defined as follows

KG(Xi, Xj) =∑
u,v

tiu · tjv ·
1

2
{λuv · K̃(φ(Tuv(Xi

u)), φ(Xj
v))

+λvu · K̃(φ(Xi
u), φ(Tvu(Xj

v))} (1)

where K̃ is the base kernel between aligned poselets,
φ(Tuv(Xi

u)) is the image descriptor after warping the ac-
tivation window from poselet u to poselet v; taking aver-
age of both warping directions makes the kernel symmetric.
The weights λuv and λvu are the confidence of the transfor-
mation, based on the degree of overlapping points here.

As described in more details below, appropriate base ker-
nels for aligned poselets include the simple linear kernel or



other nonlinear kernels, e.g., the chi-squared distance be-
tween histogram-of-gradient descriptors extracted at each
detected poselet window, or any other image-to-image ap-
pearance measure.

With this kernel for each pair of images the similarity
between them is just the weighted sum of similarities be-
tween the pose-normalized image descriptors. This kernel
function can be effective, but suffers from computational
expense when the number of detected poselets is sufficiently
large: it takes O(n2N2) time where n is the number of im-
ages and N is the number of trained poselets. This method
therefore may not scale well in cases where large datasets
are involved, and so in the following sections we consider
intermediate fixed-length representations, yet which em-
ploy warping or more directly, pooling to align correspond-
ing poselets.

3.2. Warped Feature Kernel

To overcome the quadratic complexity of a naive match
kernel which compares sets of detections explicitly, we con-
sider fixed-length representations that capture the set of
poselet views of an object. As this defines a vector-space, it
can be directly used as a feature vector in a e.g., chi-square
or a radial-basis-function (RBF) kernel.

The most straightforward representation simply concate-
nates the image descriptor of each poselet to a long fixed
length feature vector. This trivially represents the image’s
appearance under different poses, and serves as a baseline
method. However, with no geometric normalization, this
feature vector will perform poorly unless available training
data cover all possible poselet activations for all classes.

Following the notation above, the simple fixed length
representation is

Ψ(X) = [t1 ·φ(X1), · · · , tu ·φ(Xu), · · · , tN ·φ(XN )] (2)

where φ(Xu) is the image descriptor of poselet u’s activa-
tion window and tu is the activation scores and this feature
vector has length Nd where d is the dimension for image
descriptor. Figure 4 illustrates this method.

A significant issue with this feature representation is that
the feature vector is sparse as only a small number of pose-
lets are detected in many images (∼ 10 in our experiments
on the data described below). Also, the representation is
redundant, since distinct poselets are often overlapping and
therefore are describing the same object region in different
poses and views. To overcome this, we consider ways to
pose-normalize this representation.

Our first approach follows in the spirit of the fixed-length
representation considered above, and explicitly warps pose-
let appearance within the fixed-length representation to fill
in poselets that have not fired on an image. Effectively, this
fills in the blank blocks of features in the fixed length rep-
resentation. As an example, suppose poselet #10 and pose-

let #20 are both the left side of the bird’s head with only
slight different orientation, then for one image having left
side bird’s head, it might just fire poselet #19 and the other
image just has poselet #20 fired. They both are parts of
birds’ left heads and it will improve the classification if this
correspondence can be captured in the feature vector repre-
sentation.

Thus, for each φ(Xu) in the Ψ(X) in Eq. 2 that has not
been detected but if there exists another detected poselet
which is similar enough to it, we use the image descriptor
of the fired poselet after warping to the non-fired poselet.
With this approach the feature representation is

Ψwarp(X) = [t1λp1
φ(Tp1

(X1)), · · · , tuλpu
φ(Tpu

(Xu))

· · · , tNλpN
φ(TpN

(XN ))] (3)

where pu is the index of most similar fired poselet that
should be warped to the non-fired poselet u. If this poselet
already fires, it sticks to Eq. 2 and if there is no appropri-
ate fired poselets to warp, the corresponding feature for the
non-fired poselet is set to zero. We use the residual error
after transformation as the measurement of two poselets’
similarity. Figure 5 illustrates this method.

...

...
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Figure 4. Fixed-length representation. Concatenated descriptors
without warping.

...

...

Distance(       ,       ) = ?

Figure 5. Warped Feature Kernel. Concatenated descriptors with
warping.

3.3. Pooled Feature Kernel

The intuition behind the fixed length warping kernel is to
have a pose-normalized way to compare images which have
the correspondences in different parts. A further extension
of this model is to group or pool poselets which represent
the same underlying part into cluster of parts.

By design, groups of learned poselets exhibit redun-
dancy: several poselets will represent the same part or part



cluster in various configurations. For recognition, it is de-
sirable to group them together when comparing representa-
tions. We therefore consider a pooling stage on top of our
base representation, which groups together the descriptors
computed on poselets that are identified as being in cor-
respondence. This strategy is especially effective to cate-
gories of base kernels which are additive, e.g., bag-of-word
representations formed over local feature kernels, but can
also work to a degree on non-additive representations.

We consider two criteria to group the poselets into clus-
ters which contain poselets representing the same part of an
object. One would treat this in a fully supervised fashion,
based on provided part annoations, but we chose to con-
sider an unsupervised approach that discovered clusters in a
data-driven fashion.

As illustrated in Figure 6 our pooling scheme forms a
cluster feature vector, whose length is equal to the num-
ber of clusters times the length of the poselet descriptor;
for each cluster the descriptors for each poselet in the clus-
ter are pooled to compute the cluster descriptor. The final
cluster feature vector is the concatenation of the cluster de-
scriptors, as given in the following equation:

Ψpool(X) = [avgi∈C1Ψwarp(i), · · · , avgi∈CP
Ψwarp(i)]

where Ci is the i-th poselet cluster.
Each poselet cluster should ideally correspond to a co-

herent part or part group and all the poselets within each
group are similar to each other; using such a clustering
scheme the output pooling image descriptor is much more
representative in describing the image features of different
parts.

We compute poselet clusters using a greedy clustering
scheme, which first forms a graph over the learned pose-
lets with edge distances computed to reflect a measure of
inverse poselet correspondence. We have used two different
measurements for edge distance:

1. warp distance — using the residual error of the affine
transformation between keypoints corresponding to
two poselets.

2. keypoint distance — 1/λ as defined above, based on
the number of keypoints common to two poselets.

which lead to distinct clustering results; below we compare
the two pooling results in terms of classification performa-
cne. We randomly pick poselets as candidate cluster cen-
ters, grouping together sufficient number of neighbors un-
der one of the two criteria above. We repeat until all pose-
lets are assigned to a cluster center. Specifically, the cluster-
ing algorithm first randomly picks one poselet as the cluster
center then groups the rest of poselets which have a distance
within a set threshold. Then it iteratively picks another un-
selected poselet as the new cluster center and repeats the

process until there are no good clusters. This method has
the benefit of not requiring knowledge of the number of
clusters a priori. (Other clustering schemes may be more
optimal than this greedy method, and will be the subject of
future work, but this worked well in practice.)

...

...
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Figure 6. Pose Pooling Kernel. Corresponding poselets are
grouped.

4. Experiments

We now present experiments validating the effectiveness
of our approach for fine-grained object categorization.

4.1. Dataset

Following [8] and [12], we conduct experiments on the
200-category Caltech UCSD Birds Dataset [33], one of the
most complete datasets for fine-grained object categoriza-
tion. We utilize the extended version of the dataset that was
recently released [29] which provides approximately 60 im-
ages per category, twice what the initial dataset provided.

We use this dataset primarily because of the 15 part an-
notations (e.g. beak, crest, throat, left-eye, right-wing, nape,
etc.) that it provides per image/object. These part an-
notations are important for our approach as they facilitate
the generation of poselets following the 2D keypoint-based
paradigm presented in [5].

4.2. Implementation Details

To improve the clarity of the earlier technical sections
(Sections 3.2 and 3.3), we omit implementation details that
are nonetheless important to the experiments. These details
include the computing of canonical poselet activations per
image and the descriptors used to encode activation patch
appearances.

4.2.1 Poselet Activations

In an effort to evaluate the subcategory classification per-
formance independent of detection errors, we implement a
poselet-style detector and train several templates using the
training data and, finally computing “ground truth” activa-
tions on the test set. Each poselet detector is trained as fol-
lows:



1. A training image is selected at random and a rectan-
gular window overlapping a subset of the object’s key-
points is randomly chosen.

2. A selection of similar images from the training set
(those with locally similar keypoint configurations) is
collected.

3. Distributions for the location of each relevant keypoint
are computed and stored.

Once a large set of such poselets (1000 in our exper-
iments) is trained, we use a beam-search based selection
strategy to prune this large randomly generated set. The
large set will be heavily biased toward the frequently occur-
ring poses. The selection criteria are defined such that the
pruned poselet set better covers the full pose space of the
training set. Without this step, there will be images (both
in the training and presumably the test sets) that may not
have any poselets fired, simply because they’re in a less fre-
quently observed pose.

Next, we use this smaller poselet set (100 in our case)
to calculate a set of “ground truth” activations for each test
image, accomplished by comparing each poselet’s keypoint
distributions with the locations of the respective keypoints
(if present) in the test image. This comparison is performed
by finding the best procrustean fit for the keypoints shared
by a given trained poselet and a given test image. As pose-
lets are not invariant to orientation, we only declare acti-
vations as valid if the transformation produced by the pro-
crustean analysis has a small deviation in orientation (we
use a tolerance of ±10◦).

4.2.2 Patch Appearance Descriptors

We consider a few different measures for describing the ap-
pearance of the image patch corresponding to a given ac-
tivation. Ultimately, the descriptors are concatenated into
a single vector per image and provided to a support vector
machine (SVM) for classification (using a 1 vs. all policy).
We consider the following two appearance descriptors.

• Bag of Words (BOW-SIFT) - This descriptor is gener-
ated by densely computing SIFT features (at multiple
scales) and vector quantizing them against a codebook.

• Pyramidal Histogram of Words (PHOW) - Similar to
Spatial Pyramid Match [20], the SIFT features are
quantized and then binned into regions defined by a
spatial subdivision pyramid.

In our experiment, we use the bag of words (BOW-SIFT)
and pyramidal histogram of words (PHOW) as our appear-
ance features. Specifically, we use the vlfeat toolbox to get
the image feature and the code book size is set to be 1024
in the experiment. For spatial pyramid histogram, we use
a three-level pyramid. After getting the BOW-SIFT his-
togram, following standard convention, we subdivide the

image at three different levels of resolution and for each
level of resolution, we concatenate the histogram of each
spatial bin and the weight for lth pyramid level is set to
be 1

2(L−l) where L is the the total number of layers (3 in
our experiment). Given the activation windows and image
descriptor, we can compute the warped feature and pooled
feature as discussed in Section 3. Then, we use SVM for
classification and using linear kernel as well as the efficient
additive kernel map in [28] for χ2 and Intersection kernels.

4.3. Results

We now present our experimental evaluations and begin
by defining a baseline for comparison. As noted previously,
there are three approaches (to our knowledge) that have pre-
sented categorization results on the CUB200 dataset. The
authors of [8] leverage attributes provided by a human-in-
the-loop to supplement a machine vision back end for clas-
sification. In [12], categorization is performed in a pose-
normalized space on a two family (14-category) subset of
the full CUB200 dataset. The authors in [34] proposed a
fine-grained classification approach using random forests
with discriminative decision trees, tested on all 200 cate-
gories. We evaluate our methods in both the 14 category
and 200 category settings. We use the VLFEAT toolbox
[27] as a baseline, which applies a linear SVM to vector
quantized SIFT features from within the bounding box.

Figure 7 depicts the confusion matrices for categoriza-
tion on these two families using a linear SVM with 15 train-
ing examples per category (plus their reflections to yield
30 training examples). Specifically, the warped feature ker-
nel uses a linear SVM to classify the features described in
Section 3.2 while pose pooling kernel follows the method
in Section 3.3 using also a linear SVM. Both feature ker-
nels have the same bag of words SIFT descriptors as the
baseline method. The confusion matrices show that both
the warped feature kernel and the pooled feature kernel im-
prove the baseline methods of using just the boundingbox
image. Additional results are presented in Table 1. From
the table, we can find that for the two different training sets,
warped feature kernel using linear SVM improves both and
pose pooling kernel outperforms the warped feature kernel.
Warping poselets also helps the pooling stage and both clus-
ter schemes work well and warping distance based cluster-
ing works slightly better than overlapping keypoints based
clustering.

In the experiment, we also use spatial pyramid features
as image descriptor besides bag of words SIFT and the re-
sults are shown in Table 2. From the table, we can find
that for the two different training sets, pose pooling kernels
outperform the baseline and the χ2 kernel usually outper-
forms the intersection kernel. All these results are similar
with the previous results using BOW-SIFT features, but us-
ing the spatial information in the image descriptor improves
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Figure 7. Confusion matrices on 14 categories using 15 images per training category. All three methods leverage a linear SVM for
classification and the pose pooling kernel (c) uses the distance-based clustering described in 3.3.

Method Linear Kernel χ2 Kernel Linear Kernel χ2 Kernel
(N=15) (N=15) (N=30) (N=30)

Baseline (VLFEAT) 29.73 36.61 33.39 42.68
Fixed-length Feature(no warping) 33.61 36.10 45.08 46.10
Warped Feature Kernel 36.33 31.85 40.71 42.32
Pose Pooling (warping,distance) 40.60 43.35 44.61 52.44
Pose Pooling (warping,keypoints) 39.79 41.40 46.12 52.75
Pose Pooling (no warping,distance) 32.24 42.25 40.40 51.78
Pose Pooling (no warping,keypoints) 31.82 42.22 39.77 52.72

Table 1. Mean precision on 14 categories of two families using BOW SIFT feature. N denotes the number of examples used for training
per category and two different kernels (linear,χ2) are used for SVM. The (warping/no warping,distance/keypoints) means we use the
distance-based pooling or keypoints-based pooling on the warped or unwarped features.

Method Intersection Kernel χ2 Kernel Intersection Kernel χ2 Kernel
(N=15) (N=15) (N=30) (N=30)

Baseline (VLFEAT) 40.06 41.03 48.61 49.11
Pose Pooling (warping,distance) 45.36 46.91 54.08 55.87
Pose Pooling (warping,keypoints) 45.76 45.98 56.76 57.44
Pose Pooling (no warping,distance) 43.73 44.10 54.09 55.09
Pose Pooling (no warping,keypoints) 43.22 43.88 55.00 54.99

Table 2. Mean precision on 14 categories of two families using spatial pyramid feature.Use χ2 and intersection kernel here due to the poor
performance of linear kernel.

Method Linear χ2

Baseline(VLFEAT) 14.14 18.60
Pose Pooling(warp, distance) 23.44 28.18
Pose Pooling(warp, keypoints) 24.21 27.74
Pose Pooling(no warp, distance) 17.74 23.06
Pose Pooling(no warp, keypoints) 17.68 22.69

Table 3. Mean precision on whole 200 categories using BOW SIFT
feature. These results are not directly comparable to the results in
[34], as they used an earlier version of the dataset.

the categorization results.
We also test our methods on the whole 200 categories of

the CUB dataset. We split the training/test according to the
default split provided in the dataset and use the BOW SIFT
feature as the image descriptor. Table 3 shows the result
and we can find that pose pooling kernels outperform the
baseline method and pooling on the warped feature has the
best performance.

5. Conclusion
In this paper we demonstrate the ability to normalize

pose based on super-category landmarks, and show that this
can significantly improve models of individual categories
when training data are limited. Our method does not require
3-D training data, and is suitable for categories that do not



admit volumetric representations. Our scheme is based on
contemporary poselet-based representation schemes which
consider the ensemble of responses of detectors trained for
specific pose-keypoint configurations. In contrast to exist-
ing 2-D approaches, our method computes a set of local
descriptors at detected poselet locations, and uses these to
form a fine-grained category model. We achieve pose nor-
malization via explicit warping and implicit pooling; our
method defines a pose normalized similarity or kernel func-
tion that is suitable for nearest-neighbor methods or kernel-
based learning method.
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