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Abstract— Reinforcement learning provides a powerful and
flexible framework for automated acquisition of robotic motion
skills. However, applying reinforcement learning requires a
sufficiently detailed representation of the state, including the
configuration of task-relevant objects. We present an approach
that automates state-space construction by learning a state
representation directly from camera images. Our method uses
a deep spatial autoencoder to acquire a set of feature points
that describe the environment for the current task, such as
the positions of objects, and then learns a motion skill with
these feature points using an efficient reinforcement learning
method based on local linear models. The resulting controller
reacts continuously to the learned feature points, allowing the
robot to dynamically manipulate objects in the world with
closed-loop control. We demonstrate our method with a PR2
robot on tasks that include pushing a free-standing toy block,
picking up a bag of rice using a spatula, and hanging a loop
of rope on a hook at various positions. In each task, our
method automatically learns to track task-relevant objects and
manipulate their configuration with the robot’s arm.

I. INTRODUCTION

One of the fundamental challenges in applying reinforce-
ment learning to robotic manipulation tasks is the need to
define a suitable state space representation. Typically, this is
handled manually, by enumerating the objects in the scene,
designing perception algorithms to detect them, and feeding
high-level information about each object to the algorithm.
However, this highly manual process makes it difficult to
apply the same reinforcement learning algorithm to a wide
range of manipulation tasks in complex, unstructured envi-
ronments. What if a robot could automatically identify the
visual features that might be relevant for a particular task, and
then learn a controller that accounts for those features? This
would amount to automatically acquiring a vision system that
is suitable for the current task, and would allow a range of
object interaction skills to be learned with minimal human
supervision. The robot would only need to see a glimpse of
what task completion looks like, and could then figure out
on its own how to change the scene into that configuration.

Directly learning a state space representation from raw
sensory signals, such as images from a camera, is an active
area of research [1], [2], and while considerable progress has
been made in recent years [3], [4], applications to real robotic
systems remain exceedingly difficult. The difficulties stem
from two challenges. First, learning a good representation
with unsupervised learning methods, such as deep learning,
often requires a very large amount of data [5]. Second,
arbitrary learned visual representations do not always lend
themselves well to control. We address these challenges by
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Fig. 1: PR2 learning to scoop a bag of rice into a bowl with a
spatula (left) using a learned visual state representation (right).

using a spatial autoencoder architecture to learn a state rep-
resentation that consists of feature points. Intuitively, these
feature points encode the configurations of objects in the
scene, and the spatial autoencoder that we describe provides
for data-efficient learning by minimizing the number of non-
convolutional parameters in the encoder network. Since our
learned feature points correspond to object coordinates, this
architecture also addresses the second challenge, since real-
valued quantities such as positions are more amenable to
control than the types of discrete or sparse features that are
more commonly learned with deep learning methods [6].

In fact, our experiments show that our learned feature
point representation can be used effectively in combination
with an efficient trajectory-centric reinforcement learning
algorithm. This method iteratively fits time-varying linear
models to the states visited at the previous iteration [7],
estimating how the robot’s actions (which correspond to
joint torques) affect the state. When the state includes visual
feature points, this method can learn how the robot’s actions
affect the objects in the world, and the trained controllers can
perform closed-loop control on the configuration of these
objects, allowing the robot to move and manipulate them.
Furthermore, this reinforcement learning algorithm can easily
be combined with guided policy search to learn complex,
nonlinear policies that generalize effectively to various initial
states [8], which we demonstrate by training a nonlinear
neural network policy on top of our learned representation.

Our main contribution is a method for learning vision-
based manipulation skills by combining unsupervised
learning using deep spatial autoencoders with simple,
sample-efficient trajectory-centric reinforcement learning.
We demonstrate that this approach can be used to learn
a variety of manipulation skills that require “hand-eye”
coordination, including pushing a free-standing toy block,
scooping objects into a bowl, using a spatula to lift a bag of
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rice from the table (shown in Figure 1), and hanging a loop
of rope on hooks at various positions. Each of these tasks are
learned using the same algorithm, with no prior knowledge
about the objects in the scene, and using only the onboard
sensors of the PR2 robot, which consist of joint encoders and
an RGB camera. We also compare our approach to a number
of baselines that are representative of previously proposed
visual state space learning methods.

II. RELATED WORK

Reinforcement learning and policy search methods have
been applied to perform a variety of robotic tasks, such
as table tennis [9], object manipulation [10], [11], and
locomotion [12], [13], [14], [15]. One key challenge to
using RL successfully is handling high-dimensional sensory
observations needed to perform sensorimotor control. A stan-
dard approach is to hand-design low-dimensional features
from the observations; however, this requires manual task-
specific engineering, which undermines the goal of using
an automatic learning-based approach. Other approaches
instead use function approximation to replace the value
function in standard RL algorithms like TD-learning [16]
and approximate Q-learning [17]. These approaches typically
require large amounts of time and data to learn the parameter
space. In this work, we use the approach of first learning a
low-dimensional state representation from observations via
unsupervised learning, and then use a data-efficient RL al-
gorithm with the learned state representation to learn robotic
manipulation tasks involving perception.

Prior work has proposed to learn representations using
general priors from the physical world [2] or the ability to
predict future observations [18], [19], [20]. Representation
learning has been applied to control from high-dimensional
visual input in several recent works. Lange et al. [1] use
autoencoders to acquire a state space for Q-learning and eval-
uate on simple real-world problems with 2 to 3 dimensions.
Several methods also train autoencoders that can predict the
next image, effectively learning dynamics [3], [21], though
such methods have only been demonstrated on toy problems
with synthetic images. The quantity of data required to apply
deep learning methods to real-world images is known to far
exceed that of toy tasks [5], and prior methods generally
avoid this issue by using synthetic images. We also use an
autoencoder, but we use a spatial architecture that allows
us to acquire a representation from real-world images that
is particularly well suited for high-dimensional continuous
control. Our architecture is also data-efficient and can handle
relatively small datasets. We demonstrate our method on a
range of real-world robotic tasks.

Other methods have been proposed to train policies from
high-dimensional observations, without first acquiring a low-
dimensional state space [22], [23]. However, running these
methods on a real robotic platform requires either impractical
amounts of data [22] or an instrumented training setup
that provides knowledge about relevant objects at training
time [23]. Our method does not require this knowledge,
which enables it to learn tasks such as pushing, tossing, and

scooping without using any additional instrumentation. In
fact, our method has no knowledge of which objects make up
the scene at all. These tasks cannot be learned using our prior
method [23] without mechanisms such as motion capture.

The goal of our method is similar to that of visual servo-
ing, which performs feedback control on image features [24],
[25], [26]. However, our controllers and visual features are
learned entirely from real-world data, rather than being hand-
specified. This gives our method considerable flexibility in
how the visual input can be used and, as a result, the tasks
that it can learn to perform. Furthermore, our approach does
not require any sort of camera calibration, in contrast to many
visual servoing methods (though not all – see e.g. [27], [28]).

Most deep learning architectures focus on semantic repre-
sentation learning, e.g. [29]. Some spatial network architec-
tures have been proposed for tasks such as video prediction
and dynamics modeling [30], [21]. The architecture that we
use for the encoder in our unsupervised learning method is
based on a spatial softmax followed by an expectation opera-
tion, which produces a set of spatial features that correspond
to points of maximal activation in the last convolutional
layer. We previously proposed this type of architecture in
the context of policy search for visuomotor policies [23].
However, in our prior work, this type of network was
trained with supervised learning, regressing directly to joint
torques. Obtaining these joint torque targets requires being
able to solve the task, which requires a representation that
is already sufficient for the task. In this paper, we show
how the representation can be learned from scratch using
unsupervised learning, which extends the applicability of this
architecture to a much wider range of tasks where a suitable
representation is not known in advance.

III. PRELIMINARIES

In this paper, we are primarily concerned with the task
of learning a state representation for reinforcement learning
(RL) from camera images of robotic manipulation skills.
However, we consider this problem in the context of a
specific RL algorithm that is particularly well suited to
operate on our learned state representations. We describe
the RL method we use in this background section, while
the Section V describes our representation learning method.
The derivation in this section follows prior work [7], but is
repeated here for completeness.

A. RL with Local, Time-Varying Linear Models

Let xt and ut be the state and action at time step
t. The actions correspond to motor torques, while states
will be learned using the method in the next section. The
aim of our RL method is to minimize the expectation
Ep(τ)[`(τ)] over trajectories τ = {x1,u1, . . . ,xT ,uT },
where `(τ) =

∑T
t=1 `(xt,ut) is the total cost, and the expec-

tation is under p(τ) = p(x1)
∏T
t=1 p(xt+1|xt,ut)p(ut|xt),

where p(xt+1|xt,ut) is the dynamics distribution and
p(ut|xt) is the controller that we would like to learn.
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Algorithm 1 RL with linear-Gaussian controllers
1: initialize p(ut|xt)
2: for iteration k = 1 to K do
3: run p(ut|xt) to collect trajectory samples {τi}
4: fit dynamics p(xt+1|xt,ut) to {τj} using linear regression

with GMM prior
5: fit p = arg minpEp(τ)[`(τ)] s.t. DKL(p(τ)‖p̄(τ)) ≤ ε
6: end for

The controller can be optimized using a variety of model-
based and model-free methods [31]. We employ a trajectory-
centric algorithm that optimizes time-varying linear-Gaussian
controllers, which can be thought of as a trajectory with time-
varying linear stabilization [7]. While linear-Gaussian con-
trollers are simple, they admit a very efficient optimization
procedure that works well even under unknown dynamics.
This method is summarized in Algorithm 1. At each iteration,
we run the current controller p(ut|xt) on the robot to gather
N samples (N = 5 in all of our experiments), then use these
samples to fit time-varying linear-Gaussian dynamics of the
form p(xt+1|xt,ut) = N (fxtxt + futut + fct,Ft). This is
done by using linear regression with a Gaussian mixture
model prior, which makes it feasible to fit the dynamics
even when the number of samples is much lower than the
dimensionality of the system [7]. We also compute a second
order expansion of the cost function around each of the
samples, and average the expansions together to obtain a
local approximate cost function of the form

`(xt,ut) ≈
1

2
[xt;ut]

T`xu,xut[xt;ut]+[xt;ut]
T`xut+const.

When the cost function is quadratic and the dynamics are
linear-Gaussian, the optimal time-varying linear-Gaussian
controller of the form p(ut|xt) = N (Ktxt + kt,Ct) can be
obtained by using the LQR method. This type of iterative
approach can be thought of as a variant of iterative LQR [32],
where the dynamics are fitted to data. In our implementation,
we initialize p(ut|xt) to be a random controller that is
centered around the initial state with low-gain PD feedback,
in order to avoid unsafe configurations on the real robot.

One crucial ingredient for making this approach work
well is to limit the change in the controller p(ut|xt) at
each iteration, since the standard iterative LQR approach
can produce a controller that is arbitrarily far away from the
previous one, and visits parts of the state space where the
fitted dynamics are no longer valid. To that end, our method
solves the following optimization problem at each iteration:

min
p(ut|xt)

Ep(τ)[`(τ)] s.t. DKL(p(τ)‖p̄(τ)) ≤ ε,

where p̄(τ) is the trajectory distribution induced by the
previous controller. Using KL-divergence constraints for con-
troller optimization was proposed in a number of prior works
[33], [34], [35]. In the case of linear-Gaussian controllers, we
can use a modified LQR algorithm to solve this problem. We
refer the reader to previous work for details [7].

B. Learning Nonlinear Policies with Guided Policy Search
Linear-Gaussian controllers are easy to train, but they

cannot express all possible control strategies, since they

Train controller using
x̃t; collect image data

Learn visual
features

Train final controller
with new state [x̃t; ft]

Fig. 2: RL with deep spatial autoencoders. We begin by training
a controller without vision to collect images (left) that are used to
learn a visual representation (center), which is then used to learn
a controller with vision (right). The learned state representation
corresponds to spatial feature points (bottom).

essentially encode a trajectory-following controller. To ex-
tend the applicability of linear-Gaussian controllers to more
complex tasks, prior work has proposed to combine it with
guided policy search [7], [8], [23], which is an algorithm that
trains more complex policies, such as deep neural networks,
by using supervised learning. The supervision is generated
by running a simpler algorithm, such as the one in the previ-
ous section, from multiple initial states, generating multiple
solutions. In our experimental evaluation, we combine linear-
Gaussian controllers with guided policy search to learn a
policy for hanging a loop of rope on a hook at different
positions. A different linear-Gaussian controller is trained
for each position, and then a single neural network policy
is trained to unify these controllers into a single policy that
can generalize to new hook positions. A full description of
guided policy search is outside the scope of this paper, and
we refer the reader to previous work for details [7], [8], [23].

IV. ALGORITHM OVERVIEW

Our algorithm consists of three stages. In the first stage,
we optimize an initial controller for the task without using
vision, using the method described in the previous section.
The state space during this stage corresponds to the joint
angles and end-effector positions of the robot, as well as
their time derivatives. This controller is rarely able to succeed
at tasks that require keeping track of objects in the world,
but it serves to produce a more focused exploration strategy
that can be used to collect visual data, since an entirely
random controller is unlikely to explore interesting parts of
the state space. In general, this stage can be replaced by any
reasonable exploration strategy.

In the second stage, the initial controller is used to collect
a dataset of images, and these images are then used to train
our deep spatial autoencoder with unsupervised learning, as
described in Section V. Once this autoencoder is trained,
the encoder portion of the network can be used to produce
a vector of feature points for each image that concisely
describes the configuration of objects in the scene. The final
state space is formed by concatenating the joint angles, end-
effector positions, and feature points, and also including their
velocities to allow for dynamic tasks to be learned. We must
also define a cost function using this new state space, which
we do by presenting an image of the target state to the feature
encoder and determining the corresponding state.
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In the third stage, a vision-based controller is trained using
the new state space that now contains visual features from the
encoder, with the new cost function defined in terms of the
visual features and the robot’s configuration. This controller
is trained using the same trajectory-centric reinforcement
learning algorithm as in the first stage, and is able to perform
tasks that require controlling objects in the world that are
identified and localized using vision.

An overview of this procedure is provided in Figure 2.
In the next section, we describe our representation learning
method.

V. UNSUPERVISED STATE REPRESENTATION LEARNING
FROM VISUAL PERCEPTION

The goal of state representation learning is to find a
mapping henc(It) from a high-dimensional observation It to
a robot state representation for which it is easy to learn a
control policy. We will use x̃t to denote the configuration
of the robot, ft to denote the learned representation, and
xt = [x̃t; ft] to denote the final state space that combines
both components. The state of a robotic system should be
consistent with properties of the physical world [2]; i.e., it
should be temporally coherent and encode only simple, task-
relevant information. Moreover, our RL method models the
system’s state as a time-varying linear dynamical system, and
thus it will perform best if the state representation acts as
such. Intuitively, a good state representation should encode
the poses of relevant objects in the world using Cartesian
coordinates that move with the object over time. Our aim
is to learn such a state representation without using human
supervision or hand-crafted features. Deep learning offers
powerful tools for learning representations [5], but most
deep neural network models focus on semantics of what
is in the scene, rather than where the objects are. In this
section, we describe our autoencoder architecture which is
designed to encode temporally-smooth, spatial information,
with particular emphasis on object locations. As we show in
our experiments, this kind of representation is well suited to
act as a state space for robotic reinforcement learning.

A. Deep Spatial Autoencoders

Autoencoders acquire features by learning to map their
input to itself, with some mechanism to prevent trivial
solutions, such as the identity function. These mechanisms
might include sparsity or a low-dimensional bottleneck. Our
autoencoder architecture, shown in Figure 3, maps from full-
resolution RGB images to a down-sampled, grayscale version
of the input image, and we force all information in the
image to pass through a bottleneck of spatial features, which
we describe below. Since low-dimensional, dense vectors
are generally well-suited for control, a low-dimensional
bottleneck is a natural choice for our learned feature rep-
resentation. A critical distinction in our approach is to
modify this bottleneck so that it is forced to encode spatial
feature locations rather than feature values – the “where”
rather than the “what.” This architecture makes sense for a
robot state representation, as it forces the network to learn

object positions; we show in Section VII, that it outperforms
more standard architectures that focus on the “what,” both
for image reconstruction, and for robotic control. The final
state space for RL is then formed by concatenating this
learned encoding, as well as its time derivatives (the feature
“velocities”), with the robot’s configuration.

The first part of the encoder architecture is a standard 3-
layer convolutional neural network with rectified linear units
of the form acij = max(0, zcij) for each channel c and pixel
(i, j). We compute the spatial features from the last convolu-
tional layer by performing a “spatial soft arg-max” operation
that determines the image-space point of maximal activation
in each channel of conv3. This set of maximal activation
points forms our spatial feature representation and forces
the autoencoder to focus on object positions. The spatial soft
arg-max consists of two operations. The response maps of
the third convolutional layer (conv3) are first passed through
a spatial softmax scij = eacij/α/

∑
i′j′ e

aci′j′/α, where the
temperature α is a learned parameter. Then, the expected
2D position of each softmax probability distribution sc is
computed according to fc = (

∑
i i ∗ scij ,

∑
j j ∗ scij), which

forms the bottleneck of the autoencoder. This pair of opera-
tions typically outputs the image-space positions of the points
of maximal activation for each channel of conv3. Finally,
the decoder hdec is simply a single linear (fully connected)
mapping from the feature points f to the down-sampled
image. We found that this simple decoder was sufficient to
acquire a suitable feature representation.

With this architecture, the bottleneck representation f =
henc(I), which we refer to as learned “feature points,”
encodes the positions of the learned features in the image.
The autoencoder is forced to compress all of the image
information through this spatial feature point representation,
which will therefore be capable of directly localizing objects
in the image. This means that the state representation used
for control will capture the spatial organization of objects
in the scene. Example learned feature points are visualized
in Figure 4. Note that these feature points pick out task-
relevant objects (those which move during the collection of
the image data.), and learn to ignore background features.
One drawback of this representation, however, is that there
is always exactly one output point per feature channel, which
does not gracefully handle occlusions (zero features present)
or repeated structure and objects (more than one feature).

A feature representation that can reconstruct the image
clearly contains the state information captured by the camera.
However, the learning algorithm must also be able to pre-
dict the dynamics of the state representation, which is not
necessarily inherently possible with unconstrained learned
features [2]. Thus, we add a penalty to the autoencoder objec-
tive, gslow(ft) = ||(ft+1 − ft)− (ft − ft−1)||22, to encourage
the feature points to slowly change velocity. As a result, the
overall autoencoder objective becomes:

LDSAE =
∑
t,k

||Idownsamp,k,t − hdec(fk,t)||22 + gslow(fk,t)

where Idownsamp is a downsampled, grayscale version of
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Fig. 3: The architecture for our deep spatial autoencoder. The last convolutional layer is passed through a spatial softmax, followed by an
expectation operator that extracts the positions of the points of maximal activation in each channel. A downsampled version of the image
is then reconstructed from these feature points.
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Fig. 4: Left: feature presence probabilities plotted for two features,
with the threshold β shown in black. Note that a range of thresholds
would produce similar results. Right: two sample trajectories of
learned feature points, starting from red and ending in green. The
features filtered with a Kalman filter using feature presence (bottom)
are much smoother than the unfiltered feature points (top)

the input image I , and fk,t = henc(Ik,t), the feature point
encoding of the tth image in the kth sequence.

We optimize the auto encoder using stochastic gradient
descent (SGD), and with batch normalization [36] following
each of the convolutional operations. The filters of the first
convolutional layer are initialized with a network trained on
ImageNet [37], [29].

B. Filtering and Feature Pruning Using Feature Presence

Not all of the learned feature points will encode useful
information that can be adequately modeled with a time-
varying linear dynamical system by our RL algorithm. Light-
ing and camera exposure can cause sudden changes in the
image that do not reflect motion of relevant objects. However,
the autoencoder will assign some subset of its features to
model these phenomena to improve its reconstruction, pro-
ducing noisy feature points that make it difficult to train the
controller. Additionally, even useful features can periodically
become occluded, resulting in low activations in the last
convolutional layer and unpredictable peak locations.

To handle these issues, we introduce the concept of
feature presence. The presence of a feature is determined
by the softmax probability value scij at the pixel location
of the feature point fc = (i, j).1 This measure reflects the
probability mass after the softmax that is actually located
at the position of the maximum activation. This measure is
usually very high. As shown in Figure 4, learned feature

1Since the feature point position may fall on a boundary between pixels,
we actually sum the probability over a 3× 3 window of nearby pixels.

points usually place almost all of their probability mass at
fc, the location of the maximum. We therefore use a threshold
on scij that marks the feature as present if scij ≥ β, with
β = 0.95. The positions of the feature points during a trial
are filtered by a Kalman filter, which receives observations of
fc only when scij ≥ β, producing smooth predictions when
the feature is not present. We use a second order Kalman
filter and fit the parameters using expectation maximization.

In addition to filtering features that might become oc-
cluded, we also automatically determine the features that do
not adequately represent task-relevant objects in the scene
and prune them from the state. As discussed in Section IV,
the goal positions for the feature points are defined by
showing an image of the goal state to the robot. To mitigate
the effects of noise, we record a short sequence of fifty
images over the course of two seconds and average the
resulting feature positions. We also measure the feature
presence indicators during this period, and prune those points
that are not present for the entire sequence, since they are
unlikely to be relevant. In our evaluation, we show that
this pruning step is important for removing extraneous and
noisy features from the state. To validate this heuristic, we
conducted a more thorough analysis of the predictability of
the feature points to determine its effectiveness

To analyze the usefulness of the learned feature points for
modeling the dynamics of the scene, we define the following
measure of feature predictiveness:

E

[
T∑
t=1

(
log p(xIst | x

Is
t−1,ut−1)+log p(f

I\Is
t | fIst )

)]
Here, I denotes the index set of all features, Is ⊂ I denotes
the indices that are actually selected for inclusion in the state,
fIs is shorthand for the corresponding feature vectors, and
xIs = [x̃t; f

Is ] is the corresponding state space that includes
the robot’s configuration. We evaluate the probabilities by
fitting a dynamics model to xIs as described in Section III
and fitting a linear-Gaussian model to p(f

I\Is
t | fIst ). The

expectation is evaluated at samples gathered for autoencoder
training. This measure captures the degree to which the state
xIst−1 is predictive of the next state xIst , as well as the degree
to which xIst can predict fIt . Intuitively, a good state space
can predict the features at the next step, which are optimized
for predicting the entire image. This measure will discourage
features with dynamics that are hard to fit, and will also
encourage diversity, since multiple features on the same
object will be predictable from one another according to
p(f
I\Is
t | fIst ). To analyze the relative quality of each feature,

516



we iteratively pruned out the feature that, when removed,
produced the least reduction in the likelihood. This yields
a predictiveness ranking of the features. We evaluated this
metric on the most difficult task, and found that our simple
feature presence metric was a good, quick approximation for
selecting highly-predictive features. We report the rankings,
along with the chosen features in Table I. We also found
that the low-ranked features are always either consistently
not present or extremely noisy (see Figure 4).

Task feature ranking (from best to worst)
Rice scooping 5 15 12 1 4 6 2 14 8 13 7 3 10 9 11 16

TABLE I: Ranking of features according to predictiveness; features
chosen based on presence in the target image are shown in bold.

VI. CONTROL OVER VISUAL FEATURES

Putting everything together, our method for training
vision-based controllers is outlined in Algorithm 2. We first
train a controller to attempt the task without vision, using
only the robot’s configuration as the state. The goal for this
controller is defined in terms of the robot’s configuration,
and the learning is performed using Algorithm 1. While this
goal is typically inadequate for completing the task, it serves
to explore the state space and produce a sufficiently varied
range of images for learning a visual state representation. The
representation is then learned on a dataset of images obtained
from this “blind” controller using the method described in
Section V-A. This produces a feature encoder henc(It) = ft.
We then train Kalman filters for each feature point and
automatically prune the features using the heuristic described
in Section V-B, yielding the final features f̃ to be included
in the full state xt = [x̃t; f̃t;

˙̃
ft]. Since we use torque control,

the robot and its environment form a second-order dynamical
system, and we must include both the features f̃ and their
velocities ˙̃

f in the state.
In addition to the state representation xt, we must also

define a cost function `(xt,ut) for the task. As discussed
in the preceding section, we set the goal by showing the
robot an image of the desired configuration of the scene,
denote Igoal, in addition to the target end-effector position
used for the “blind” controller. The target features are then
obtained according to fgoal = henc(Igoal) and the cost depends
on the distance to these target features. In practice, we use a
short sequence of images to filter out noise. Having defined

Algorithm 2 RL with deep spatial autoencoders

1: train exploration controller p̃(ut|x̃t) with simple states x̃t and
simple cost function `(x̃t,ut) (Algorithm 1)

2: collect image dataset D = {Ik} by running p̃(ut|x̃t) (or using
images collected during step 1)

3: train deep spatial autoencoder using D to obtain feature encoder
henc(It) = ft

4: select feature points f̃ using heuristic described in Section V-B,
define full state as xt = [x̃t; f̃t;

˙̃
ft]

5: define full cost function `(xt,ut) using images of the target
state

6: train final controller p(ut|xt) with full cost `(xt,ut) (Algo-
rithm 1)

lego block bag transfer rice scoop loop hook

su
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Fig. 5: Illustrations of the tasks in our experiments, as viewed by
the robot’s camera, showing examples of successful completion by
our controllers and a typical failure by the controller without vision.

a state space xt and a cost `(xt,ut), we use Algorithm 1
to optimize the final vision-based controllers that perform
feedback control on the robot’s configuration and the visual
state representation.

VII. EXPERIMENTAL EVALUATION

We evaluated our method on a range of robotic manipu-
lation tasks, ranging from pushing a lego block to scooping
a bag of rice into a bowl. The aim of these experiments
was to determine whether our method could learn behaviors
that required tracking objects in the world that could only be
perceived with vision. To that end, we compared controllers
learned by our approach to controllers that did not use vision,
instead optimizing for a goal end-effector position. We also
compared representations learned with our spatial autoen-
coder to hidden state representations learned by alternative
architectures, including ones proposed in previous work.

A. Experimental Tasks

The four experimental tasks in our evaluation are shown
in Figure 5. The first and simplest task requires sliding a
lego block 30 cm across a table. The robot does not grasp
the lego block, but rather pushes it along the table with its
gripper, which requires coordinating the motion of the block
and balancing it at the end of the fingers. In the second task,
the robot is holding a spoon that contains a white bag, and
it must use the spoon to drop the bag into a bowl. The robot
must balance the bag on the spoon without dropping it, and
must angle the spoon such that the bag falls into the bowl.
In the third task, the robot must use a spatula to scoop a
bag of rice off of the table and into a bowl. In this task, the
robot must perform a quick, precise sliding motion under the
bag and then lift and angle the spatula such that the rice bag
slides or flips into the bowl. This task is illustrated in detail
in Figure 1. If the robot does not coordinate the motion of
the spatula and rice bag, the bag is pushed aside and cannot
be lifted properly.

In the fourth task, we combine our method with guided
policy search by training four separate linear-Gaussian con-
trollers for hanging a loop of rope on a hook at different
positions. These four controllers are combined into a single
neural network policy using guided policy search, and we
test the capability of this policy to then hang the rope on
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the hook in new positions. The robot must use vision to
locate the hook, so making use of the spatial feature points
is essential for performing this task.

All of our experiments were performed using one 7 DoF
arm of a PR2 robot. The initial state space x̃t contains the
robot’s joint angles and end effector pose, as well as their
time derivatives. The controls consist of the seven torques
at the joints. The images were collected using a consumer
RGB camera, and the controller runs at 20 Hz. For each of
the tasks, we provided the goal pose of the end-effector and
an image of the goal state. For the scooping task, we also
provided a sub-goal of the spatula under the bag of rice. Full
details of each task and the equation for the cost function
are both presented in Appendix A of the supplementary
materials.2

B. Results and Analysis

We ran each of the learned controller 10 times and reported
either the average distance to the goal, or the success rate.
For the transfer and scooping task, success required placing
the bag inside the bowl, while for the hanging task, success
required the rope loop to hang on the hook. For each of
the tasks, we compared our method to a controller that
used only the robot’s configuration x̃t. The results, shown
in Table II, show that each of the tasks requires processing
visual information, and that our method is able to acquire a
state that contains the information necessary for the task.

task lego block
(mean distance) bag transfer rice scoop loop hook

ours 0.9 cm 10/10 9/10 60/70
no vision 4.6 cm 1/10 0/10 7/70

TABLE II: Results of our method. Controllers trained without vision
fail to complete the tasks, illustrating that the tasks require vision.

For the generalization experiment with the rope loop on
hook task, we trained linear-Gaussian controllers for hook
positions that were spaced 8 cm apart, and trained a single
neural network using guided policy search that unified these
controllers into a single nonlinear policy. This nonlinear
policy could succeed at each of the training positions, and
was also successful at the three test positions not seen during
training, as shown in Table III. The policy trained without
vision was unable to localize the hook, and resorted to
a random strategy, which was occasionally successful but
generally failed at the task. The supplementary video shows
the behavior of both the “blind” policy and the policy that
used our learned visual state representation.

loop hook training positions test positions

hook position 0 cm 8 cm 16 cm 24 cm 4 cm 12 cm 20 cm

ours 10/10 8/10 9/10 8/10 8/10 10/10 7/10

no vision 0/10 1/10 0/10 3/10 2/10 0/10 1/10

TABLE III: Detailed generalization results for the rope loop task.

We also evaluate two alternative autoencoder architectures
that are representative of prior work, trained with the same

2All supplementary materials and videos of the learned controllers can be
viewed on the project website: http://rll.berkeley.edu/dsae.

training and validation datasets as our model. The first
comparison closely mirrors the method of Lange et al. [1],
but with a bottleneck dimensionality of 10 to account for the
greater complexity of our system. The second comparison
reflects a more recent architectures, using max-pooling to
reduce the dimensionality of the image maps and batch
normalization after the convolutional layers. The bottleneck
for this architecture is 32, matching that of our architec-
ture. Details of both baseline architectures are provided in
Appendix B of the supplementary materials2. We evaluated
both architectures with and without a smoothness penalty.
The results, shown in Table IV, show that these methods
struggle with our high-dimensional, real-world tasks, despite
the larger model achieving a lower reconstruction loss than
our autoencoder. For several of the models, we could not
obtain a stable controller, while the others did not effectively
integrate visual input into the control strategy. Table IV
also shows the performance of our method without the
smoothness penalty, and without feature pruning, showing
that both of these components are critical for obtaining good
results.

lego block comparison reconstruction
loss (validation)

network
training time

mean
distance (cm)

AE of [1] 7.23 270 min 8.4 ± 6.5
AE of [1], smooth 7.43 420 min 9.7 ± 8.0
conv+pool AE 5.29 11 min *24.3 ± 6.0
conv+pool AE, smooth 5.33 32 min *30.0 ± 0.0
ours, no smooth 6.07 27 min 5.1 ± 1.5
ours, no feat pruning 6.01 80 min *30.0 ± 0.0
ours 6.01 80 min 0.9 ± 0.3
No vision n/a 0 min 4.6 ± 3.3
*These controllers became unstable and did not train successfully.

TABLE IV: Comparisons to prior autoencoder architectures and
variants of our method.

Another advantage of our approach is its sample efficiency,
which is enabled both by the use of simple linear-Gaussian
controllers and a data-efficient neural network architecture.
The autoencoders used around 50 trials for each task, with
each trial consisting of 100 image frames and 5 second of
interaction time, for a total of 5000 frames per task. Training
the final vision-based controller required another 50-75 trials,
which means that each controller was trained with around
10-15 minutes of total robot interaction time.

VIII. DISCUSSION AND FUTURE WORK

We presented a method for learning state representations
using deep spatial autoencoders, and we showed how this
method could be used to learn a range of manipulation
skills that require close coordination between perception and
action. Our method uses a spatial feature representation of
the environment, which is learned as a bottleneck layer in
an autoencoder. This allows us to learn a compact state from
high-dimensional real-world images. Furthermore, since this
representation corresponds to image-space coordinates of
objects in the scene, it is particularly well suited for continu-
ous control. The trajectory-centric RL algorithm we employ
can learn a variety of manipulation skills with these spatial
representations using only tens of trials on the real robot.
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While we found that controllers trained without vision
could adequately explore the space for each task to generate
training data for representation learning, there are tasks
where visiting a sufficient range of states can be difficult
without vision. A promising direction for tackling such
tasks is to interleave representation learning with controller
optimization in a similar spirit to iterative model learning
approaches [38]. Another promising future direction is to
use additional sensory modalities to learn more advanced
sensory state representations, e.g. depth and haptic sensing.

The prospect of autonomously learning compact and
portable state representations of complex environments
entirely from raw sensory inputs, such as images, has
widespread implications for autonomous robots. The method
presented in this paper takes one step in this direction,
by demonstrating that a spatial feature architecture can
effectively learn suitable representations for a range of
manipulation tasks, and these representations can be used
by a trajectory-centric reinforcement learning algorithm to
learn those tasks. Further research in this direction has the
potential to make it feasible to apply out-of-the-box learning-
based methods to acquire complex skills for tasks where a
state space is very difficult to design by hand, such as tasks
with deformable objects, complex navigation in unknown
environments, and numerous other tasks.
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