Anytime Recognition of Objects and Scenes

Sergey Karayev
UC Berkeley

Mario Fritz
Max Planck Institute for Informatics

Trevor Darrell
UC Berkeley

Abstract

Humans are capable of perceiving a scene at a glance, and obtain deeper understanding with additional time. Similarly, visual recognition deployments should be robust to varying computational budgets. Such situations require Anytime recognition ability, which is rarely considered in computer vision research. We present a method for learning dynamic policies to optimize Anytime performance in visual architectures. Our model sequentially orders feature computation and performs subsequent classification. Crucially, decisions are made at test time and depend on observed data and intermediate results. We show the applicability of this system to standard problems in scene and object recognition. On suitable datasets, we can incorporate a semantic back-off strategy that gives maximally specific predictions for a desired level of accuracy; this provides a new view on the time course of human visual perception.

1. Introduction

Anytime recognition is a core competence in human perception, mediating between reflexive recognition and deep analysis of visual input. Human studies have produced evidence for coarse-to-fine processing of visual input as more time becomes available [11, 19]. The underlying mechanisms are unknown, with only a few attempts to explain the temporal dynamics (e.g. via sequential decision processes [15]).

While multi-class recognition in computer vision has achieved levels of performance that allow useful real-world implementation, state-of-the-art methods tend to be computationally expensive and insensitive to Anytime demands. As these methods are applied at scale, managing their resource consumption (power or cpu-time) cost becomes increasingly important. For tasks such as personal robotics, the ability to deploy varying levels of processing to different stimuli, depending on computational demands on the robot, also seems crucial.

For most state-of-the-art classification methods, different features are extracted from an image instance at different costs, and contribute differently to decreasing classification error. Although “the more features, the better”, high accuracy can be achieved with only a small subset of features for some instances—and different instances benefit from different subsets of features. For example, simple binary features are sufficient to quickly detect faces [22] but not more varied visual objects, while the features most useful for separating landscapes from indoor scenes [24] are different from those most useful for recognizing fine distinctions between bird species [10].

Computing all features for all images is infeasible in a deployment sensitive to Anytime needs, as each feature brings a significant computational burden. To deal with this problem, we can set an explicit cost budget, specified in terms of wall time or total power expended or another metric. Additionally, we strive for Anytime performance—the ability to terminate the classifier even before the cost budget is depleted and still obtain the best answer. In this paper, we address the problem of selecting and combining a subset of features under an Anytime cost budget.

To exploit the fact that different instances benefit from different subsets of features, our approach to feature selection is a sequential policy. To learn the policy parameters, we formulate the problem as a Markov Decision Process (MDP) and use reinforcement learning methods. With different settings of parameters, we can learn policies ranging from Static, Myopic—greedy selection not relying on any observed feature values, to Dynamic, Non-myopic—relying on observed values and considering future actions.

Since test-time efficiency is our motivation, our methods should carry little computational burden. For this reason, our models are based on linear evaluations, not nearest-neighbor or graphical model methods. Because different features can be selected for different instances, and because our system may be called upon to give an answer at any point during its execution, the feature combination method needs to be robust to a large number of different observed-feature subsets. To this end, we present a novel method for learning several classifiers for different clusters of observed-feature subsets.

We evaluate our method on multi-class recognition tasks. We first demonstrate on synthetic data that our algorithm code, data, and further results are available at http://sergeykarayev.com/recognition-on-a-budget/
learns to pick features most useful for the specific test instance. We demonstrate the advantage of non-myopic over greedy, and of dynamic over static on this and the Scene-15 visual classification dataset. Then we show results on a subset of the hierarchical ImageNet dataset, where we additionally learn to provide the most specific answers for any desired cost budget and accuracy level.

2. Related Work

Static selection A well-known method to evaluate features sequentially is the cascaded boosted classifier of Viola & Jones [22] (updated by Bourdev & Brandt [2] with a soft threshold), which is able to quit evaluating an instance before all features are computed—but feature cost was not considered. The cost-sensitive cascade of Chen et al. [3] optimizes stage order and thresholds to jointly minimize classification error and feature computation cost. Xu et al. [26] and Grubb & Bagnell [13] separately develop a variant of gradient boosting for training cost-sensitive classifiers; the latter prove near-optimality of their greedy algorithm with submodularity results. Their methods are tightly coupled to the stage-wise regression algorithm.

Dynamic selection The above methods learn an efficient but fixed order for evaluating features given a test instance.

Gao & Koller [12] propose a method for active classification: myopically selecting the next feature based on expected information gain given the values of the already selected features. The method is based on locally weighted regression, highly costly at test time. Ji & Carin [16] also formulate cost-sensitive feature selection generatively, as an HMM conditioned on actions, but select actions myopically, again at significant test time cost.

Karayev at al. [17] propose a reinforcement learning approach for selecting object detectors; they rely on expensive test-time inference in a graphical model to combine observations. Dulac-Arnold et al. [8] present another MDP-based solution to “datum-wise classification”, with an action space comprised of all features and labels, recently extended to region-based processing [9]. He He et al. [14] also formulate an MDP with features and a single classification step as actions, but solve it via imitation learning of a greedy policy. Benbouzid et al. [1] formulate an MDP that simply extends the traditional sequential boosted classifier with an additional skip action, significantly limiting the space of learnable policies ([21] provides another variation on this problem). Although [17] targets Anytime performance, their inference procedure is prohibitively expensive for test-time use in a general classification task. In contrast, our fast linear method allows direct specification of the Anytime cost budget.

Label trees also guide an instance through a tree of classifiers; their structure is determined by the confusion ma-

![Figure 1: Definition of the reward function. To maximize the total area above the entropy vs. cost curve from 0 to \(B \), we define the reward of an individual action as the area of the slice of the total area that it contributes. From state \(s \), action \(a = h_f \) leads to state \(s' \) with cost \(c_f \). The information gain is \(I_{H_s}(Y; h_f) = H(Y; H_s) - H(Y; H_s \cup h_f) \).](image)

3. Anytime Classification by Cost-sensitive Dynamic Feature Selection

Definition 1. The test-time efficient multi-class classification problem consists of

- \(N \) instances labeled with one of \(K \) labels: \(D = \{x_n \in \mathcal{X}, y_n \in \mathcal{Y} = \{1, \ldots, K\}\}_{n=1}^{N} \).
- \(F \) features \(\mathcal{H} = \{h_f : \mathcal{X} \rightarrow \mathbb{R}_+\}_{f=1}^{F} \), with associated costs \(c_f \).
- Budget-sensitive loss \(\mathcal{L}_B \), composed of cost budget \(B \) and loss function \(\ell(\hat{y}, y) \rightarrow \mathbb{R} \).

The goal is to find a feature selection policy \(\pi(x) : \mathcal{X} \rightarrow 2^\mathcal{H} \) and a feature combination classifier \(g(\mathcal{H}_n) : 2^\mathcal{H} \rightarrow \mathcal{Y} \) such that such that the total budget-sensitive loss \(\sum \mathcal{L}_B(g(\pi(x_n)), y_n) \) is minimized.

The cost of a selected feature subset \(\mathcal{H}_{\pi(x)} \) is \(C_{\mathcal{H}_{\pi(x)}} \). The budget-sensitive loss \(\mathcal{L}_B \) presents a hard budget constraint by only accepting answers with \(C_{\mathcal{H}} \leq B \). Additionally, \(\mathcal{L}_B \) can be cost-sensitive: answers given with less cost are more valuable than costlier answers. The motivation for the latter property is Anytime performance; we should be
able to stop our algorithm’s execution at any time and have the best possible answer.

Feature costs c_f can be specified flexibly, with options including theoretical analysis, number of flops, wall clock runtime, total CPU time, or exact power expenditure. We believe that a deployment in a modern datacenter is most likely to optimize for power expenditure. In the absence of reliable ways to measure power, we use total CPU time to define the cost: if an operation is performed in parallel on multiple cores, its cost is considered to be the total cpu time on all cores.

At training time, our computation is unbudgeted, and we can compute all features to have fully-observed training instances. At test time, there is a budget and so the instances we classify will only be partially-observed, as determined by the feature selection policy.

We defer discussion of learning the feature combination classifier $g(H_x): 2^H \rightarrow Y$ to Section 3.4. For now, we assume that g can combine an arbitrary subset of features and provide a distribution $P(Y = y)$. For example, g could be a Naive Bayes (NB) model trained on the fully-observed data.

3.1. Dynamic feature selection as a Markov-Decision-Process (MDP).

To model the feature selection policy $π(x): X \rightarrow 2^H$, we introduce the Markov Decision Process (MDP), which defines a single episode of selecting features for some instance x.

Definition 2. The feature selection MDP consists of the tuple $(S, A, T(\cdot, \cdot), R(\cdot, \cdot), γ)$:

- **State** $s \in S$ stores the selected feature subset $H(π(x))$ and their values and total cost $C_{H(π(x))}$.
- **The set of actions** A is exactly the set of features H.
- **The (stochastic) state transition** distribution $T(s' | s, a)$ can depend on the instance x.
- **The reward** function $R(s, a, s') \rightarrow \mathbb{R}$ is manually specified, and depends on the classifier g and the instance x.
- **The discount** $γ$ determines amount of lookahead in selecting actions: if 0, actions are selected greedily based on their immediate reward; if 1, the reward accrued by subsequent actions is given just as much weight as the reward of the current action.

Running the MDP on a given instance x gives a trajectory $ξ = (s_0, a_0, s_1, r_1, \ldots, a_{I−1}, s_I, r_I)$, where I is the total number of actions taken (and therefore features selected), s_0 is the initial state, $a_i \sim π(a | s_i)$ is chosen by the policy $π(a | s)$, and $s_{i+1} \sim T(s | s_i, a_i)$, which can depend on x. The total expected reward (value) of an MDP episode is written as

$$V_π(s_0) = \mathbb{E}_{ξ \sim \{π, x\}}[R(ξ)] = \mathbb{E}_{ξ \sim \{π, x\}} \left[\sum_{t=0}^{I} γ^t r_t \right] \quad (1)$$

Gathering such trajectories forms the basis of our policy learning method.

3.2. Defining the reward.

The budget-sensitive loss L_B enforces Anytime performance by valuing early gains more than later gains. To formalize this, consider Figure 1, which shows the entropy and the 0-1 loss of g at every point in a sequential feature selection episode for some instance x. For the best Anytime performance, we want to capture the most area above the loss vs. cost curve, up to max budget B [17].

Recall from (1) that the value of an episode $ξ$ is defined as the sum of obtained rewards. If the reward of a single action is defined as the area above the curve that is captured as a direct result, then the value of the whole episode exactly corresponds to L_B.

However, there is a problem with using loss directly: only the first action to “tip the scale” toward the correct prediction gets a direct reward (in the figure, it is the first action). A smoother reward function is desirable: if the classification gets a direct reward (in the figure, it is the first action) and not just a prediction $\hat{y} \in Y$, we can maximize the information gain of the selected subset instead of directly minimizing the loss of $g(π(x))$:

$$I(Y; H(π(x))) = H(Y) - H(Y | H(π(x))) = \sum_{y \in Y} P(y, H(π(x))) \log P(y | H(π(x)))$$

To the extent that g is unbiased, maximizing information gain corresponds to minimizing loss, and ensures that we not only make the right classification decision but also become maximally certain. Therefore, as graphically presented in Figure 1, we define the reward of selecting feature h_x with cost c_f with the set H_x computed to be $I_{H_x}(Y; h_f)(B_x - \frac{1}{2} c_f)$.

Although we do not evaluate in this regime, note that this definition easily incorporates a setup cost in addition to deadline cost by only computing the area in between setup and deadline costs.

3.3. Parametrizing and learning the policy.

Space constraints prohibit a full exposition of reinforcement learning techniques; [20] provides a thorough review. In brief: we seek $π$ that maximizes the expected value of the
MDP (1). Therefore, actions must be selected according to their expected value:

$$\arg \max_a \pi(a \mid s) = \arg \max_a Q^*(s, a)$$

where $Q^*(s, a)$ is the optimal action-value function—the expected value of taking action a in state s and then acting optimally to the end of the episode.

Because the state represents an exponential number of subsets and associated real values, we cannot represent them optimally to the end of the episode. Instead, we use feature approximation and write $Q(s, a) = \theta^T \phi(s, a)$, where $\phi: S \times A \rightarrow \mathbb{R}^{d_x}$ is the state featurization function, d_x is the dimensionality of the state feature vector, and θ is a vector of weights that defines the policy.

Specifically, the policy is defined as

$$\pi(a \mid s) = \frac{1}{Z} \exp \left(\frac{1}{\tau} \theta^T \phi(s, a) \right)$$

(3)

where Z is the appropriate normalization and τ is a temperature parameter that controls the level of exploration vs. exploitation in the policy. As $\tau \rightarrow 0$, $\pi(a \mid s)$ becomes highly peaked at $\arg \max_a Q(s, a)$; it becomes uniform as $\tau \rightarrow \infty$.

As commonly done, we learn the θ by policy iteration. First, we gather (s, a, r, s') samples by running episodes (to completion) with the current policy parameters θ_i. From these samples, $Q(s, a)$ values are computed, and θ_i+1 are given by L_2-regularized least squares solution to $Q(s, a) = \theta^T \phi(s, a)$, on all states that we have seen in training.

During training, we gather samples starting from either a random feasible state, with probability ϵ, or from the initial empty state otherwise. Both ϵ and τ parameters decay exponentially with the number of training iterations. Training is terminated if $\pi_{\theta_{i+1}}$ returns the exact same sequence of episodes ξ on a validation set as π_{θ_i}.

Static vs. Dynamic state-action feature vector. The featurization function $\phi(s)$ extracts the following features from the state:

- Bit vector m of length F: initially all bits are 1 and are set to 0 when the corresponding feature is computed.
- For each h_f, a vector of size d_f representing the values; 0 until observed.
- Cost feature $c \in [0, 1]$, for fraction of the budget spent.
- Bias feature 1.

These features define the dynamic state, presenting enough information to have a closed-loop (dynamic) policy that may select different features for different test instances. The static state has all of the above features except for the observed feature values. This enables only an open-loop (static) policy, which is exactly the same for all instances.

Input: $\mathcal{D} = \{x_i, y_i\}_{i=1}^N; \mathcal{L}_B$

Result: Trained π, g

$\pi_0 \leftarrow$ random;

for $i \leftarrow 1$ to max_iterations do

- States, Actions, Costs, Labels \leftarrow GatherSamples(\mathcal{D}, π_{i-1});
- $g_i \leftarrow$ UpdateClassifier(States, Labels);
- Rewards \leftarrow ComputeRewards(States, Costs, Labels, g_i, \mathcal{L}_B, γ);
- $\pi_i \leftarrow$ UpdatePolicy(States, Actions, Rewards);

end

Algorithm 1: Because reward computation depends on the classifier, and the distribution of states depends on the policy, g and π are trained iteratively.

Policy learned with the static state is used as a baseline in experiments.

The state-action feature function $\phi(s, a)$ effectively block-codes these features: it is 0 everywhere except the block corresponding to the action considered. In implementation, we train F separate regressions with a tied regularization parameter, which is K-fold cross-validated.

Effect of γ. Note that solving the MDP with these features and with $\gamma = 0$ finds a Static, greedy policy: the value of taking an action in a state is exactly the expected reward to be obtained. When $\gamma = 1$, the value of taking an action is the entire area above the curve as defined in Figure 1, and we learn the Static, non-myopic policy—another baseline.

3.4. Learning the classifier.

We have so far assumed that g can combine an arbitrary subset of features and provide a distribution $P(Y = y)$—for example, a Gaussian Naive Bayes (NB) model trained on the fully-observed data.

Since discriminative classifiers commonly provide better performance, we use a logistic regression classifier, which presents a new challenge: at test time, some feature values are missing and need to be imputed. If the classifier is trained exclusively on fully-observed data, then the feature value statistics at test time will not match, resulting in poor performance. Therefore, we need to learn classifier weights on a distribution of data that exhibits the pattern of missing features. Induces by the policy π. At the same time, learning the policy depends on the classifier g, used in the computation of the rewards. For this reason, the policy and classifier need to be learned jointly: **Algorithm 1** gives the iterative procedure.
Unobserved value imputation. Unlike the Naive Bayes classifier, the logistic regression classifier is not able to use an arbitrary subset of features \(H_\pi \), but instead operates on feature vectors of a fixed size. To represent the feature vector of a fully observed instance, we write \(x = [h_1(x), \ldots, h_f(x)] \). In case that \(H_\pi \subset H \), we need to fill in unobserved feature values in the vector.

A basic strategy is mean imputation: filling in with the mean value of the feature:

\[
x_\pi = \begin{cases} h_i(x) & \text{if } h_i \in H_\pi(x) \\ \bar{x}_i & \text{otherwise} \end{cases}
\]

(4)

If we assume that \(x \) is distributed according to a multivariate Gaussian \(x \sim N(0, \Sigma) \), where \(\Sigma \) is the sample covariance \(X^T X \) and the data is standardized to have zero mean, then it is possible to do Gaussian imputation. Given a feature subset \(H_\pi \), we write:

\[
x_\pi = \begin{bmatrix} x^o \\ x^u \end{bmatrix} \sim N \left(0, \begin{bmatrix} A & C \\ C^T & B \end{bmatrix} \right)
\]

(5)

where \(x^o \) and \(x^u \) represent the respectively observed and unobserved parts of the full feature vector \(x \). In this case, the distribution over unobserved variables conditioned on the observed variables is given as \(x^o \mid x^u \sim N \left(C^T A^{-1} x^o, B - C^T A^{-1} C \right) \).

Learning more than one classifier. As illustrated in Figure 2, the policy \(\pi \) selects some feature subsets more frequently than others. Instead of learning only one classifier \(g \) that must be robust to all observed feature subsets, we can learn several classifiers, one for each of the most frequent subsets. This is done by maintaining a distribution over encountered feature subsets during training. For each of the \(K \) most frequent subsets, a separate classifier is trained, using data that is closest by Hamming distance on the selected-feature bit vector.

Each classifier is trained with the LIBLINEAR implementation of logistic regression, with \(L_2 \) regularization parameter K-fold cross-validated at each iteration.

4. Evaluation

We evaluate the following sequential selection baselines:

- **Static, greedy**: corresponds to best performance of a policy that does not observe feature values and selects actions greedily (\(\gamma = 0 \)).

- **Static, non-myopic**: policy that does not observe feature values but uses the MDP machinery with \(\gamma = 1 \) to consider future action rewards.

- **Dynamic, greedy**: policy that observed feature values, but selects actions greedily.

![Figure 2: The action space \(A \) of the MDP is the the set of features \(H \), represented by the \(\phi \) boxes. The primary discretization of the state space can be visualized by the possible feature subsets (larger boxes); selected features are colored in the diagram. The feature selection policy \(\pi \) induces a distribution over feature subsets, for a dataset, which is represented by the shading of the larger boxes. Not all states are reachable for a given budget \(B \). In the figure, we show three “budget cuts” of the state space.](image)

Our method is the **Dynamic, non-myopic** policy: observed feature values, and full lookahead.

In preliminary experiments, Logistic Regression always performed better than the Gaussian Naive Bayes classifier, and so only the former is used in the experiments below. As described above, we evaluated classification with Gaussian vs. Mean imputation, and with different number of classifiers (1, 3, and 6) clustered by feature subsets. We found that mean imputation performed better than Gaussian imputation, and although increased number of classifiers sometimes increased performance, it also made our method more prone to overfitting; \(K = 1 \) classifiers worked best on all tasks.

4.1. Synthetic Experiment.

Following [25], we first show that the policy works as advertised in a challenging synthetic example. In \(D \)-dimensional space, the data has a label for each of the \(2^D \) orthants, and is generated by a unit-variance Gaussian in that orthant (See top left of Figure 3 for the 3D case). There are \(D \) cheap features that simply return the sign of the data point’s coordinate for the corresponding dimension. For each orthant, there is also an expensive feature that returns the data point’s label if the point is located in the corresponding orthant, and random noise otherwise.

The optimal policy on a new data point is to determine its orthant with cheap features, and then take the corresponding expensive action. Note that both dynamic features and non-myopic learning are crucial to the optimal policy, which is successfully found by our approach. Figure 3 shows the results of this optimal policy, a random policy, and of different
baselines and our method, trained given the correct minimal budget.

4.2. Scene recognition.

The Scene-15 dataset [18] contains 4485 images from 15 visual scene classes. The task is to classify images according to scene. Following [24], we extracted 14 different visual features (GIST, HOG, TinyImages, LBP, SIFT, Line Histograms, Self-Similarity, Textons, Color Histograms, and variations). The features vary in cost from 0.3 seconds to 8 seconds, and in single-feature accuracy from 0.32 (TinyImages) to .82 (HOG). Separate multi-class linear SVMs were trained on each feature channel, using a random 100 positive example images per class for training. We used the liblinear implementation, and K-fold cross-validated the penalty parameter C. The trained SVMs were evaluated on the images not used for training, resulting in a dataset of 2238 vectors of 210 confidence values: 15 classes for each of the 14 feature channels. This dataset was split 60-40 into training and test sets for our experiments.

Figure 4 shows the results, including learned policy trajectories. For all evaluated budgets, our dynamic, non-myopic method outperforms all others on the area under the error vs. cost curve metric. Our results on this dataset match the reported results of Active Classification [12] (Figure 2) and Greedy Miser [26] (Figure 3), although both methods use an additional powerful feature channel (ObjectBank).

4.3. ImageNet and maximizing specificity.

The full ImageNet dataset has over 10K categories and over a million images [5]. The classes are organized in a hierarchical structure, which can be exploited for novel recognition tasks. We evaluate on a 65-class subset intro-
duced in “Hedging Your Bets” [6]. In this evaluation, we consider the situation where the initial feature computation has already happened, and the task is to find a path through existing one-vs-all classifiers: features correspond to Platt-scaled SVM confidences of leaf-node classifiers (trained on SIFT-LLC features), and each has cost 1 [5]. Following [6], accuracy is defined on all nodes, and inner node confidences are obtained by summing the probabilities of the descendant nodes.

We combine our sequential feature selection with the “Hedging Your Bets” method for backing off prediction nodes using the ImageNet hierarchy to maintain guaranteed accuracy while giving maximally specific answers, given a cost budget. The results are given in Figure 5. As the available budget increases, the specificity (defined by normalized information gain in the hierarchy) of our predictions also increases, while accuracy remains constant. Visualizing this on the ILSVRC-65 hierarchy, we see that the fraction of predictions at the leaf nodes grows with available computation time. This formulation presents a novel angle on modeling the time course of human visual perception.

5. Conclusions and Future Work

We have shown how to optimize feature selection and classification strategies under an Anytime objective by modeling the associated process as a Markov Decision Process. Throughout the experiments we show how strategies that adapt the course of computation at test time lead to gains in performance and efficiency. Beyond the aspects of practical deployment of vision systems that our work is motivated by, we are curious to further investigate our model as a tool to study human cognition and the time course of visual perception.

Lastly, the recent successes of convolutional neural nets for visual recognition open an exciting new avenue for exploring cost-sensitivity. Layers of a deep network can be seen as features in our system, through which a properly learned policy can optimally direct computation.

Acknowledgements

This research was supported by the National Defense Science and Engineering Graduate Fellowship; DARPA Mind’s Eye and MSEE programs; NSF awards IIS-0905647, IIS-1134072, and IIS-1212798; by Toyota; and by the Intel Visual Computing Institute.

References

Figure 4: Results on Scenes-15 dataset (best viewed in color). Figure (a) shows the error vs. cost plot for policies learned given a budget of 5 seconds. Figure (b) aggregates the area under the error vs. cost plot metrics for different policies and budgets, showing that our approach outperforms baselines no matter what budget it’s trained for. Figure (c) shows the branching behavior of our dynamic policy.

(a) Areas under error vs. cost curves for policies learned at different budgets. (No specificity back-off is performed here).

(b) Holding prediction accuracy constant, we achieve increased specificity with increased cost (on Dynamic, non-myopic policy, budget = 36).

(c) We visualize the fraction of predictions made at inner vs. leaf nodes of ILSVRC-65 at different cost points of an Anytime policy: with more computation, accurate predictions are increasingly made at the leaf nodes.

Figure 5: Results on the ILSVRC-65 dataset (best viewed in color). Figure (a) shows our dynamic approaches outperforming static baselines for all practical cost budgets. When our method is combined with Hedging Your Bets [6], a constant prediction accuracy can be achieved at all points in the Anytime policy, with specificity of predictions increasing with the cost of predictions. Figures (b) and (c) show this for the dynamic, non-myopic policy learned for budget = 26. This is analogous to human visual performance, which shows increased specificity at longer stimulus times.