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Classifying materials from their appearance is challenging. Impressive results have been obtained under
varying illumination and pose conditions. Still, the effect of scale variations and the possibility to gener-
alise across different material samples are still largely unexplored. This paper (A preliminary version of
this work was presented in Hayman et al. [E. Hayman, B. Caputo, M.J. Fritz, J.-O. Eklundh, On the signif-
icance of real world conditions for material classification, in: Proceedings of the ECCV, Lecture Notes in
Computer Science, vol. 4, Springer, Prague, 2004, pp. 253–266].) addresses these issues, proposing a pure
learning approach based on support vector machines. We study the effect of scale variations first on the
artificially scaled CUReT database, showing how performance depends on the amount of scale informa-
tion available during training. Since the CUReT database contains little scale variation and only one sam-
ple per material, we introduce a new database containing 10 CUReT materials at different distances, pose
and illumination. This database provides scale variations, while allowing to evaluate generalisation capa-
bilities: does training on the CUReT database enable recognition of another piece of sandpaper? Our
results demonstrate that this is not yet possible, and that material classification is far from being solved
in scenarios of practical interest.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction so far has been to design robust feature descriptors and determine
Recognising materials from their visual textures is a challenging
task, which can be useful in several applications. For instance, it
may facilitate object recognition and image retrieval, as texture
is the most distinctive feature for many objects. Knowledge of
the material can also be useful in robotic manipulation tasks, as
it helps in adopting an appropriate grasping strategy. These real-
world applications call for robust recognition algorithms. Previous
work has mostly concentrated on the ability to recognise materials
from a variety of poses and with different illumination conditions.
This task is particularly challenging when the material has consid-
erable three-dimensional structure. In this case, cast shadows and
highlights can cause the visual appearance to change radically with
varying view and illumination conditions. Fig. 1 shows an example
from the CUReT database [2] which highlights these variations in
appearance on the ‘white bread’ sample. This database has been
considered as the benchmark for this research. A popular approach
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the progress in classification performance on the CUReT database.
Impressive classification results, up to 99%, have been obtained [3–
6] (we refer the reader to Section 2 for a thorough review of the rel-
evant literature).

However, other key issues that are essential to recognise mate-
rials in real-world conditions have been largely unaddressed:

(1) Robustness to scale changes: Variations in scale affect heavily
the visual appearance of a material. It is likely that fine level
details will become visible at a closer distance, while at a
coarser scale they might not be seen because of the finite
resolution of the imaging device. Fig. 2 shows how ‘cotton’,
‘sandpaper’ and ‘sponge’, from the KTH-TIPS database, can
vary dramatically in their appearance when one consider
samples at different scales.

(2) Generalisation across material samples: In realistic settings it
is essential to be able to generalise with respect to different
samples of the same material. For instance, the goal could be
to recognise any wooden table. On the other hand, only rec-
ognizing a single, particular piece of wood, supplied during
training, is pointless in most practical applications.

In spite of their significance, these two points are still widely
ignored.
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Fig. 1. Three images of white bread taken from the CUReT database demonstrating the variation of appearance of a 3D texture as the pose and illumination conditions change.

Fig. 2. The appearance of materials can change dramatically with distance to the camera.
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The overall goal of this work is to bring material recognition
algorithms closer to the stage where they will be useful in real-
world applications. Our first major objective is to provide robust-
ness to variations in scale. We show experimentally that even
state-of-the-art algorithms are very sensitive to scaling effects,
and classification accuracy rapidly degrades. Our solution is a
pure-learning approach, based on the Support Vector Machines
(SVMs) algorithm [7,8]. The key features of SVMs are the use of
kernels, the absence of local minima, the sparseness of the solution
and the capacity control obtained by optimizing the margin [7].
These properties make SVMs an effective choice for material clas-
sification. This statement is supported by an extensive experimen-
tal evaluation of their performance on the CUReT database, using
several kernel types and comparing results with the Varma–Zisser-
man algorithm (Section 3). Our results1 are in agreement with those
reported in [26], and underline the success of SVMs for this applica-
tion. We then accommodate variations in scale in the training sam-
ples. This is similar to how differing illumination and pose are
currently modeled. This approach proves successful when sufficient
information on the scale variation is given during training. We com-
pare SVMs with the nearest-neighbour classification scheme
adopted by Varma and Zisserman [5]. Experiments show clearly
the superiority of SVMs on the Varma–Zissermann approach. As al-
ready alluded to, experiments are conducted on the CUReT image
database [2] which captures variations in illumination and pose for
61 different materials, many of which contain significant 3D struc-
ture. This database does not, however, contain many scaling effects.
It is possible to artificially scale the images, or modify the scales of
the filters in the filter bank. In this way it is possible to get some
indication of the performance under varying scale. However, we also
investigate classification results on pictures of materials present in
the CUReT database, imaged in our laboratory at different scales.
This constitutes a more realistic test. The goals of these experiments
are twofold. First, they permit a systematic study of scale effects
while still providing some variations in pose and illumination. Sec-
ond, we investigate whether it is possible to recognise materials in
1 Our results were state-of-the-art when first presented in [1], but Broadhurst [6
has since demonstrated higer classification rates of 99.2% on the CUReT database.
]

this new database given models trained on the CUReT database. This
indeed proves a stern test, since both the sample of material, the
camera and lighting conditions are different to those used during
training. We conduct an extensive set of experiments to assess the
new database. We also experimentally study the generalisation
capability across different material samples of SVMs and the Var-
ma–Zissermann approach. Our results emphasise the difficulty of
the task. They show unequivocally that scale variations and general-
isation across samples are today two of the most important obstacles
for the use of material classification algorithms in realistic settings.

In summary, the contributions of this paper are:

(1) We address the issue of robustness to scale variation, and we
propose a learning-based approach, as opposed to the more
researched feature-based one. We show that this strategy is
effective as long as enough information on the scale changes
is provided during training. Experiments comparing our
strategy with a similar extension of the Varma–Zisserman
algorithm indicate that the SVM strategy is more robust.

(2) We address the issue of generalisation across different sam-
ples of the same material. To do so, we constructed a new
database, designed to complement the CUReT database with
scale variations. This database, called KTH-TIPS (Textures
under varying Illumination Pose and Scale) is freely available
to other researchers via the web [10]. An extensive set of
experiments show that the generalisation across different
material samples is still an open problem, where neither fea-
ture-based nor learning-based approaches are able to obtain
satisfactory recognition performances.

The remainder of the paper is organised as follows. Section 2 re-
views previous literature in the field of material classification. Par-
ticular emphasis is placed on the algorithm of Varma and
Zisserman [5] on which we ourselves build to a large extent. Sec-
tion 3 discusses the application of Support Vector Machines to this
problem, and also presents experiments which demonstrate their
superior performance relative to the original approach of [5]. Then,
Section 4 discusses issues with scale, presents a pure learning ap-
proach for tackling the problem, and conducts experiments on the
CUReT database. Section 5 introduces the database designed to
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supplement the CUReT database for experiments with scale. It pre-
sents a series of experiments assessing the new corpus and study-
ing how SVM and the Varma–Zisserman algorithm behave when
trained and tested on different samples of the same material. Con-
clusions are drawn and potential avenues for future research out-
lined in Section 6.

2. Previous work on material classification

In this section we review existing literature on material classi-
fication. Relevant work on support vector machines for visual pat-
tern recognition will be reviewed in Section 3.

Using texture for recognising fairly broad classes is important
within remote sensing. The aim is to distinguish between water,
forest, crops and urban areas, or subclasses thereof. For instance,
Gabor filters were used in [11], and Ruiz et al. [12] performed a
comparative study of several texture features. Texture analysis
has also been used for medical diagnosis. For instance Ganster
et al. [13] used conventional images for classifying skin lesions.

The vast majority of work on texture recognition [14–16] has
dealt with planar image patches sampled, for instance, from the
Brodatz collection [17]. There training and test was typically per-
formed on non-overlapping patches taken from the same images.
During the last years researchers have started to address the prob-
lems associated with recognising materials in spite of varying pose
and illumination. Leung and Malik [3] modeled 3D materials in
terms of texton histograms. While the notion of textons is familiar
from the work of Julesz and Bergen [18], it was only recently de-
fined for greyscale images as a cluster center in a feature space
formed by the output of a filter bank. Then, given a vocabulary of
textons, the filter output of each pixel is assigned to its nearest tex-
ton, and a histogram of textons is formed over an extended image
patch. This procedure was described for 2D textures in [19] and for
3D textures in [3] by stacking geometrically registered images
from the training set on top of each other. Recognition is achieved
by gathering multiple images of the material from the same view-
points and illuminations and performing the geometric registra-
tion. Then, the texton histograms are computed. Classification is
achieved using a nearest-neighbour scheme based on the v2 dis-
tance between model and query histograms.

Cula and Dana [4] adapted the method of Leung and Malik to
form a faster, simpler and more accurate classifier. They realised
that the 3D registration was not necessary. Thus they described
a material by multiple histograms of 2D textons, where each
histogram is obtained from a single image in the training set.
This also implies that recognition is possible from a single query
image.
Fig. 3. Following [5] we use a filter bank consisting of edge and bar filters (first and se
Laplacian. Only the maximum response is stored for each orientation, yielding the eight
Varma and Zisserman [5] argued strongly for a rotationally
invariant filter bank. First, two images of the same material differ-
ing only by an image-plane rotation should be equivalent. Second,
removing the orientation information in the filter bank consider-
ably reduced the size of the feature vector. Third, it led to a more
compact texton vocabulary since it was no longer necessary for
one texton to be a rotated version of another. Rotational invariance
was achieved by storing only the maximum response over orienta-
tion of a given type of filter at a given scale. As Fig. 3 indicates, the
filter bank contains 38 filters (one Gaussian, one Laplacian, and
first and second Gaussian derivatives each at three scales and six
orientations), but only 8 responses are stored, yielding the so-
called MR8 (Maximum Response 8) descriptor. This reduced stor-
age requirements and also gave a huge speed-up since clustering
was performed in a space of much lower dimension. The use of this
descriptor reduced storage requirements and computation times. It
also led to an improvement in recognition rate. In their experi-
ments [5] they use 92 of the 205 images in the CUReT database,
removing samples at severely slanted poses. Splitting these 92
images of each material equally into 46 images for training and
46 images for the test set, they obtain an impressive classification
accuracy of up to 97.43% [9]. This is therefore the system that we
will be using as a reference in our own experiments.

Many different descriptors have been proposed for texture dis-
crimination. Filter banks are indeed very popular [14,3–5,20], and
comparative studies [14] have shown them to perform very well.
Furthermore, there is evidence that biological systems process vi-
sual stimuli using filters resembling those in Fig. 3. However,
non-filter descriptors have recently been regaining popularity
[9,21–23]. Varma and Zisserman [9] present state-of-the-art re-
sults on the CUReT database using a Markov Random Field (MRF)
model. Mäenpää and Pietikäinen [22] and Lazebnik et al. [23] are
noteworthy in that they tackle texture recognition in the presence
of scale variations. Määenpää and Pietikäinen [22] extend the Local
Binary Pattern approach [15] to multiple image resolutions and ob-
tain near-perfect results on a test set from the Outex database.
However, this database does not contain any variations in pose
or illumination, and the variation in scale is rather small (100 dpi
images in the training set and 120 dpi images in the test set).
Lazebnik et al. [23] considers simultaneous segmentation and clas-
sification of textures under varying scale. Interest points are de-
tected, normalised for scale [24], skew and orientation, and
intensity domain spin images computed as descriptors. Each inter-
est point is assigned to a texture class before a relaxation scheme is
used to smooth the response. It remains to be seen, however,
whether this scheme can handle large variations in illumination,
and the number of classes in their experiments is rather small.
cond Gaussian derivatives) at 3 scales and 6 orientations, and also a Gaussian and
-dimensional MR8 descriptor.
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Scale-invariant recognition using Gabor filters on Brodatz textures
was considered by Manthalkar et al. [25]. Broadhurst [6] proposed
a parametric approach for estimating the likelihood of homoge-
neously textured images. This paper reported the state-of-the-art
recognition rate on the CUReT database.

A thorough comparison of descriptors and classifiers was given
in [26] for both texture and object recognition. One contribution of
that paper was to demonstrate the suitability of local detectors
(scale, rotation, and affine invariant Harris and Laplace) and
descriptors (SIFT [27], spin images [28] and RIFT [29]) for these
tasks. It is interesting to note the very high performance of our
method in their evaluation. On the CUReT database (Fig. 15 in
[26]) our method was best by a significant margin, giving an error
rate roughly half of all other techniques, including those based on
local descriptors. With KTH-TIPS (Fig. 14 in [26]) our approach per-
formed only marginally poorer than the method of [26]. It is
important to note that the authors do not address the robustness
to scale issue. Also, the generalisation issue is not addresses, as
all the experiments are performed on separated databases [26]
and not also across, as we do.
3. Using support vector machines for material classification

Support Vector Machines are state-of-the-art large margin classi-
fiers. They have become increasingly popular for classification of vi-
sual patterns, during the last years. This section shows the
effectiveness of SVMs for material classification. We show with a set
of experiments (Section 3.3) that using SVMs leads to a gain in perfor-
mance compared to the method proposed by Varma and Zisserman
[5,9]. In a first series of experiments, we compared SVMs with the
RBF Gaussian kernel (a widely popular choice [30,31,16]) with the ori-
ginal VZ algorithm. We also compared SVMs with an extension of the
VZ method, obtained substituting several k-nearest neighbour algo-
rithms to the nearest neighbour which was proposed by the authors.
A key component for the performance of SVMs is the choice of the ker-
nel function. The kernel determines the Hilbert space where the clas-
sification is performed. Thus, it corresponds to the choice of a family of
similarity measures. There is awareness of the importance of the ker-
nel function for SVMs’ application to visual tasks. This has led to the
introduction of several new kernels, especially designed for specific
visual applications and/or visual features [32–34]. This gives users
the possibility to tailor the algorithm for a specific task. At the same
time, it might lead to wrong choices for the kernel function. This raises
the question of the robustness of SVMs with respect to this parameter.
Thus, the second contribution of this section is a series of experiments
where we evaluate how SVM’s performance is affected by the de-
signer’s choice of the kernel type (Section 3.4).

In the rest of the section we review existing literature on SVMs
for visual recognition (Section 3.1). We put a particular emphasis
on previous work on texture and material classification. We then
provide a brief review of the theory behind this type of algorithm
(Section 3.2). The experimental Sections 3.3 and 3.4 finally show
the improvements that can be achieved with SVMs.

3.1. Previous work on SVM-based visual recognition

Support Vector Machines and kernel methods are widely used
approaches for visual pattern classification, particularly for object
recognition and categorisation. Pontil and Verri [35] demonstrated
the robustness of SVMs to noise, bias in the registration and mod-
erate amounts of occlusion. Roobaert et al. [36] examined their
generalisation capabilities when trained on only a few views per
object. Barla et al. [32] proposed a new class of kernel inspired
by similarity measures successful in vision applications. Other
notable work includes [37,38,31]. Wallraven et al. [33] introduced
a kernel able to compute similarity measures with sets of features.
It averages over the similarities of the best matching feature, found
for each feature member within the other set. Grauman and Darrel
[34] proposed to map unordered feature sets to multi-resolution
histograms and computed a weighted histogram intersection in
this space. This idea was then extended to spatial pyramid match-
ing for recognition of natural scene categories [39].

Several authors explored the effectiveness of SVMs for texture
classification. Kim et al. [16] proposed a purely learning approach,
where the feature extraction step was incorporated within the
classifier’s architecture. This approach leads to learning features
from the training data. They are shown to correspond to several
conventional feature extraction methods, commonly used for fea-
ture classification. The authors apply binary SVMs to multi-texture
classification, and a neural network is used for the final decision
step from all the SVMs’ outputs. The approach was tested on the
Brodatz album and on the MIT Vision Texture images. This method
was then applied to text detection in images, combined with a con-
tinuously adaptive mean shift algorithm [40]. Li et al. [41] pro-
posed instead to use translation-invariant features generated
from the discrete wavelet frame transform. Classification is per-
formed through an SVM-based voting scheme. For a fixed kernel
type (RGB in this case), several values of the kernel parameters
are chosen, and the corresponding classifiers are trained. The final
decision is taken via a voting algorithm. The method is tested on
the Brodatz texture album and benchmarked against a Bayes clas-
sifier and a learning vector quantisation algorithm. Note that all
those SVM-based approaches have been used on planar textures.
A common limitation of SVM and kernel methods proposed so
far, is the heuristic in the choice of the kernel function, and in
the choice of the kernel parameters. The performance of the algo-
rithm depends heavily on these choices.

3.2. Support vector machines: a review

This section reviews the theory behind the SVM algorithm (we
refer the reader to [7,8] for a more detailed treatment). We start
from two-class, linear SVM (Section 3.2.1) and then generalise
the algorithm to the non-linear case (Section 3.2.2). Section 3.2.3
describes the kernel functions used in the paper, and finally Section
3.2.4 discusses the possible extensions of the two-class SVM to the
multi-class case.

3.2.1. Linear SVM
Consider the problem of separating a set of training data

ð~x1; y1Þ; ð~x2; y2Þ; . . . ; ð~xm; ymÞ, where ~xi 2 RN is a feature vector and
yi 2 f�1;þ1g its class label. Assume that the two classes can be
separated by a hyperplane ~w �~xþ b ¼ 0, and that we have no prior
knowledge about the data distribution. Then the optimal hyper-
plane (the one with the lowest bound on the expected generalisa-
tion error) is that which has maximum distance to the closest
points in the training set. The optimal values for ~w and b can be
found by solving the following constrained minimisation problem:

minimise
~w;b

1
2

~wk k2 subject to yi ~w �~xi þ bð ÞP 1 8i ¼ 1; . . . m:

ð1Þ

Introducing Lagrange multipliers ai ði ¼ 1; . . . ;mÞ results in a classi-
fication function

f ðxÞ ¼ sign
Xm

i¼1

aiyi~w �~xþ b

 !
; ð2Þ

where ai and b are found by Sequential Minimal Optimization (SMO,
[7,8]). Most of the ai take the value of zero. Those~xi with non-zero ai

are the ‘‘support vectors”. In cases where the two classes are non-sep-



The variability within experiments is due to slightly different texton vocabularies;
ages are selected at random when generating the dictionary with K-means

ustering. The difference of 0.23% between our results and the figure of 97.43%
ported in [9] is caused by our use of more truncated filter kernels (41 � 41
mpared to 49 � 49 [46]) although the scales used to compute the kernels were
entical. For a texton to be assigned to a pixel, the entire support region of the filter

ernel is required to lie inside the 200� 200 image patch. Thus the texton histograms
ntain more entries when a smaller filter kernel is used. It may be noted that the
RF algorithm of [9] computes descriptors from significantly smaller regions, for
stance 7 � 7.
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arable, an additional penalty term is introduced that results in La-
grange multipliers 0 6 ai 6 C; i ¼ 1; . . . ;m, where C determines the
trade-off between margin maximisation and training error
minimisation.

3.2.2. Non-linear SVM
To obtain a non-linear classifier, one maps the data from the input

space RN to a high dimensional feature space H by~x! Uð~xÞ 2H,
such that the mapped data points of the two classes are linearly sep-
arable in the feature space. Assuming there exists a kernel function K
such that Kð~x;~yÞ ¼ Uð~xÞ �Uð~yÞ, a non-linear SVM can be constructed
by replacing the inner product ~w �~x by the kernel function Kð~x;~yÞ in
Eq. (2). This corresponds to constructing an optimal separating
hyperplane in the feature space. The kernel Kð~x;~yÞ can be seen as a
non-linear generalisation of the Euclidean scalar product. Thus,
choosing a kernel type corresponds to the choice of a similarity func-
tion for the classifier. Note that the embedding given by the feature
mapping fx1; . . . ; xng ! fU1ð~xÞ; . . . UNð~xÞg is non-linear. Hence, in
general it defines a possibly contorted manifold, whose dimension
is at most that of the input space, where the mapped data lie. The
properties of this manifold are related to the properties of the simi-
larity measure induced by the kernel Kð~x;~yÞ. It is possible to study
them using tools of differential geometry (we refer the interested
reader to [42] for an exhaustive discussion on this topic).

3.2.3. Kernel functions
The impact of the choice of a kernel type on SVMs’ performance

has been clear since the introduction of the kernel trick for the
non-linearization of the algorithm. Between the kernel types which
were proposed at first, the Gaussian Radial Basis Function (RBF) kernel

K ~x;~yð Þ ¼ exp �c ~x�~yk k2
n o

; ð3Þ

and the polynomial kernel

K ~x;~yð Þ ¼ ~x �~yþ cð Þd; ð4Þ

have been widely used in computer vision. The polynomial kernel
has been used mostly for object recognition [35,36,32], while the
Gaussian RBF kernel has been used also for face detection [37],
tracking [31] and many other applications. This kernel can be con-
sidered as the most used for non-linear SVM. Since SVMs have
started to be used for visual recognition, several researchers have
proposed new kernel types and have studied their performances.
In [30], Chapelle et al. proposed two new types of exponential ker-
nels: the generalised Gaussian RBF kernel

K ~x;~yð Þ ¼ exp �ck~xa �~yakb
n o

; a 2 Rþ; 0 < b 6 2 ð5Þ

and the v2 kernel

K ~x;~yð Þ ¼ exp �cv2ð~x;~yÞ
� �

; v2 ¼
X

i

kxi � yik
2

kxi þ yik
: ð6Þ

This last kernel has been proved later to be a Mercer kernel [43].
More recently, Barla et al. [32] introduced the Intersection kernel

K ~x;~yð Þ ¼
X

i

minðxi; yiÞ ð7Þ

and showed its usefulness for object detection. All these kernels
have been proposed and tested for visual recognition tasks using
global features. Another lively direction of research for visual ker-
nels addresses the issue of how to use local features as input of
an SVM classifier [34,33]. The vast majority of methods proposed
in the literature for material classification use global features. For
this reason, in the rest of this paper we will consider only kernel
types suitable for global descriptors.
3.2.4. Multi-class SVM
As we are addressing multi-class classification problems, we

have to choose a multi-class strategy, that extends the SVM from
2-class to M-class problems. Theoretically sound ways of extending
large-margin classifiers to more than 2 classes in a practical man-
ner is still a topic of ongoing research. Thus, we are left with the
following two basic and widely used strategies: In a one-vs-others
approach, M SVMs are trained, each separating a single class from
all remaining classes. Although the most popular scheme for
extending to multi-class problems (see for instance [7,38,30]),
there is no bound on its generalisation error, and the training time
of the standard method scales linearly with M [7]. In the second
strategy, the pairwise approach, MðM � 1Þ=2 two-class machines
are trained. The pairwise classifiers are arranged in trees, where
each tree node represents an SVM. Decisions can be made using
a bottom-up tree similar to the elimination tree used in tennis
tournaments [7], or a Directed Acyclic Graph (DAG, [44]).

3.3. Results: SVM vs. VZ

Based on the analysis of the generalisation error for DAG of Platt
and others [44], we decided for a pairwise approach with DAG,
using the LibSVM library [45]. Their study indicates that DAGs in
a high dimensional feature space can yield good generalisation
performance in the context of large margin classification. The
SVM parameter C was fixed at 100 whereas the kernel parameters
were obtained during training by cross-validation. More specifi-
cally, we divided the training set in 5 random and disjoint train/
test splits. The training set contained 4/5 of the original training
set, the test set 1/5. c varied between ½10�3; . . . ;103�. Once the opti-
mal scale range was identified, we proceeded with a search on finer
scale. We considered as the best parameters those giving the best
average score on the 5 splits. These parameters were then used to
train the SVM on the whole training set. The obtained model was
used for classification. This is the strategy we adopted for all the
experiments reported in this paper. The histogram features that
were used in all our experiments were normalised to unit length.

We compared the SVM classifier with our own implementation
of the algorithm of Varma and Zisserman [5], which from now on
will be denoted the VZ algorithm. To ensure comparability we
use the same 200� 200 pixels grey scale image patches as they
do. The patches are selected such that only foreground is present.
For this comparison, we used the RBF kernel.

Although quantisation of feature domains by clustering has
found its way into many computer vision applications, maximum
performance is often attained for a large cluster number. Therefore
we decided to use a very large texton vocabulary in our first exper-
iment. In this way we can figure out the maximum performance
that can be achieved on the CUReT database by our approach. Forty
textons were found from each of the 61 materials, giving a total
dictionary of 40� 61 ¼ 2440 textons. The 92 images per sample
were split equally into training and test sets. Varma and Zisserman
[9] previously reported a 97.43% success rate, while our own
implementation of their algorithm gave an average of 97.66% with
a standard deviation of 0.11% over 10 runs.2 In contrast, the SVM
classifier gave 98.36 ± 0.10% using an RBF kernel and 98.46 ± 0.09%
2
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Fig. 4. Experiments using k-nearest neighbours for various k on the CUReT
database. A number of schemes were tested for resolving conflicts which arise
when two or more classes share the highest number of training patterns among the
k-nearest neighbours. None of the methods achieve better performance for k > 1 for
this database.
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using the v2-kernel K ¼ expf�cv2g. We implemented this Mercer
kernel [43] within LibSVM. This performs better even than the very
best result obtained in [9] using an MRF model (98.03%). Another
natural extension to the Varma and Zisserman algorithm is to re-
place the Nearest Neighbour classifier with a k-nearest neighbour
scheme. The basic idea is to find the class which has most training
patterns, out of the k-nearest neighbours to the query pattern. This
scheme reduces the influence of ‘‘uncharacteristic” training points
which are distant from all other members within that class. k is
typically chosen to be odd. In practice conflicts may arise when
two or more classes fxig share the maximum number of nearest
neighbours. Since it may not be convenient to report multiple solu-
tions, a decision may be forced via a number of techniques:

(1) Make a random choice amongst those classes fxig with
most nearest neighbours.

(2) Increment k until the conflict is resolved. In other words,
consider next the kþ 1 nearest neighbour problem. If that
too ends in a conflict, attempt the kþ 2 nearest neighbour
classifier, and so forth. We note that this method can poten-
tially yield a class xj R fxig if e.g. a large number of the next
nearest neighbours belong to xj.

(3) Decrement k until the conflict is resolved. In other words,
consider next the k� 1 nearest neighbour problem. If that
too ends in a conflict, attempt the k� 2 nearest neighbour
classifier, and so forth. Unlike Method # 2, this method is
guaranteed to output a class xj 2 fxig which was one of
the classes involved in the conflict.

(4) Similar to Method # 2 above, but now restrict the procedure
to only permit a solution xj 2 fxig by ignoring the kþ 1
nearest neighbour if its class xj0 R fxig.

(5) Model-1 NN rule from [47]: For each class xi involved in the
conflict, compute the average distance �di between the query
point and test patterns from that class among the k-nearest
neighbours. The class with lowest �di is selected.

(6) Model-2 NN rule from [47]: For all classes represented
among the k-nearest neighbours, compute the average dis-
tance �di between the query point and test patterns from that
class among the k-nearest neighbours. The class with lowest
�di is selected. This approach implies that the method is not
merely applied when a query generates a conflict, but for
each and every query.

As Fig. 4 shows, Method # 6 (Model-2 NN rule from [47])
proved best in our scenario, but no variant yielded an improved
recognition rate for any choice of k > 1. This is probably due to a
relatively sparse sampling of the pose and illumination conditions
in the training set.

In addition we examine the dependency on the size of the train-
ing set (Fig. 5a) and the texton vocabulary (Fig. 5b). Both plots
clearly demonstrate that the SVM classifier reduces the error rate
by 30–50% in comparison with the method of [5]. In both experi-
ments, textons were found from the 20 materials specified in [3]
rather than all 61 materials. In Fig. 5a, 10 textons per material
are used, giving a dictionary of 20� 10 ¼ 200 textons. In Fig. 5b,
the training set consists of 23 images per material, and the remain-
ing 69 images per material are placed in the test set.

We want to stress that training and test times are modest for
the proposed approach. For the SVM training, the computation
time varies from about 20 s (with a vocabulary of 100 textons, 12
views per material in the training set) up to roughly 50 min (for
2440 textons, 46 views per material). Finding c by cross-validation,
if required, typically incurs a further cost of 3–7 times the figures
reported above. Recognition time, for a single image, is always be-
low 0.5 s.
The size of the model is another factor that determines the
applicability of the approach. This is shown in Fig. 5c. SVM reduces
the size of the model by 10–20%, and storing the coefficients ai

causes a little overhead. This is significantly less than the reduction
by almost 80% obtained using the greedy algorithms described in
[5,9]. However, the scheme in [5] used the test set for validating
the model, which is unreasonable in a recognition task. Meanwhile
the method in [9] was extremely expensive in training, in fact by a
few orders of magnitude [46] in comparison with the more expen-
sive times listed for SVM above. Moreover, their procedure for
selecting a validation set from the training set is largely heuristic
and at a high risk of over-fitting, in which case the performance
on the test set would drop very significantly [46].

3.4. Results: SVM with different kernels

A key ingredient for the success of SVM is the kernel function,
that determines the space where data are mapped and classified.
As the kernel type is chosen by the user, it represents an element
of heuristic in our approach. In order to test the robustness of
SVM for material classification with respect to the kernel function,
we ran an extensive set of experiments benchmarking 6 different
kernel types: linear, polynomial, intersection, Gaussian, general-
ised Gaussian and v2. Experiments were performed with 12, 23
and 46 images per material in the training set, and the remaining
images in the test set as described previously (Fig. 5(a)). We used
a texton vocabulary of 200 textons, and we repeated each run for
10 different partitions of training and test set, generated randomly.
Fig. 6 shows the obtained results, averaged and with standard devi-
ation. Considering only the averaged results, we see that the v2

kernel obtains the best performance. These results are in agree-
ment with those reported in [26]. Note that in that work the
authors compared only two kernel types. The overlaps between
the standard deviation bars show that there is not a very signifi-
cant difference between classification results obtained using differ-
ent kernels. Thus, we can conclude that SVM’s performance is
robust to the choice of the kernel function for this application.
Motivated by this result, in the rest of the paper we will use the
v2 kernel.
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Fig. 5. Experiments comparing our SVM scheme with the VZ [5] approach. (a) Plots the reliance on the number of views in the training set, (b) the dependency on the size of
the texton vocabulary, and (c) the size of the stored model. In (c) the model reduction schemes of [5,9] were not implemented.
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Fig. 6. Classification results using different kernel functions, for 12, 23 and 46 training samples per material. Experiments were repeated for 10 different partitions of the
training and test set; we report here the average results with standard deviation. Fig. 5(a) shows results for the linear and intersection kernels; Fig. 5(b) shows results for the
Gaussian and the v2 kernels; Fig. 5(c) shows results for the generalised Gaussian and the polynomial kernels. All results are statistically equivalent, showing the robustness of
our approach.
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4. Material classification under variations in scale

Up to this point, we assumed a constant scale in our experi-
ments on the CUReT database.3 However, for realistic applications
this assumption is clearly violated. Scale plays an important role
that has to be taken into account. Reviewing the approaches de-
scribed so far, it seems unlikely that they will perform well in this
extended setting. First, the individual filters are tuned to certain
frequencies. Zooming in or out on a texture changes the character-
istic frequencies of its visual appearance. Second, zooming in on a
texture can make visible fine-level details, which could not be re-
corded at coarser scales due to the finite resolution of the imaging
device. Examples are given in Fig. 7. With cotton, for instance, at a
coarse scale a vertical line structure is just about visible, whereas
at a fine scale the woven grid can be seen clearly, including hori-
zontal fibers.

4.1. A motivational experiment

In order to support our claim, we investigate the scale-depen-
dence of the texton-histogram based schemes experimentally.
Our approach is to supplement the CUReT database with artificially
scaled versions of its samples. Rather than rescaling the images,
3 Four samples are zoomed in images of other materials. In the experiments
reported in this paper, classifying one material as the zoomed in version of that same
material is labeled an incorrect match. In practice such confusions are fairly common
for those four materials, but this does not have a very large effect on classification
rates when averaged over all materials.
which raises various issues with respect to smoothing and aliasing,
the filters were rescaled. For instance, reducing the size of the im-
age (zooming out) by a factor of two is equivalent to doubling the
standard deviations in the filters. We compute such altered sam-
ples at eight logarithmically spaced scales for each octave. As we
investigate scale variations of two octaves (one octave below and
one octave above) we end up with the following scales:
2�1;2�0:875;2�0:75; . . . ;20:75;20:875;21. This results in 2� 8 ¼ 16
scaled images in addition to the unscaled original, giving a total
of 17 images. Only the unscaled images are placed in the training
set, whereas recognition is attempted at all 17 scales.4 The 92
images per sample are split evenly into training and test sets,
and a texton vocabulary of 400 textons was used. For SVMs, the
kernel parameter c is determined via cross-validation, as described
in Section 3.3.

Fig. 7 illustrates this dependency on scale for two materials.
Sandpaper (Fig. 7a), shows almost no robustness to changes in
scale, whereas sponge (Fig. 7b) is much more resilient. These ef-
fects can be attributed to two main factors. The first concerns in-
tra-class properties: materials with a highly regular pattern have
a clear characteristic scale, whereas others, such as sponge, exhibit
similar features over a range of scales. The feature vector for the
former material could be severely mutated, whereas we expect
the descriptor of the latter to be more robust to changes in scale.
4 We acknowledge that this method is no true replacement for real images since (i)
is not possible to increase the resolution while artificially zooming in, and (ii) the
formation content is reduced somewhat when artificially zooming out since the size

f the 200� 200 pixels patch is effectively reduced.
it
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Fig. 7. Variations in scale can have a disastrous effect. In this experiment the training set contains images only at the default scale whereas the test set contains images
rescaled by amounts up to a factor of two both up and down. For sandpaper (a) the recognition rate drops dramatically, whereas for sponge (b) they are more stable, probably
since the salient features are repeated over a wide range of scales. Results averaged over the entire CUReT database are shown in (c).

Table 1
The recognition rate (in %) on the artificially rescaled CUReT database as the richness
of the model is varied both with respect to the sampling density in the scale direction
and in how many of the original 92 images are incorporated in the training set (per
scale). With 3 scales present, the training set includes the original image and also
samples at scales one octave up and one octave down. With five scales, half-octave
positions are made available during training, and with 9 scales, quarter-octave
positions are also used.

Number of scales SVM (%) VZ (%)

46 23 12 46 23 12

9 98.00 94.96 92.12 92.14 89.23 83.65
5 96.37 92.94 90.15 81.19 77.91 71.95
3 83.05 78.82 77.32 58.00 55.69 51.57
1 37.96 36.32 34.18 34.47 33.16 30.90

B. Caputo et al. / Image and Vision Computing 28 (2010) 150–163 157
The second factor depends on the inter-class variation in the data-
base: the recognition rate depends on the degree of distraction
caused by other materials. It is feasible that a material imaged at
a certain scale closely resembles another material at the default
scale. Fig. 7c shows corresponding plots for an average over all
61 materials in the CUReT database.

4.2. Robustness to scale variations: a pure learning approach

As demonstrated by the previous experiment, robustness to
changes in image scale can be crucial for material recognition in
the real world. An option to cope with this challenge is to take a
machine learning perspective. We can incorporate the additional
variation into the training set in order to make it more representa-
tive. Thus the training set is extended to cover not just variations in
pose and illumination conditions, but also scale. An alternative, left
unexplored here, would be to include only images at one scale dur-
ing training, but then artificially rescale the query image to a num-
ber of candidate scales by rescaling the filter bank.

An open question is how densely it is necessary to sample in the
scale direction, particularly since the size of the training set has
obvious implications for algorithm speed and memory require-
ments. Clearly there will be some dependence on the bandwidth
of the filters, but the amount of inter-class variation will also be
of consequence.

This dependence on sampling in the scale dimension was ascer-
tained empirically on the rescaled CUReT database. Our findings
are summarised in Table 1a and b for the SVM and VZ classifiers,
with a vocabulary of 400 textons. We see that impoverishing the
model in the scale dimension has a more severe effect than reduc-
ing the size of the training set, with respect to the proportion of the
original 92 images. Both SVM and the VZ schemes exhibit such
behaviour. A further point worth emphasising is that SVM system-
atically outperforms the VZ classifier, as was also seen in Section 3.
Again, we attempted replacing the Nearest Neighbour classifier in
the Varma and Zisserman approach with k-nearest neighbour
schemes, but without observing any improvement for k > 1.

5. The KTH-TIPS database of materials under varying scale

Results presented in the previous section give some indication
on how performance is affected by changes in scale. Still, the arti-
ficial rescaling cannot be a perfect replacement for real images. In
order to address this issue, we created a new database, supple-
menting the CUReT, that provides variations in scale in addition
to pose and illumination. A second objective with the database is
to evaluate whether models trained on the CUReT database can
be used to recognise materials from pictures taken in other set-
tings. This could indeed prove challenging since not only the cam-
era, poses and illuminant differ, but also the actual samples: can
another sponge be recognised using the CUReT sponge?

In the rest of the section we introduce the database (Section
5.1), and we describe a series of experiments assessing the new
database, and testing the out-of-database generalisation capabili-
ties of SVMs and the VZ method (Section 5.2).

5.1. The KTH-TIPS database

The KTH-TIPS (Textures under varying Illumination Pose and
Scale) database contains 10 materials also present in the CUReT
database. The objectives with this database are to supplement
the CUReT image database in two directions, both of which concern
extending material classification algorithms to function in real-
world conditions. Thus, the aim of the KTH-TIPS are:

� To provide variations in scale as well as variations in pose and
illumination. This allows a systematic study of how important
unknown viewing distance is to material classification. It also
provides data for evaluating algorithms intended to be robust
to such variations.

� To provide images of other samples of a subset of the CUReT
materials, taken under different settings. We wanted to see
whether it would be possible to actually classify materials in
the real-world, as opposed to recognising exemplars of materials
within a single database.

While the CUReT database images 61 materials, the KTH-TIPS
database contains images of 10 of those materials: sandpaper
(material 06), crumpled aluminium foil (material 15), styrofoam
(material 20), sponge (material 21), corduroy (material 42), linen
(material 44), cotton (material 46), brown bread (material 48), or-
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ange peel (material 55) and cracker B (material 60). Exemplar
views for each material are shown in Fig. 8. Each of the samples
is planar. The orange peel was flattened by placing it inside a CD
case. The images were taken with an Olympus C-3030ZOOM digital
camera at a resolution of 1280� 960 pixels. We used a single light
source (a standard desk lamp with a 60W tungsten light bulb).

Materials were imaged at nine different scales spanning two oc-
taves, as illustrated in Fig. 10 for the cracker. The central scale was
selected, by visual inspection, to correspond roughly to the scale
used in the CUReT database.

At each distance nine images were captured using a combina-
tion of three poses (frontal, 22.5� turned left, 22.5� turned right)
and three illumination conditions (front, side at roughly 45� and
top at roughly 45�), giving a total of 3� 3 ¼ 9 images per scale,
and 9� 9 ¼ 81 images per material. The 9 images for a fixed scale
are shown in Fig. 9 for the cracker. For each image we selected a
Fig. 8. Exemplar images of the materials within the KTH-TIPS database. From left to right
bottom row: linen, cotton, brown bread, orange peel, cracker B.

Fig. 9. The variations in pose and illumination contained in the new KTH-TIPS (Textur
cropped so only foreground was present.
200� 200 pixels region to remove the background. The database
is freely available on the web [10].

5.2. Experiments on the new database

We now present three sets of experiments on the KTH-TIPS
database, differing in how the model was obtained. For all three
sets, we used both the SVM and VZ algorithms. The goal of the first
set of experiments was to assess the new database. Thus, we used
the KTH-TIPS for training and test. We performed experiments so
to study how performance varies when the model is built on views
taken at an increasing number of scales. These experiments are re-
ported in Section 5.2.1. In the second set of experiments we com-
bined together the CUReT and KTH-TIPS databases, both for
training and test. We varied the number of materials in the training
model. We analysed how well the two recognition algorithms per-
, top row: sandpaper, aluminium foil, styrofoam, sponge, corduroy. From left to right,

es under varying Illumination Pose and Scale) database. Prior to use, images were



Table 2
Recognition results for the KTH-TIPS database. Experiments were conducted using for
training (a) the central scale and 3 views per material (1 scale); (b) 3 equally spaced
scales and 3 views per scale per material (3 scales); (c) 5 equally spaced scales and 3
views per scale per material (5 scales). The test set consisted of all the views of the
remaining scales.

Material One scale Three scales Five scales

SVM (%) VZ (%) SVM (%) VZ (%) SVM (%) VZ (%)

Sandpaper 75.00 73.61 74.07 68.52 83.33 77.78
Aluminium foil 88.89 88.89 96.29 94.44 100 100
Styrofoam 79.17 77.78 96.29 94.44 100 94.44
Sponge 77.78 77.78 92.59 92.59 100 94.44
Corduroy 61.11 54.16 74.07 70.37 86.11 83.33
Linen 41.67 33.33 70.37 61.11 91.67 88.89
Cotton 34.72 31.94 55.56 48.15 77.78 66.67
Brown bread 54.17 54.17 74.07 64.81 91.67 88.89
Orange peel 41.67 36.11 57.40 42.59 80.55 69.44
Cracker B 79.17 76.39 92.59 88.89 94.44 91.67

Average 63.33 60.42 78.33 72.59 90.56 85.56
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form, when they are asked to generalise over different instances of
the same materials, acquired under similar, but not identical con-
ditions. We describe these results in Section 5.2.2. In the third
and last set of experiments we instead kept the two databases sep-
arated, and we used them alternatively for training and test. With
these experiments we explored the capability to recognise materi-
als across databases, where material instances differ from training
to test. These results are reported in Section 5.2.3.

5.2.1. First set of experiments: assessing the KTH-TIPS database
We performed a first set of experiments on the KTH-TIPS data-

base, varying the number of images per material in the training set
and comparing the SVM and VZ approach. Specifically, we chose
three different experimental settings:

� Training on 1 scale: The training set consisted of 3 views per
material, imaged at different poses, taken at the central scale
(Fig. 10, diagonal images). The test set consisted of all views,
with different poses and illumination, taken at the remaining
scales.

� Training on 3 scales: The training set was built similarly to what
described for the 1 scale experiments, but using instead 3
equally spaced scales. Thus, the test set consisted of all views
taken at the 6 remaining scales.

� Training on 5 scales: The training set for these experiments was
built as described above but using 5 equally spaced scales. Con-
sequently, the test set contained all the views from the remain-
ing 4 scales.

We used MR8 features, as for all the previous experiments.
Forty textons were found from all the 10 materials, giving a total
dictionary of 40� 10 ¼ 400 textons. Table 2 shows the overall rec-
ognition rates obtained for these experiments, for both methods, as
well as the classification results obtained for each material. In all
experiments, SVM achieves a better performance than VZ. We
see quite predictably that, for both approaches, performance in-
Fig. 10. The variations in scale contained in the new KTH-TIPS (T
creases as the number of scales in the training set grows. This is
in agreement with what observed on the artificially scaled CUReT
database (Section 4, Table 1) and confirms the effectiveness of
the purely learning approach for robustness to scale changes. The
easiest materials to classify are aluminium foil and styrofoam.
The most difficult are cotton, linen and orange peel.

5.2.2. Second set of experiments: generalisation within databases
In the second set of experiments we combined together the

CUReT and KTH-TIPS databases for training and test. Training
was done using 5 equidistant scales in the log-scale dimension,
spanning two octaves. For KTH-TIPS materials, at each of these 5
scales, 3 out of 9 images in the KTH-TIPS database were used for
training. To preserve the overall size of the training set relative
to previous experiments, 43 images from the CUReT database were
also inserted in the training set, giving a total of 46 images per
extures under varying Illumination Pose and Scale) database.
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scale. As the number of materials differ for the two databases (61
and 10, respectively), we performed two experiments:

� CUReT10 + KTH-TIPS: In this experiment we used for training the
10 materials imaged in the KTH-TIPS, with samples coming from
both databases. Training was also performed on samples of
those 10 materials from the CUReT and KTH-TIPS databases.

� CUReT61 + KTH-TIPS: In this experiment we used for training the
same set described above, plus the remaining 51 materials of the
CUReT that act as distractors for the classification task. For those
additional 51 materials, we used 46 training images per scale.

The texton vocabulary for the MR8 representation here was
built as follows: we found 20 textons from 20 of the 61 materials,
chosen randomly. Note that the 20 materials could in principle
contain views from both the KTH-TIPS and the CUReT database.
We thus obtained a texton dictionary of 20� 20 ¼ 400 textons. Re-
sults for these experiments using both classification algorithms are
summarised in Table 3. A first comment is that generalising within
two different databases proved harder than recognising different
views of the same materials. By comparing the results reported
in Table 3 with those in Table 1, we see that both recognition
methods performed better on the CUReT only experiment. This is
probably due to two main factors: (i) the different scale and illumi-
nation conditions at which the two databases were acquired, and
(ii) the fact that the images for each material were of two different
physical samples. A second comment is that the presence of dis-
tractors in the trained model affected the recognition perfor-
mances for both approaches, leading to a decrease in
performance of 10% and more for both algorithms. A possible inter-
pretation is that, as the generalisation task became harder due to
different material instances for 10 classes, the between-material
vs. within-material recognition task became more difficult to solve.
The similarity between images from the same materials decreased
in some cases, while at the same time it increased the similarity
between images from different materials. This made the general-
isation task harder for both methods. As a last remark, we notice
once again that SVM performs better than VZ for both experiments.

5.2.3. Third set of experiments: generalisation across databases
The third and last set of experiments attempted to recognise the

material instances imaged in one database using a model trained
on the material instances of the other one. This is a challenging
task, requiring high generalisation capabilities. A successful out-
come for one or both of the recognition methods under examina-
tion would be a strong indicator of the applicability of the
Table 3
Recognition results for the second set of experiments. The left column shows results
obtained using both databases for training and test, on 10 material classes. The right
column shows results obtained using also the remaining 51 materials of the CUReT
database as distractors in the training model.

Material CUReT10 + TIPS CUReT61 + TIPS

SVM (%) VZ (%) SVM (%) VZ (%)

Sandpaper 91.69 77.78 77.78 66.67
Aluminium foil 100 91.69 91.67 88.89
Styrofoam 100 92.59 100 91.67
Sponge 100 100 100 100
Corduroy 91.69 83.33 80.56 80.56
Linen 80.56 48.15 61.11 41.67
Cotton 77.78 61.11 61.11 47.22
Brown bread 91.69 91.69 77.78 80.56
Orange peel 100 66.67 100 63.89
Cracker B 98.91 83.33 91.67 80.56

Average 93.23 84.44 84.17 74.17
approach in the real world. Specifically, we performed three
experiments:

� CUReT61 ? TIPS: In this experiment we trained on all the 61
materials of the CUReT database and we tested on KTH-TIPS.
Forty-six out of 92 images per material were placed in the train-
ing set. To cope with variations in scale, we used the procedure
described in Section 4.2. The model was acquired at multiple
scales by adapting the Gaussian derivative filters. For this exper-
iment the training set contained data from 9 scales, equidis-
tantly spaced along the log-scale dimension over two octaves.
Test was performed on all the images from the KTH-TIPS data-
base. We used as features MR8 with a texton vocabulary of
400 textons, obtained by computing 20 textons from 20 materi-
als chosen randomly from the original 61.

� CUReT10 ? TIPS: In this experiment we trained on the 10 mate-
rials of the CUReT database corresponding to the 10 materials
imaged in the KTH-TIPS. In this way the trained model does
not contain distractor materials. Training images per material
were chosen as described in the experiment above. Test was also
performed on the whole KTH-TIPS database. Features for these
experiments were MR8, with 40 textons found from the 10 sel-
eced materials. This gave a texton dictionary of 400 textons.

� TIPS ? CUReT: In this experiment we trained on all the KTH-TIPS
data and we tested on all the images of the corresponding 10
materials in the CUReT database. In this experiment, we did
not use artificially scaled images for testing. The MR8 features
consisted of a texton vocabulary of 400 textons, computed from
the 10 KTH-TIPS material (40 textons per material).

The recognition rates for all experiments and for all 10 materi-
als are provided in Table 4. While results are, on the whole, well
above chance (i.e. 10%), the best results are scarcely above 50%
(TIPS ? CUReT experiment, both for the SVMs and VZ classifiers),
while in the worst case are just above 20% (CUReT61 ? TIPS exper-
iments, 20.5% recognition rate for SVM and 23.83% recognition rate
for VZ). Performance is heavily affected by the presence of distract-
ing materials (Table 4, right), showing that the generalisation task
is indeed very hard. These results clearly demonstrate that mate-
rial recognition cannot be performed reliably in the real world
merely using only one sample instance to form the model.

Tables 5 and 6 show the confusion matrices for the TIPS ? CUR-
eT and for the CUReT10 ? TIPS experiments, for the SVM algo-
rithm.5 For space reasons we indicated the materials using their
CUReT label. We see that linen and cotton (M44 and M46, respec-
tively) are frequently confused in both experiments, a reasonable
behaviour. We note also that aluminium foil (M15) is overall the
easiest material to recognise. Apart from those two common
trends, recognition performance and confusions between materials
tend to vary between the two sets of experiments. For instance, or-
ange peel (M55) acts as a strong distractor for cracker B (M60) in
the TIPS ? CUReT experiment (Table 5). This does not happen for
the CUReT ? TIPS experiment (Table 6), where instead orange peel
is a strong distractor for brown bread (M48). The reasons for these
different behaviours might be several. To begin with, despite our
efforts, the sample chosen for the materials and the different imag-
ing conditions might have been too different from those used in
the CUReT database, thus the generalisation task has proved too
hard. Second, the artificial scaling of the CUReT10 training data
might be responsible for the asymmetric results of the two sets
of experiments. To investigate this point further, we report in
Fig. 11 results obtained for the CUReT61 ? TIPS experiment, at
5 Recognition performance and confusion between materials tend to be similar for
e two classifiers, hence we reported here only the confusion matrices for SVMs.
th



Table 4
Recognition results for the third set of experiments. The left column shows results
obtained by training on the KTH-TIPS database and testing on the corresponding 10
materials in the CUReT; the middle column shows results obtained training on 10
materials from the CUReT database, artificially scaled, and testing on the KTH-TIPS
database. The right column reports results obtained training on all the CUReT
database, with images artificially scaled, and testing on the KTH-TIPS.

Material TIPS ? CUReT CUReT10 ? TIPS CUReT61 ? TIPS

SVM (%) VZ (%) SVM (%) VZ (%) SVM (%) VZ (%)

Sandpaper 43.48 44.56 32.09 33.33 0.00 1.23
Aluminium foil 100 100 74.07 76.54 11.35 12.35
Styrofoam 59.78 59.78 61.72 64.19 34.72 38.27
Sponge 63.04 65.22 67.90 71.60 50.62 54.32
Corduroy 83.69 84.78 65.43 65.43 46.91 59.26
Linen 27.17 28.26 37.04 41.97 30.41 25.93
Cotton 44.56 45.65 23.46 23.46 11.11 20.99
Brown bread 0 2.17 37.04 39.51 5.11 7.41
Orange peel 8.69 9.78 30.86 33.33 11.11 11.11
Cracker B 98.91 97.83 43.21 45.68 3.70 7.41

Average 52.93 53.80 47.28 49.51 20.50 23.83

Table 5
Confusion matrix for the TIPS ? CUReT experiment, SVM classifier. The materials are
sandpaper (M06), aluminium foil (M15), styrofoam (M20), sponge (M21), corduroy
(M42), linen (M44), cotton (M46), brown bread (M48), orange peel (M55) and cracker
B (M60).

M06 M15 M20 M21 M42 M44 M46 M48 M55 M60

M06 40 0 0 0 0 50 2 0 0 0
M15 0 92 0 0 0 0 0 0 0 0
M20 30 0 55 0 0 6 1 0 0 0
M21 15 12 0 58 0 0 0 6 0 1
M42 0 0 0 1 77 3 11 0 0 0
M44 35 0 8 0 0 25 24 0 0 0
M46 45 0 5 0 1 0 41 0 0 0
M48 32 50 1 0 1 0 0 0 0 8
M55 0 1 0 0 1 0 0 1 8 81
M60 0 1 0 0 0 0 0 0 0 91

Table 6
Confusion matrix for the CUReT10 ? TIPS experiment, SVM classifier. The materials
are sandpaper (M06), aluminium foil (M15), styrofoam (M20), sponge (M21),
corduroy (M42), linen (M44), cotton (M46), brown bread (M48), orange peel (M55)
and cracker B (M60).

M06 M15 M20 M21 M42 M44 M46 M48 M55 M60

M06 26 3 0 0 0 19 18 14 1 0
M15 2 60 0 3 0 0 0 10 6 0
M20 1 0 50 0 0 11 10 4 4 1
M21 4 1 1 55 1 0 0 13 5 1
M42 0 2 0 3 53 1 4 10 8 0
M44 25 3 3 3 0 30 10 5 2 0
M46 3 3 0 4 23 23 19 2 1 3
M48 1 5 0 30 0 0 2 30 12 1
M55 1 14 0 13 0 2 2 20 25 4
M60 0 2 0 25 0 0 0 6 13 35
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every scale, for the materials sandpaper (Fig. 11a), sponge
(Fig. 11b) and corduroy (Fig. 11c). We see that performance on
sandpaper is very poor. This could be due to differences between
our sample of sandpaper and the CUReT sample of sandpaper, de-
spite our efforts to provide similar samples. It must be stressed
anyway that sandpaper was a very difficult material to recognise
also in experiments using the CUReT database as the test set.

Results are much better for sponge and corduroy, where we
achieve recognition results of around 50%. Interestingly, the VZ
classifier outperformed SVM in these experiments. The success rate
of the VZ approach varies considerably with scale, which might
indicate that there is not perfect overlap between the two octaves
in scale in the two datasets. Another explanation for a drop-off in
performance at fine scales is that the rescaling of the CUReT data-
base cannot improve the resolution. Rescaling the filters does not
permit sub-pixel structure to appear. A third reason is that the
images closest to the camera were poorly focused in some cases.
The SVM classifier provided much more consistent results over
varying scales, as could perhaps be expected from the experiment
reported in Table 1. However, the recognition rate was consistently
fairly low over all scales. By supplying a test set too different to the
samples provided during training, we are asking the SVM to per-
form a task for which it was not optimized.
6. Discussion and conclusions

The goal of this paper was to bring material classification a step
closer to realistic scenarios. To achieve this, we addressed two
important but often neglected issues: robustness to scale varia-
tions, and the capability to generalise across different instances
of the same materials. We showed experimentally that scale plays
a crucial role in material classification, and must thus be modeled
in some way. We proposed a scale-robust classifier that incorpo-
rates scale changes directly into the training set, similar to how
varying pose and illumination are usually tackled. We conducted
experiments on an artificially rescaled version of the CUReT data-
base, and on a new database designed to supplement the CUReT
database by imaging a subset (currently 10 out of 61) of the mate-
rials at a range of distances, while still maintaining some variation
in pose and illumination. This database represents the second con-
tribution of this paper, and is available to other researchers via the
web [10].

However, a more sobering conclusion, and the most important
message from this paper, is that such success on the CUReT data-
base does not necessarily imply that it is possible to recognise
those materials in the real world, even modeling scale. Indeed,
experiments performed training on one database and testing on
another clearly showed that the generalisation capability of both
the VZ approach and our SVM approach is not sufficient to achieve
reasonable performance, and thus work in real-world conditions.

This problem might be attacked in many ways. A straightfor-
ward solution could be to include multiple samples of the same
material in a database, but with increased intra-class variability,
the risk of inter-class confusion might increase too. This will prob-
ably call for sophisticated machine learning techniques, and for
class-specific feature selection. Furthermore, the risk of inter-class
confusion depends on the number of classes in the database. Thus,
keeping this number low (e.g. in production line applications)
should make it feasible to separate the classes, but with a large
number it might only be possible to classify into broader groups
of materials, that can then be arranged in hierarchical structures.
The performance will again depend on scale since most materials
appear more homogeneous with increased imaging distance.

While the pure-learning approach to scale variation proved
effective for recognising views of the same material instance, im-
aged under different conditions, this solution might become com-
putationally unfeasible when several material classes, and several
samples per material, are considered. A possible solution might
be to select scale as a preprocessing step; interesting work in that
direction has been proposed in [24]. Although it might still be nec-
essary to store models at multiple characteristic scales, this num-
ber should still be smaller than with the pure-learning approach.
This would reduce storage requirements, and also the recognition
time.
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Fig. 11. Experiments attempting to recognise images from the new KTH-TIPS database using a model trained on all 61 materials of the CUReT database. The recognition rate is
plotted against scale for three materials.
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