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Abstract

Recent proliferation of a cheap but quality depth sen-
sor, the Microsoft Kinect, has brought the need for a chal-
lenging category-level 3D object detection dataset to the
fore. We review current 3D datasets and find them lack-
ing in variation of scenes, categories, instances, and view-
points. Here we present our dataset of color and depth
image pairs, gathered in real domestic and office environ-
ments. It currently includes over 50 classes, with more
images added continuously by a crowd-sourced collection
effort. We establish baseline performance in a PASCAL
VOC-style detection task, and suggest two ways that in-
ferred world size of the object may be used to improve de-
tection. The dataset and annotations can be downloaded at
http://www.kinectdata.com.

1. Introduction

Recently, there has been a resurgence of interest in avail-
able 3-D sensing techniques due to advances in active depth
sensing, including techniques based on LIDAR, time-of-
flight (Canesta), and projected texture stereo (PR2). The
Primesense sensor used on the Microsoft Kinect gaming
interface offers a particularly attractive set of capabilities,
and is quite likely the most common depth sensor available
worldwide due to its rapid market acceptance (8 million
Kinects were sold in just the first two months).

While there is a large literature on instance recogni-
tion using 3-D scans in the computer vision and robotics
literatures, there are surprisingly few existing datasets for
category-level 3-D recognition, or for recognition in clut-
tered indoor scenes, despite the obvious importance of this
application to both communities. As reviewed below, pub-
lished 3-D datasets have been limited to instance tasks, or
to a very small numbers of categories. We have collected
and describe here the initial bulk of the Berkeley 3-D Ob-
ject dataset (B3DO), an ongoing collection effort using the
Kinect sensor in domestic environments. The dataset al-
ready has an order of magnitude more variation than previ-

Figure 1. Two scenes typical of our dataset.

ously published datasets. The latest version of the dataset is
available at http://www.kinectdata.com

As with existing 2-D challenge datasets, our dataset has
considerable variation in pose and object size. An impor-
tant observation our dataset enables is that the actual world
size distribution of objects has less variance than the image-
projected, apparent size distribution. We report the statistics
of these and other quantities for categories in our dataset.

A key question is what value does depth data offer for
category level recognition? It is conventional wisdom that
ideal 3-D observations provide strong shape cues for recog-
nition, but in practice even the cleanest 3-D scans may re-
veal less about an object than available 2-D intensity data.
Numerous schemes for defining 3-D features analogous to
popular 2-D features for category-level recognition have
been proposed and can perform in uncluttered domains. We
evaluate the application of HOG descriptors on 3D data and
evaluate the benefit of such a scheme on our dataset. We
also use our observation about world size distribution to
place a size prior on detections, and find that it improves
detections as evaluated by average precision, and provides
a potential benefit for detection efficiency.
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2. Related Work

There have been numerous previous efforts in collect-
ing datasets with aligned 2D and 3D observations for object
recognition and localization. We review the most pertinent
ones, and briefly highlight how our dataset is different. We
also give a brief overview of previous work targeting the
integration of the 2D appearance and depth modalities.

2.1. 3D Datasets for Detection

We present an overview of previously published datasets
that combine 2D and 3D observation and contrast our
dataset from those previous efforts:

RGBD-dataset of [21]: This dataset from Intel Research
and UW features 300 objects in 51 categories. The cate-
gory count refers to nodes in a hierarchy, with, for example,
coffee mug having mug as parent. Each category is repre-
sented by 4-6 instances, which are densely photographed
on a turntable. For object detection, only 8 short video clips
are available, which lend themselves to evaluation of just 4
categories (bowl, cap, coffee mug, and soda can) and 20 in-
stances. There does not appear to be significant viewpoint
variation in the detection test set.

UBC Visual Robot Survey [3, 19]: This dataset from
UBC provides training data for 4 categories (mug, bottle,
bowl, and shoe) and 30 cluttered scenes for testing. Each
scene is photographed in a controlled setting from multiple
viewpoints.

3D table top object dataset [24]: This dataset from
University of Michigan covers 3 categories (mouse, mug,
stapler) and provides 200 test images with cluttered back-
grounds. There is no significant viewpoint variation in the
test set.

Solutions in Perception Challenge [2]: This dataset
from Willow Garage forms the challenge which took place
in conjunction with International Conference on Robotics
and Automation 2011, and is instance-only. It consists of
35 distinct objects such as branded boxes and household
cleaner bottles that are presented in isolation for training
and in 27 scenes for test.

Other datasets: Beyond these, other datasets have
been made available which do include simultaneous cap-
ture of image and depth but serve more specialized purposes
like autonomous driving [1], pedestrian detection [10] and
driver assistance [25]. Their specialized nature means that
they cannot be leveraged for the multi-object category lo-
calization task that is our goal.

In contrast to all of these datasets, our dataset contains
both a large number of categories and many different in-
stances per category, is photographed “in the wild” instead
of in a controlled turntable setting, and has significant vari-
ation in lighting and viewpoint throughout the set. For an
illustration, consider Figure 4, which presents a sample of

Figure 2. Illustration of our depth smoothing method.

examples of the “chair” category in our dataset. These qual-
ities make our dataset more representative of the kind of
data that can actually be seen in people’s homes; data that a
domestic service robot would be required to deal with and
do online training on.

2.2. 3D and 2D/3D Recognition

A comprehensive review of all 3-D features proposed for
recognition is beyond the scope of our work. Briefly, no-
table prominent techniques include spin images [20], 3-D
shape context [15], and the recent VFH model [23]–but this
list is not exhaustive.

A number of 2D/3D hybrid approaches have been re-
cently proposed, and our dataset should be a relevant testbed
for these methods. A multi-modal object detector in which
2D and 3D are traded off in a logistic classifier is proposed
by [16]. Their method leverages additional handcrafted fea-
ture derived from the 3D observation such as “height above
ground” and “surface normal”, which provide contextual in-
formation. [24] shows how to benefit from 3D training data
in a voting based method. Fritz et al. [14] extends branch
& bound efficient detection to 3D and adds size and support
surface constraints derived from the 3D observation.

Most prominently, a set of methods have been proposed
for fusing 2D and 3D information for the task of pedestrian
detection. The popular HOG detector [8] to disparity-based
features is extended by [18]. A late integration approach is
proposed by [22] for combining detectors on the appearance
as well as depth image for pedestrian detection. Instead of
directly learning on the depth map, [25] uses a depth statis-
tic that learns to enforce height constraints of pedestrians.
Finally, [10] explores pedestrian detection by using stereo
and temporal information in a hough voting framework also
using scene constraints.

3. Our Dataset

We have compiled a large-scale dataset of images taken
in domestic and office settings with the commonly available
Kinect sensor. The sensor provides a color and depth image
pair, and is processed by us for alignment and inpainting.
The data was collected by many members of our research
community, as well as Amazon Mechanical Turk (AMT)
workers, enabling us to have impressive variety in scene and

1169



chair  table  cup  monitor  book  bottle  pen  bowl  keyboard  sofa  mouse  pillow  phone  power outlet  speaker  bookcase  laptop  cabinet  door handle  headphones  light switch  shoe  door handle  remote  towel  scissors  plate  toothbrush  keys plate  trash can  glass  magazine  medicine  cell phone  stapler  toothpaste  eyeglasses  pen or pencil  desk lamp  laptop  printer  backpack  kleenex  container  calculator  fork  notebook  table_knife  soap  spoon  tapedispenser  desk_lamp  mail  bike  can  ruler  wallet  purse  wristwatch  bike_helmet  hair_brush  medicine_box  paper_notebook ring_binder  tv_remote  letter_tray  back_pack  computer_mouse shirt  coin  plastic_food_container shoe_or_sandal glasses  marker  sock  credit_card  newspaper  pants  bill  tape_dispenser file_cabinet  lighter  

250 219 202 200 189 161 131 126 106 86 84 71 66 59 53 46 44 42 41 40 38 38 36 36 34 32 31 28 27 26 26 25 25 25 22 21 21 20 20 19 19 19 18 18 17 16 15 15 15 14 14 14 13 13 11 11 11 11 10 10 9 9 9 7 7 7 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 0 0  

0

50

100

150

200

250

c
h

a
ir

 t
a

b
le

 c
u

p

 m
o

n
ito

r

 b
o

o
k

 b
o

tt
le

 p
e

n

 b
o

w
l

 k
e

yb
o

a
rd

 s
o

fa

 m
o

u
se

 p
ill

o
w

 p
h

o
n

e

 p
o

w
e

r o
u

tle
t

 s
p

e
a

ke
r

 b
o

o
kc

a
se

 la
p

to
p

 c
a

b
in

e
t

 d
o

o
r h

a
n

d
le

 h
e

a
d

p
h

o
n

e
s

 li
g

h
t 

sw
itc

h

 s
h

o
e

 d
o

o
r h

a
n

d
le

 re
m

o
te

 t
o

w
e

l

 s
c

iss
o

rs

 p
la

te

 t
o

o
th

b
ru

sh

 k
e

ys

p
la

te

 t
ra

sh
 c

a
n

 g
la

ss

 m
a

g
a

zi
n

e

 m
e

d
ic

in
e

 c
e

ll 
p

h
o

n
e

 s
ta

p
le

r

 t
o

o
th

p
a

st
e

 e
ye

g
la

ss
e

s

 p
e

n
 o

r p
e

n
c

il

Figure 3. Object frequency for 39 classes with 20 or more examples.

object appearance. As such, the dataset is intended for eval-
uating approaches to category-level object recognition and
localization.

The size of the dataset is not fixed and will continue
growing with crowd-sourced submissions. The first release
of the dataset contains 849 images taken in 75 different
scenes. Over 50 different object classes are represented
in the crowd-sourced labels. The annotation is done by
Amazon Mechanical Turk workers in the form of bounding
boxes on the color image, which are automatically trans-
ferred to the depth image.

3.1. Data Collection

We use crowd sourcing on AMT in order to label the data
we collect and collect data in addition to the data collected
in-house. AMT is a well-known service for “Human Intelli-
gence Tasks” (HIT), which are typically small tasks that are
too difficult for current machine intelligence. Our labeling
HIT gives workers a list of eight objects to draw bound-
ing boxes around in a color image. Each image is labeled
by five workers for each set of labels in order to provide
sufficient evidence to determine the validity of a bound-
ing box. A proposed annotation or bounding box is only
deemed valid if at least one similarly overlapping bounding
box is drawn by another worker. The criteria for similarity
of bounding boxes is based on the PASCAL VOC [11] over-
lap criterion (described in more detail in section 4.1), with
the acceptance threshold set to 0.3. If only two bounding
boxes are found to be similar, the larger one is chosen. If
more than two are deemed similar, we keep the bounding
box with the most overlap with the others, and discard the
rest.

After the initial intensive in-house data collection, our
dataset is now in a sustained effort to collect Kinect data
from AMT workers as well as the local community. This
AMT collection task is obviously more difficult than simple
labeling, since workers must own a Kinect and be able and
willing to set their Kinect up properly. Despite this, we were

able to collect quality images from AMT workers. With the
growing popularity of the Kinect, the pool of potential data
contributors keeps getting bigger.

3.2. The Kinect Sensor

The Microsoft Xbox Kinect sensor consists of a hori-
zontal bar with cameras, a structured light projector, an ac-
celerometer and an array of microphones mounted on a mo-
torized pivoting foot. Since its release in November 2010,
much open source software has been released allowing the
use of the Kinect as a depth sensor [7]. Across the horizon-
tal bar are three sensors: two infrared laser depth sensors
with a depth range of approximately 0.6 to 6 meters, and
one RGB camera (640 x 480 pixels) [4]. Depth reconstruc-
tion uses proprietary technology from Primesense, consist-
ing of continuous infrared structured light projection onto
the scene.

The Kinect color and IR cameras are a few centimeters
apart horizontally, and have different intrinsic and extrin-
sic camera parameters, necessitating their calibration for
proper registration of the depth and color images. We found
that the calibration parameters differ significantly from unit
to unit, which poses a problem to totally indiscriminate data
collection. Fortunately, the calibration procedure is made
easy and automatic due to efforts of the open source com-
munity [7, 6].

3.3. Smoothing Depth Images

The structured-light method we use for recovering
ground-truth depth-maps necessarily creates areas of the
image that lack an estimate of depth. In particular, glass
surfaces and infrared-absorbing surfaces can be missing in
depth data. Tasks such as getting the average depth of a
bounding box, or applying a global descriptor to a part of
the depth image therefore benefit from some method for
“inpainting” this missing data.

Our view is that proper inpainting of the depth im-
age requires some assumption of the behavior of natural
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Figure 4. Instances of the “chair” class in our dataset, demonstrat-
ing the diversity of object types, viewpoint, and illumination.

shapes. We assume that objects have second order smooth-
ness (that curvature is minimized)—a classic prior on nat-
ural shapes [17, 27]. In short, our algorithm minimizes
�h ∗ Z�2F + �hT ∗ Z�2F with the constraints Zx,y = Ẑx,y

for all (x, y) ∈ Ẑ, where h = [−1,+2,−1], is an oriented
1D discrete Laplacian filter, ∗ is a convolution operation,
and �·�2F is the squared Frobenius norm. The solution to
this optimization problem is a depth-map Z in which all
observed pixels in Ẑ are preserved, and all missing pixels
have been filled in with values that minimize curvature in a
least-squares sense.

Figure 2 illustrates this algorithm operating on a typical
input image with missing depth in our dataset to produce
the smoothed output.

3.4. Data Statistics

The dataset described here, which will be able to be used
for benchmarking for recognition tasks, is the first release
of the B3DO dataset. As our collection efforts are ongoing,
subsequent releases of data will include even more variation
and larger quantities of data. The distribution of objects in
household and office scenes as represented in our dataset is
shown in Figure 3. The typical long tail of unconstrained
datasets is present, and suggests directions for targeted data
collection. At this time, there are 12 classes with more than

70 examples, 27 classes with more than 30 examples, and
over 39 classes with 20 or more examples.

Unlike other 3D datasets for object recognition, our
dataset features large variability in the appearance of object
class instances. This can be seen in Figure 4, presenting
random examples of the chair class in our dataset; the vari-
ation in viewpoint, distance to object, frequent presence of
partial occlusion, and diversity of appearance in this sample
poses a challenging detection problem.

The apparent size of the objects in the image, as mea-
sured by the bounding box containing them, can vary sig-
nificantly across the dataset. Our claim is that the real-world
size of the objects in the same class varies far less, as can
be seen in Figure 5. As proxy for the real-world object size,
we use the product of the diagonal of the bounding box l
and the distance to the object from the camera D, which is
roughly proportional to the world object size by similar tri-
angles (of course, viewpoint variation slightly scatters this
distribution–but less so than for the bounding box size). We
find that mean smoothed depth is roughly equivalent to the
median depth of the depth image ignoring missing data, and
so use this to measure distance. The Gaussian was found
to be a close fit to these size distributions, allowing us to
estimate size likelihood of a bounding box as N (x|µ,σ)),
where µ and σ are learned on the training data. This will be
used in section 4.3.

4. Detection Baselines

The cluttered scenes of our dataset provide for a chal-
lenging object detection task, where the task is to local-
ize all objects of interest in an image. We constrain the
task to finding eight different object classes: chairs, mon-
itors, cups, bottles, bowls, keyboards, computer mice, and
phones. These object classes were among the most well-
represented in our dataset.1

4.1. Sliding window detector

Our baseline system is based on a standard detection ap-
proach of sliding window classifiers operating on a gradient
representation of the image [9, 13, 26]. Such detectors are
currently the state of the art on cluttered scene datasets of
varied viewpoints and instance types, such as the PASCAL-
VOC challenge [11]. The detector considers windows of
a fixed aspect ratio across locations and scales of an im-
age pyramid and evaluates them with a score function, out-
putting detections that score above some threshold.

Specifically, we follow the implementation of the De-
formable Part Model detector [13], which uses the La-
tentSVM formulation fβ(x) = maxz β · Φ(x, z) for scor-
ing candidate windows, where β is a vector of model pa-

1We chose not to include a couple of other well-represented classes into
this test set because of extreme variation in interpretation of instances of
object by the annotators, such as the classes of “table” and “book.”
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Figure 5. Statistics of object size. For each object class, the top histogram is inferred world object size, obtained as the product of the
bounding box diagonal and the average depth of points in the bounding box. The bottom histogram is the distribution of just the diagonal
of the bounding box size.

rameters and z are latent values (allowing for part defor-
mations). Optimizing the LatentSVM objective function is
a semi-convex problem, and so the detector can be trained
even though the latent information is absent for negative ex-
amples.

Since finding good negative examples to train on is of
paramount importance in a large dataset, the system per-
forms rounds of data mining for small samples of hard neg-
atives, providing a provably exact solution to training on the
entire dataset.

To featurize the image, we use a histogram of oriented
gradients (HOG) with both contrast-sensitive and contrast-
insensitive orientation bins, four different normalization
factors, and 8-pixel wide cells. The descriptor is analyti-
cally projected to just 31 dimensions, motivated by the anal-
ysis in [13].

We explore two feature channels for the detector. One
consists of featurizing the color image, as is standard. For
the other, we apply HOG to the depth image (Depth HOG),
where the intensity value of a pixel corresponds to the depth
to that point in space, measured in meters. This applica-
tion of a gradient feature to depth images has little theo-
retical justification, since first-order statistics do not matter
as much for depth data (this is why we use second-order
smoothing in section 3.3). Yet this is an expected first base-
line that also forms the detection approach on some other
3D object detection tasks, such as in [21].

Detections are further pruned by non-maximum suppres-
sion, which greedily takes the highest-scoring bounding
boxes and rejects boxes that sufficiently overlap with an al-
ready selected detection. This procedure results in a reduc-
tion of detections on the order of ten, and is important for
our evaluation metric, which penalizes repeat detections.

4.2. Evaluation

Evaluation of detection is done in the widely adopted
style of the PASCAL detection challenge, where a detec-
tion is considered correct if area(B∩G)

area(B∪G) > 0.5 where B is
the bounding box of the detection and G is the ground truth
bounding box of the same class. Only one detection can
be considered correct for a given ground truth box, with
the rest considered false positives. Detection performance
is represented by precision-recall (PR) curves, and sum-
marized by the area under the curve–the average precision
(AP). We evaluate on six different splits of the dataset, av-
eraging the AP numbers across splits.

Our goal is category, not instance-level recognition. As
such, it is important to keep instances of a category confined
to either training or test set. This makes the recognition task
much harder than if we were allowed to train on the same
instances of a category as exist in the test set (but not neces-
sarily same the views of them). We enforce this constraint
by ensuring that images from the same scene or room are
never in both sets. This is a harder constraint than needed,
and is not necessarily perfect (for example many different
offices might contain the same model laptop), but as there is
no realistic way to provide per-instance labeling of a large,
crowd-sourced dataset of cluttered scenes, we settle for this
method, and keep the problem open for further research.

Figure 6 shows the detector performance on 8 different
classes. We note that Depth HOG is never better than HOG
on the 2D image. We attribute this to the inappropriateness
of a gradient feature on depth data, as mentioned earlier,
and to the fact that due to the limitations of the infrared
structured light depth reconstruction, some objects tend to
be missing depth data.
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Figure 6. Performance of the baseline detector on our dataset, as
measured by the average precision. Depth HOG fails completely
on some categories, for reasons explained in the text.

4.3. Pruning and rescoring by size

In section 3.4, we made the observation that true object
size, even as approximated by the product of object projec-
tion in the image and median depth of its bounding box,
varies less than bounding box size. We therefore investigate
two ways of using approximated object size as an additional
source of discriminative signal to the detector.

Our first way of using size information consists of prun-
ing candidate detections that are sufficiently unlikely given
the size distribution of that object class. The object size
distribution is modeled with a Gaussian, which we found is
a close fit to the underlying distribution; the Gaussian pa-
rameters are estimated on the training data only. We prune
boxes that are more than σ = 3 standard deviations away
from the mean of the distribution.

Figure 7 shows that the pruning results provide a boost
in detection performance, while rejecting from 12% to 68%
of the suggested detection boxes (on average across the
classes, 32% of candidate detections are rejected). This ob-
servation can be leveraged as part of an “objectness” filter
or as a thresholding step in a cascaded implementation of
this detector for detection speed gain [5, 12]. The classes
chair and mouse are the two classes most helped by size
pruning, while monitors and bottle are the least helped.

Using bounding box size of the detection (as measured
by its diagonal) instead of inferred world size results in no
improvement to AP performance on average. Two classes
that are most hurt are bowl and plate; two that are least hurt
by the bounding box size pruning are bottle and mouse.

The second way we use size information consists of
learning a rescoring function for detections, given their
SVM score and size likelihood. We learn a simple com-

bination of the two values:

s(x) = exp(α log(w(x)) + (1− α) log(N (x|µ,σ))) (1)

where w(x) = 1/(1 + exp(−2fβ(x))) is the normalized
SVM score, N (x|µ,σ)) is the likelihood of the inferred
world size of the detection under the size distribution of the
object class, and α is a parameter learned on the training
set. This corresponds to unnormalized Naive Bayes combi-
nation of the SVM model likelihood and object size likeli-
hood. Since what matters for the precision-recall evaluation
is the ordering of confidences and whether they are normal-
ized is irrelevant, we are able to evaluate s(x).

As Figure 7 demonstrates, the rescoring method works
better than pruning. This method is able to boost recall as
well as precision by assigning a higher score to likely detec-
tions in addition to lowering the score (which is, in effect,
pruning) of unlikely detections.

5. Discussion

We presented a novel paradigm for crowd-sourced data
collection that leverages the success of the Kinect depth
sensor. Its popularity has been encouraging, and we think
it is time to “put the Kinect to work” for computer vision.
The main contribution of this paper is a novel category-level
object dataset, which presents a challenging task and is far
beyond existing 3-D datasets in terms of the number of ob-
ject categories, the number of examples per category, and
intra-category variation. Importantly, the dataset poses the
problem of object detection “in the wild”, in real rooms in
people’s homes and offices, and therefore has many practi-
cal applications.
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