
Adapting Deep Visuomotor

Representations with Weak Pairwise

Constraints

Eric Tzeng?1, Coline Devin?1, Judy Hoffman1, Chelsea Finn1,
Pieter Abbeel1, Sergey Levine1, Kate Saenko2, Trevor Darrell1

1 University of California, Berkeley
2 Boston University

Abstract. Real-world robotics problems often occur in domains that
differ significantly from the robot’s prior training environment. For many
robotic control tasks, real world experience is expensive to obtain, but
data is easy to collect in either an instrumented environment or in simu-
lation. We propose a novel domain adaptation approach for robot percep-
tion that adapts visual representations learned on a large easy-to-obtain
source dataset (e.g. synthetic images) to a target real-world domain,
without requiring expensive manual data annotation of real world data
before policy search. Supervised domain adaptation methods minimize
cross-domain differences using pairs of aligned images that contain the
same object or scene in both the source and target domains, thus learning
a domain-invariant representation. However, they require manual align-
ment of such image pairs. Fully unsupervised adaptation methods rely
on minimizing the discrepancy between the feature distributions across
domains. We propose a novel, more powerful combination of both dis-
tribution and pairwise image alignment, and remove the requirement
for expensive annotation by using weakly aligned pairs of images in the
source and target domains. Focusing on adapting from simulation to real
world data using a PR2 robot, we evaluate our approach on a manipu-
lation task and show that by using weakly paired images, our method
compensates for domain shift more effectively than previous techniques,
enabling better robot performance in the real world.

1 Introduction

Transfer and domain shift are major challenges in learning-based robotic percep-
tion and control. Perception systems built using offline datasets often fail when
deployed on a robot, robots trained to perceive and act in a laboratory setting
might fail outside of the lab, and robots trained in simulation often fail in the
real world. However, accurate data annotations (such as the state of the world)
are often only available in simulated or instrumented environments, which usu-
ally look too different from the real world to use directly. To enable adaptation
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of robotic perception between domains, we present a deep learning architecture
that learns to map images from each domain into a common feature space.

We propose a novel framework with losses for both pairwise alignment and
distribution-level alignment. We also introduce a new algorithm for aligning
source and target images without labels in the target domain. This method
is general and can be applied to many perception tasks, and we show that it
increases performance on adapting pose estimation (predicting object keypoints)
from synthetic images to real images. Furthermore, this technique can be used
to pretrain visual features for visuomotor policy search. Recently proposed end-
to-end visuomotor networks [1] can learn both image representations and the
control policy for a particular task directly from visual data. In particular, the
method in [1] first learns a convolutional network to predict keypoint locations
from raw images, then fine-tunes the representation with guided policy search
to map keypoints to actions. However, this previous method uses 1000 pose
annotated images to train the keypoint predictor. We show that pretraining
using our framework allows us to construct effective vision-based manipulation
policies without any pose annotated real images.

Existing deep domain adaptation methods have focused on the category-level
domain invariance task, and used optimization to generally reduce the discrep-
ancy, or maximize confusion, between domains [2,3]; this is valuable, but misses
a significant opportunity in the setting of synthetic to real image adaptation. It
is often feasible to generate a large enough variety of synthetic images such that
for each unlabeled real image, there exists a matching synthetic image. This
can provide instance level training constraints for a deep domain adaptation
architecture that minimizes the distance between features of the instance pair.
Previous work has not tackled the problem of learning these pairs in settings
where explicit annotations are unavailable. Additionally, while such constraints
have been explored in earlier adaptation schemes [4], to our knowledge they
have not been combined with contemporary deep discrepancy or deep confusion
models.

Fig. 1. A pair of corresponding synthetic (left) and real-world (right) images used for
our pose estimation evaluation. Our method finds pairs without real-world supervision

We report experiments with our framework on the pose pretraining stage of
the visuomotor model of [1], using a real and simulated PR2, as shown in Fig-
ure 1. We also evaluate the learned representations by using them as input for



training a visuomotor policy. Our results confirm (1) there can be a significant
domain shift in visuomotor task learning, (2) that domain adaptation meth-
ods specialized to the deep spatial feature point architecture introduced in [1]
can learn to be relatively invariant to such shifts and improve performance, (3)
that inclusion of pairwise constraints provides a performance boost relative to
previous deep domain adaptation approaches based solely on discrepancy mini-
mization or domain confusion maximization, and (4) that, even in settings where
pose annotations are unavailable for target domain imagery, annotations can be
transferred from a source domain dataset (e.g. generated by a low-fidelity ren-
derer). We validate our method by training a visuomotor policy on the PR2
robot to perform a simple manipulation task.

2 Related work

In both vision and robotics, it has long been a desirable goal to use easily obtain-
able data (such as synthetic rendered images) to train models that are effective
in real environments. In robotics, past work has used domain adaptation and
simulated data to reduce the need for labeled target domain examples. Lai and
Fox used a variant of feature augmentation [5] to use human-made 3D models
for laser scan classification [6]. Saxena et al. used rendered objects to learn to
grasp from vision [7].

Classically, in computer vision, hand-engineered features were designed to
be invariant to the domain shift between synthetic and real worlds, e.g., efforts
dating from the earliest model alignment methods in computer vision using
edge detection-based representations [8]. One of the earliest visuomotor neural
network learning methods, ALVINN [9], exploited simulated training data of ob-
served road shapes when training a multi-layer perceptron for an autonomous
driving task. Many approaches to pose estimation in the recent decade were
trained using rendered scenes from POSER and other human form rendering
systems [10,11,12]; reliance on fixed feature representations limited their perfor-
mance, however, and state-of-the-art pose estimation methods generally train
exclusively on real imagery [13,14].

Traditional visual domain adaptation methods tackled the problem where
a fixed representation extraction algorithm was used for both visual domains,
and adaptation took the form of learning a transformation between the two
spaces [4,15,16] or regularizing the target domain model based on the source do-
main [17,18]. Later models improved upon this by proposing adaptation which
both transformed the representation spaces and regularized the target model
using the source data [19,20]. Since the resurgence in the popularity of con-
volutional networks for visual representation learning, adaptation approaches
have been proposed to optimize the full target representation and model to
better align with the source, for example by minimizing the maximum mean dis-
crepancy [21,22] or by minimizing the a-distance (specific form of discrepancy
distance [23]) between the two distributions [3,2].



Recently, a method has been proposed to use 3D object models to render
synthetic training examples for training visual models with limited human an-
notations needed [24]. It was shown that there is a specific domain shift problem
that arises when applying a synthetically trained visual model to the real world
data. This paradigm of synthetic to real was further used to study deep repre-
sentations and the types of invariances they learn by [25].

While classic robotic perception already provides ample motivation for ex-
ploring scalable and effective domain adaptation methods, recent progress in
deep reinforcement learning (RL) raises another intriguing possibility. Deep RL
methods have shown remarkable performance and generality on tasks ranging
from simulated locomotion to playing Atari games [26,27,28], but often at the
cost of very high sample complexity. Other than the method in [1], many of
these methods are impractical to use directly on real physical systems due to
the sample requirements, and a key question is whether policies learned with
deep reinforcement learning in simulation could be extended for use in the real
world. In this paper, we present an initial step in this direction by showing that
vision systems trained on simulated data and adapted using our technique can
be used to initialize deep visuomotor policies that achieve superior performance
on real-world tasks, when compared to policies trained using small amounts of
real-world data.

Previous attempts to learn transformations from source to target domains
for visual domain adaptation such as [29] and [4] have used a contrastive met-
ric learning loss. In these methods the learned adaptation was a kernelized
transformation over a fixed representation. Earlier work introduced Siamese net-
works [30,31], for which a shared representation is directly optimized using the
contrastive loss for signature and face verification. These were later used for
dimensionality reduction [32] and person hand and head pose alignment [12].
Taylor et al. [12] further explored combining synthetic data along with real
data to improve representation invariance and overall performance. However,
this method used the synthetic data to regularize the learning of the real model
and found that performance suffered once the amount of simulated data over-
whelmed the amount of real world data. In contrast, our approach uses synthetic
data to learn a complete model and uses a very limited number of real examples
for refining and adapting that model.

Recently, there has been considerable interest in learning visuomotor policies
directly from visual imagery using deep networks [33,1,34,28]. This tight coupling
between perception and control simplifies both the vision and control aspects of
the problem, but suffers from the major limitation that each new task requires
collection, annotation, and training on real world visual data in order to success-
fully learn a policy. To overcome this issue, we explore how simulated imagery
can be adapted for robotic tasks in the real world. Directly applying models
learned in simulation to the real world typically does not succeed [35], due to
systematic discrepancies between real and simulated data. We demonstrate that
our domain adaptation method can successfully perform pose estimation for a
real robotic task using minimal real world data, suggesting that adaption from



simulation to the real world can be effective for robotic learning. In an earlier
version of this paper [36], we demonstrated initial results using domain confu-
sion constraints on PR2 visuomotor policies but without the pairwise constraint
reported below. Contemporaneously to our work, [37] also reported success with
a domain confusion-style regularizer on a domain adaptive visual behavior task
on autonomous MAV flight.

3 Preliminaries

We address the problem of adapting visual representations for robotic learning
from a source domain where labeled data is easily accessible (such as simulation)
to a target domain without labels. Domain adapation is often necessary because
of domain shift : a discrepancy in the data distributions between domains that
prevents a model trained only on source data to perform well on target data.
We define the problem as finding image features f(x; θrepr) such that this repre-
sentation allows learning visuomotor policies from a large dataset xS of labeled
source images and a small dataset xT of unlabeled target images.

When training models for regression, we generally seek to take input images
x and directly output some label φ. This involves learning a representation θrepr
and a regressor θφ that minimizes the following loss:

Lφ(x, φ; θφ, θrepr) =
1

2K

K∑
i=1

||θTφ f(x(i); θrepr)− φ(i)||22 (1)

where f(x(i); θrepr) denotes the feature vector corresponding to x(i) under the
representation defined by θrepr.

However, collecting ground truth labels in the real world can be impractical,
often requiring expensive instrumented setups. As a result, it is difficult to gather
enough training data to properly train models from scratch. We instead rely
on the existence of a simulator that can render synthetic versions of the task
environment. This enables us to quickly generate an unlimited amount of training
data with full annotations by simply changing the environment configuration,
recording the ground truth label, and rendering a view.

Ideally, we would be able to simply train on our rendered data and have
the learned model transfer to the real world. However, because they are ac-
quired independently, our synthetic and real-world images differ significantly in
appearance. This discrepancy between the two domains is referred to as domain
shift, and generally results in reduced performance when attempting to directly
transfer source models to the target domain.

To combat the negative effects of domain shift, we model this as a domain
adaptation problem, with synthetic renders serving as our source domain, and
real-world images serving as our target domain. We propose a model that aug-
ments the task loss with two additional adaptation loss functions designed to
specifically align the two domains in feature space. This ensures we learn a model
that successfully performs the task and transfers robustly between domains.



4 Domain alignment with weakly supervised pairwise
constraints
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Fig. 2. After determining a weak pairing between source and target images, optimiza-
tion proceeds via backpropagation on our model architecture. Our model combines
a task loss, a domain confusion loss for aligning domains at the distribution level,
and a pairwise loss for aligning specific pairs of source and target images. Together,
these three losses ensure that our model learns to accurately perform the task while
remaining robust to domain shift.

Our method attempts to solve the domain shift problem via two approaches.
The first is a distribution-based approach, which seeks to align the source do-
main with the target domain in feature space. By ensuring that all images lie in
the same general neighborhood in representation space, we better facilitate the
transfer of task-relevant features from source to target. The second approach
incorporates weakly supervised pairwise constraints, and seeks to ensure that
images with identical labels are treated identically by the network, regardless
of their originating domain. This encourages the network to disregard domain-
specific features in favor of features that are relevant to the perception task.
Together with the task loss, these approaches ensure that we learn a representa-
tion that is meaningful to the chosen visual task while remaining robust to the
source-target domain shift.

Domain confusion loss. To align the source and target domains at the
overall distribution level, we adopt the domain confusion loss introduced by
[2,3]. The model trains a domain classifier θD that attempts to correctly classify
each image into the domain it originates from. In parallel, the loss Lconf tries to
learn a representation θrepr such that the domain classifier cannot distinguish the



two domains in feature space. This loss is the negative cross entropy loss between
the predicted domain label of each image x and a uniform distribution over the
D domains, which is minimized the domain classifier is maximally confused:

Lconf(xS , xT , θD; θrepr) = −
∑

x∈(xS∪xT )

∑
d

1

D
log qd(x, θD, θrepr). (2)

Here, q corresponds to the domain classifier activations:

q(x, θD; θrepr) = softmax(θTDf(x; θrepr)) (3)

Pairwise loss. While the confusion loss ensures that the source and target
domains as a whole are treated similarly by the model, it does not make use of the
task labels. Thus, we include an additional term that seeks to find specific pairs
of source and target images with similar labels and align them in representation
space. By explicitly aligning images with similar labels, we can optimize the
representation to focus only on task-relevant features. However, we assume that
task labels are unavailable in the target domain. Thus, we need to determine
a pairing P of the target images xT with the target images xS so that we can
ensure that their distances in the feature space defined by θrepr lie close together.
We write this objective as the loss function

Lpairwise(xS , xT ;P, θrepr) =
∑

(i,j)∈P

[
1

2
ρ
(
x
(i)
S , x

(j)
T ; θrepr

)2]
, (4)

where we define our distance function ρ as the Euclidean distance in the feature
space corresponding to θrepr:

ρ
(
x
(i)
S , x

(j)
T ; θrepr

)
=
∥∥∥f(x

(i)
S ; θrepr)− f(x

(j)
T ; θrepr)

∥∥∥
2
. (5)

Intuitively, this objective encourages a pairing P that correctly matches tar-
get and source images, as well as a representation θrepr that is task-sensitive
while disregarding domain-specific features. However, because the source-target
pairing P and the feature representation θrepr depend on each other, it is not
immediately clear how to directly optimize for both simultaneously. Thus, we
propose an iterative approach.

First, we minimize Lpairwise with respect to the source-target pairing P . We
begin by finding an initial representation θrepr that minimizes the task loss Lφ
and optionally Lconf on only the source imagery. Once this source-only model has
been trained, we extract a feature representation for every image in our dataset,
both source and target. These representations are used to find a source image
nearest-neighbor for each target image, thereby determining a weak pairing P .
Finding such a pairing additionally enables us to transfer task labels between
each pair of images, thus annotating the target images using the labels from
their corresponding source images. These transferred weak labels can then be
used to minimize the task loss Lφ over the target images as well.



Once P has been determined, we keep it fixed and minimize Lpairwise with
respect to the representation θrepr to ensure that pairs lie close in feature space.
We note that when used to optimize θrepr, this loss function is similar to the con-
trastive loss function introduced by [32]. As typically formulated, the contrastive
loss function seeks to draw paired images closer together in feature space while
pushing unpaired images apart. However, our source dataset has many examples
similar to any particular target image, which means there are often many other
valid source-target pairs in the dataset that are not explicitly identified. The
dissimilarity term in the contrastive loss function would force these unlabeled
similar pairs apart, making the optimization poorly conditioned, so our pairwise
loss omits this dissimilarity term.

Complete objective. Our full model thus minimizes the joint loss function

L(xS ,φS , xT , φT , P, θD; θφ, θrepr) =

Lφ(xS , φS ; θφ, θrepr) + Lφ(xT , φT ; θφ, θrepr)

+ λLconf(xS , xT , θD; θrepr)

+ νLpairwise(xS , xT ;P, θrepr)

(6)

where the hyperparameters λ and ν trade off how strongly we enforce domain
confusion and weakly supervised pairwise constraints.

The feature used to form P is a low-level convolutional feature of a network
trained to perform the visual task on the source data. In this feature space, we
match each target image with its nearest neighbor in the source domain. Because
the feature used to determine P is from a network trained to perform the percep-
tion task, it focuses primarily on task-relevant features of the image. After the
pairing P has been determined, we can then minimize the complete loss func-
tion outlined in Equation 6 via backpropagation. This procedure of determining
a weak alignment P and using it to learn a domain-invariant representation is
summarized in Algorithm 1.

We depict the architecture setup for a given sampled target image in Figure 2.
The task loss is applied to all images the network sees, regardless of whether they
came from the source or target environment. Because the target examples do not
have labels, we use the labels transferred from the source using the pairing P .
Each pair is input to the pairwise loss which pushes the feature representations
of the explicitly paired images closer together. Finally, all images are additionally
optimized by the confusion loss, which seeks to make the representation agnostic
to the overall differences between the two domains.

The combination of losses presented here is architecture-agnostic, thereby
making our method applicable to many different visual tasks. We implement
our networks using the Caffe framework [38], and plan to release the code and
datasets from our experiments upon acceptance of this paper.

5 Adapting visuomotor control policies

As mentioned above, our domain adaptation approach is general and can be
applied to many visual tasks. Here we use it to directly adapt deep visual rep-



Algorithm 1 Learning domain-invariant image features

1: Collect xS source domain images with labeled object pose
2: Collect xT target domain images
3: Minimize Lφ(xS , φS ; θφ, θrepr) + λLconf(xS , xT , θD; θrepr) with respect to θφ, θrepr

4: for x
(j)
T in xT do

5: i∗ = arg mini ||fconv1(x
(i)
S ; θrepr)− fconv1(x

(j)
T ; θrepr)||2

6: Add (i∗, j) to P
7: end for
8: Minimize L(xS , φS , xT , φT , P, θD; θφ, θrepr) with respect to θφ, θrepr

resentations for pose estimation and visual policy learning. We build upon the
end-to-end architecture presented by [1] for training deep visuomotor policies
that can learn to accomplish tasks such as screwing a cap onto a bottle or plac-
ing a coat hanger on a rack. The method first pretrains a convolutional neural
network on a pose estimation task, then finetunes this network with guided pol-
icy search to map from input image to action. Guided policy search is initialized
with trajectories from a fully observed state (where the locations of both the
manipulated and target object are known), but once learned, the policy only
requires visual input at test time.

Once we have learned a visual representation that is robust to the synthetic-
real domain shift and can effectively locate salient objects in a scene, we use
guided policy search (GPS) with these features to train a parametrized controller
θctrl. GPS turns reinforcement learning into a supervised learning problem by
using time-varying linear controllers to collect (observation, control) data that
is used to train a neural network policy. During training, the position of the
target object is known, but the neural network policy is trained to act based on
the visual feature points; at test time, this policy can succeed solely from vision
without being provided the location of the target.

Like in [39], we fit time-varying linear models to the robot joint angles and
velocities and use these to collect a dataset of feature points, feature point ve-
locities, joint angles, and joint efforts. We use this dataset to train a neural
network policy θctrl. The feature points are generated by the θrepr trained with
our method, and we do not backpropagate gradients from θctrl through θrepr
during policy learning. As in [1], we used BADMM to jointly optimize the con-
trollers and neural network with a penalty on the KL divergence between them.
θctrl is 2 layer network with 40 hidden units per layer that takes the learned
feature points and joint state as input and outputs joint efforts. Unlike in [39],
we do not apply any filtering or smoothing to the feature points. We refer the
reader to [1] for a more in depth explanation of the BADMM GPS algorithm.
The final result is a visuomotor control policy from images features pretrained
solely on unannotated real imagery and low-fidelity synthetic renderings, while
the policy itself is trained in the real world.

We empirically evaluate our method in a variety of experimental settings.
We begin with an evaluation on a simple pose estimation task in Section 5.1.



Next, we investigate the quality of synthetic-real pairings produced by our un-
supervised alignment method. Finally, we use the learned pairings to train a
representation via our method, then use this representation to train a full visuo-
motor control policy on a “hook loop” manipulation task in Section 5.3. These
experiments demonstrate the effectiveness of incorporating synthetic imagery
into the pretraining of visuomotor policies.

5.1 Supervised robotic pose estimation evaluation

As a self-contained evaluation of our visual adaptation method, we first evaluate
our method in a supervised setting, using a pose estimation task that is repre-
sentative of the visual estimation required for robotic visuomotor control. This
is intended as a toy task to evaluate the use of known pairs for simulation to
real world adaptation. By using the gripper, we are able to generate images that
are exactly paired between the domains.

We first obtain real world images with gripper pose annotations using the
PR2’s forward kinematics. We also collected pose labeled images from the Gazebo
simulator, where we know the exact location of all objects, and we can specifi-
cally obtain paired images by replaying the joint angles used in the real world
data collection. With this data, we train a model to regress to the 3D gripper
pose from an image. We adopt the deep spatial feature point architecture in-
troduced by Levine et al. [1]. Both the domain confusion loss (λ = 0.1) and
pairwise loss (ν = 0.01) are applied at the third convolutional layer, after the
ReLU nonlinearity. As before, when both losses are employed simultaneously, we
further halve each of their weights. Results from this experimental setting are
presented in Table 1.

Table 1. Using pairwise constraints improves pose estimation. We report supervised
evaluation results averaged over 3 trials on PR2 gripper pose estimation using 5 labeled
and paired real examples. Each real example is paired with a corresponding synthetic
image. Minibatches are sampled such that an equal number of real and synthetic images
are present. We report the average error of the prediction in centimeters. We find that,
through combining both a domain confusion loss and a pair alignment loss, we are able
to improve performance by 20% (relative).

Method #Sim #Real Error (cm)

Synthetic only 1005 0 25.37± 1.18
Real only 0 5 4.43± 0.23
Synthetic and real 1005 5 7.74± 3.90

Domain confusion [2] 1005 0 6.68± 0.01
Pairwise loss 1005 5 5.21± 2.48
Domain alignment with strong pairwise constraints 1005 5 3.98± 0.02

Oracle 0 1000 0.90± 0.13



The results indicate that adaptation with paired examples yields improved
performance. We find that incorporating synthetic imagery during training is
nontrivial, confirming our hypothesis that simulation to real world has a signif-
icant domain shift. Simply combining synthetic and real imagery into one large
training set negatively impacts performance, due to slight variations in appear-
ance and viewpoint. We see that domain confusion alone does not help either,
since domain confusion does not offer a way to learn the specific viewpoint vari-
ations between the real and synthetic domains. Nonetheless, by exploiting the
presence of pairs, our method is able to account for these differences, perform-
ing better than all other baselines. Comparing against the “Oracle” setting, in
which we train on 1000 labeled real examples, we see that our method is able to
remove most of the negative effects of domain shift despite training on relatively
few real examples. (For additional results on vision-only adaptation from CAD
models to real PASCAL images, we refer the reader to our earier report [36].)

5.2 Unsupervised synthetic-real alignment evaluation

To evaluate the effectiveness of our alignment method, we transfer pose anno-
tations from paired synthetic images to their corresponding real images, then
compute the error relative to the real-world ground truth pose annotations. In
order to test on a real control setting, we perform this experiment on the “hook
loop” task introduced in [39], where the robot is expected to place a loop of rope
on a hook, as depicted in Figure 3. We generate low-fidelity renderings of the
PR2 and a hook in 4000 different configurations and attempt to align these with
100 real-world images of the task without hook pose annotations. As the goal
is to learn a policy that can place the loop on an arbitrarily located hook, the
policy must locate the hook from visual input.

Table 2. Comparing the pairing error for different strategies of learning fconv1 for weak
alignment. We compare using only the task loss during pretraining against combining
both the task loss and the domain confusion images and report the average error
between the object positions within each pair. We see that both the task loss as well as
the task loss with confusion do significantly better than random, and in simpler settings
their performance approaches that of the optimal alignment (reported as Oracle) if the
real labels were known.

Error of hook pose in weak pairings (cm)

Method Static camera Head motion

Random pairs 22.7± 0.4 23.9± 0.6
Task loss 5.9± 0.2 10.9± 2.0
Task loss + confusion 6.1± 0.4 10.6± 2.0

Oracle (known real labels) 4.1 4.9

To learn the representation used for producing the alignment in this setting,
we attempt to estimate the 3D pose of the target hook. We evaluate both the



Fig. 4. Example alignments generated by our unsupervised synthetic-real alignment
method in the static camera setting. The first column shows an example real image,
and the next four columns show the top four corresponding images from our rendered
dataset. The goal is to match the hook position, with the arm position being
irrelevant, because the policy needs to be conditioned on the hook position. We overlay
a translucent version the real image on the synthetic images to better show the quality
of our alignment.

alignment produced using the simple synthetic-only model, as well as a model
trained with an additional domain confusion loss. Table 2 shows the resuls of
this experiment on two experimental settings: one with a fixed camera, and one
in which the head of the robot (and the camera as well) moves around slightly.
The relatively low error in the results indicates that the alignments are generally
of high quality.

Visual inspection of the results also indicates that our method produces high-
quality pairings. Figure 4 shows example results of our unsupervised alignment
method in the static camera setting using the representation trained only on the
synthetic data. The hooks in the synthetic renderings match quite closely with
the hooks in the corresponding real images. As expected, the position of the arm
is largely ignored as desired, and the alignment focuses primarily on the portion
of the image that is relevant for the pose estimation task.

5.3 Visuomotor policies for manipulation tasks

After determining the synthetic-real pairings using our method, we retrain the
pose predictor on the combined data to learn the final feature points θrepr. To
evaluate these feature points, we set up the “hook loop” task from [39]. This task
requires a PR2 to bring a loop of rope to the hook of a supermarket scale, as
depicted in Figure 3. As the location of the scale is not instrumented, the robot
must adjust its actions by visually perceiving the location of the hook/scale.



Fig. 3. In the “hook loop”
task, the PR2 must position a
loop of rope over the hook of a
supermarket scale.

We used four target hook positions along a
bar to learn the linear dynamics and generate
trajectories. GPS was run for 13 iterations, where
each iteration obtained 5 sample trajectories for 4
training hook position. The linear-quadratic con-
troller was given only the arm joint state, while
the neural network policy was given the arm joint
state as well as the learned feature point (x, y)
positions and velocities.

The performance of the final policy θctrl was
measured by testing it 14 times: twice at each of
7 positions (including the 4 training positions).
Success was defined as the loop being on the
hook. As shown in Table 3, the features learned
with our method allowed GPS to learn a much
more accurate policy than the other methods not
using labeled real images.

We also compared against the deep spatial au-
toencoder from [39]. Trained on either 100 or 500 images, this method did not
perform well, as the feature points tended to model the robot arm’s position
rather than the hook. Without the simulated hook pose supervision that our
method has, the network has no incentive to model the hook over the much more
varied positions of the arm and gripper. We also trained an “Oracle” controller.
The feature points used were from a pose estimation model trained directly on
500 real images with ground truth data. This controller performed equally well
to the one trained with adapted features on only 100 unlabeled real images.

Table 3. Performance of visuomotor tasks trained using domain alignment with
weakly supervised pairwise constraints. We report the percentage of successful at-
tempts at placing a loop of rope on a hook after training with 12 iterations of GPS.
Each experiment was repeated 3 times.

Method # Sim # Real (unlabeled) Success rate

Synthetic only 4000 0 38.1% ± 8%
Autoencoder (100) 0 100 28.6% ± 25%
Autoencoder (500) 0 500 33.2% ±15%
Domain alignment with randomly
assigned pairs

4000 100 33.3% ±16%

Domain alignment with weakly
supervised pairwise constraints

4000 100 76.2% ± 16%

Oracle 0 500 (labeled) 71.4% ± 14%

Because of the optimization that happens during guided policy search, the
performance of the final controller is dependent on the quality of the feature



points that are passed in: if the feature points give θctrl enough information
about the position of the hook, then the controller will learn to use it. However,
if the feature points are not consistent enough in where they activate (such as in
many of our baselines), the controller cannot learn a policy that takes the hook
location into account. For example, when the controller failed a trial it put the
loop at a possible hook position, but not at the current hook position. These
results show that we can successfully learn visual features that are sufficient for
control from synthetic data and a small number of unlabeled real images.

In contrast to our prior work, which required either ground truth pose labels
for the real-world images [1] or fifty 100-frame videos for a total of 5000 images
for unsupervised learning [39], our method only uses 100 unlabeled real-world
images. Being able to use unlabeled images is important for for practical real-
world robotic applications, where determining the ground truth pose of movable
objects in the world with a high degree of precision typically requires specialized
equipment such as motion capture.

6 Conclusion

In this paper, we present a novel model for domain adaptation that is able to
exploit the presence of weakly paired source-target examples. Our model extends
existing adaptation architectures by combining pairwise and distribution align-
ment loss functions, and optimizaing over weak label assignments. Because of its
generality, our method is applicable to a wide variety of deep adaptation archi-
tectures and tasks. Through a pose estimation task, we experimentally validate
the importance of using image pairs and show that they are integral to achieving
strong adaptation performance. We demonstrate the ability to adapt in settings
where pose annotations on real-world data is unavailable.

We address domain adaptation for visual inputs in the context of robotic
state estimation. The tasks used in our robotic evaluation involve estimating in-
formation that is highly relevant for robotic control [40], as well as for pretraining
visuomotor control policies [1]. While we show successful transfer of simulated
data for learning real-world visual tasks, training full control policies entirely
in simulation will also require tackling the question of physical adaptation, to
account for the mismatch between simulated and real-world physics. Address-
ing this question in future work would pave the way for large-scale training of
robotic control policies in simulation.
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