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Abstract

We propose an unsupervised method that, given a word, automatically selects
non-abstract senses of that word from an online ontology and generates images
depicting the corresponding entities. When faced with the task of learning a vi-
sual model based only on the name of an object, a common approach is to find
images on the web that are associated with the object name and train a visual clas-
sifier from the search result. As words are generally polysemous, this approach
can lead to relatively noisy models if many examples due to outlier senses are
added to the model. We argue that images associated with an abstract word sense
should be excluded when training a visual classifier to learn a model of a physical
object. While image clustering can group together visually coherent sets of re-
turned images, it can be difficult to distinguish whether an image cluster relates to
a desired object or to an abstract sense of the word. We propose a method that uses
both image features and the text associated with the images to relate latent topics
to particular senses. Our model does not require any human supervision, and
takes as input only the name of an object category. We show results of retrieving
concrete-sense images in two available multimodal, multi-sense databases, as well
as experiment with object classifiers trained on concrete-sense images returned by
our method for a set of ten common office objects.

1 Introduction

Many practical scenarios call for robots or agents which can learn a visual model on the fly given
only a spoken or textual definition of an object category. A prominent example is the Semantic
Robot Vision Challenge (SRVC)1 , which provides robot entrants with a text-file list of categories to
be detected shortly before the competition begins. More generally, we would like a robot or agent
to be able to engage in situated dialog with a human user and to understand what objects the user
is refering to. It is generally unreasonable to expect users to refer only to objects covered by static,
manually annotated image databases. We therefore need a way to find images for an arbitrary object
in an unsupervised manner.

A common approach to learning a visual model based solely on the name of an object is to find
images on the web that co-occur with the object name by using popular web search services, and
train a visual classifier from the search results. As words are generally polysemous (e.g. mouse)
and are often used in different contexts (e.g. mouse pad), this approach can lead to relatively noisy
models. Early methods used manual intervention to identify clusters corresponding to the desired
sense [2], or grouped together visually coherent sets of images using automatic image clustering
(e.g. [9]). However, image clusters rarely exactly align with object senses because of the large
variation in appearance within most categories. Also, clutter from abstract senses of the word that

1http://www.semantic-robot-vision-challenge.org
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Object Sense: drink containerInput Word: cup

Online Dictionary cup

WISDOM

• cup (a contest in which a cup is awarded) “the World Cup is the 
world's most widely watched sporting event.”

• cup (a small open container usually used for drinking; usually has a handle) "he 
put the cup back in the saucer"; "the handle of the cup was missing"

Object Sense: trophy

Abstract Sense: sporting event

…search

• cup, loving cup (a large metal vessel with two handles that is awarded as a trophy
to the winner of a competition) "the school kept the cups is a special glass case”…

cup

Figure 1: WISDOM separates the concrete (physical) senses from the abstract ones.

are not associated with a physical object can further complicate matters (e.g. mouse as in “a timid
person”.) 2

To address these issues, we propose an unsupervised Web Image Sense DisambiguatiOn Model
(WISDOM), illustrated in Figure 1. Given a word, WISDOM automatically selects concrete senses
of that word from a semantic dictionary and generates images depicting the corresponding entities,
first finding coherent topics in both text and image domains, and then grounding the learned topics
using the selected word senses. Images corresponding to different visual manifestations of a single
physical sense are linked together based on the likelihood of their image content and surrounding
text (words in close proximity to the image link) being associated with the given sense.

We make use of a well-known semantic dictionary (WordNet [8]), which has been previously used
together with a text-only latent topic model to construct a probabilistic model of individual word
senses for use with online images [17]. We build on this work by incorporating a visual term, and
by using the Wordnet semantic hierarchy to automatically infer whether a particular sense describes
a physical entity or a non-physical concept. We show results of detecting such concrete senses in
two available multimodal (text and image), multi-sense databases: the MIT-ISD dataset [17], and
the UIUC-ISD dataset [14]. We also experiment with object classification in novel images, using
classifiers trained on the images collected via our method for a set of ten common objects.

2 Related Work

Several approaches to building object models from image search results have been proposed. Some
have relied on visual similarity, either selecting a single inlier image cluster based on a small valida-
tion set [9], or bootstrapping object classifiers from existing labeled images [13]. In [18] a classifier
based on text features (such as whether the keyword appears in the URL) was used re-rank the im-
ages before bootstrapping the image model. However, the text ranker was category-independent and
thus unable to learn words predictive of a specific word sense. An approach most similar to ours [2]
discovered topics in the textual context of images using Latent Dirichlet Allocation (LDA), however,
manual intervention by the user was required to sort the topics into positive and negative for each
category. Also, the combination of image and text features is used in some web retrieval methods
(e.g. [7]), however, our work is focused not on instance-based image retrieval, but on category-level
modeling.

Two recent papers have specifically addressed polysemous words. In Saenko and Darrell [17], the
use of dictionary definitions to train an unsupervised visual sense model was proposed. However, the
user was required to manually select the definition for which to build the model. Furthermore, the

2While the first few pages of image search results returned by modern search engines generally have very
few abstract examples, possibly due to the sucess of reranking based on previous user’s click-through history,
results from farther down the list are much less uniform, as our experimental results show.
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sense model did not incorporate visual features, but rather used the text contexts to re-rank images,
after which an image classifier was built on the top-ranked results. Loeff et al. [14] performed
spectral clustering in both the text and image domain and evaluated how well the clusters matched
different senses. However, as a pure clustering approach, this method cannot assign sense labels.

In the text domain, Yarowsky [20] proposed an unsupervised method for traditional word sense
disambiguation (WSD), and suggested the use of dictionary definitions as an initial seed. Also, Boiy
et al. [4] determined which words are related to a visual domain using hypothesis testing on a target
(visual) corpus, compared to a general (non-visual) corpus.

A related problem is modeling word senses in images manually annotated with words, such as the
caption “sky, airplane” [1]. Models of annotated images assume that there is a correspondence
between each image region and a word in the caption (e.g. Corr-LDA, [5]). Such models predict
words, which serve as category labels, based on image content. In contrast, our model predicts a
category label based on all of the words in the web image’s text context, where a particular word
does not necessarily have a corresponding image region, and vice versa. In work closely related to
Corr-LDA, a People-LDA [11] model is used to guide topic formation in news photos and captions,
using a specialized face recognizer. The caption data is less constrained than annotations, including
non-category words, but still far more constrained than generic webpage text.

3 Sense-Grounding with a Dictionary Model

We wish to estimate the probability that an image search result embedded in a web page is one of
a concrete or abstract concept. First, we determine whether the web image is related to a particular
word sense, as defined by a dictionary. The dictionary model presented in [17] provides an estimate
of word sense based on the text associated with the web image. We will first describe this model,
and then extend it to include both an image component and an adaptation step to better reflect word
senses present in images.

The dictionary model [17] uses LDA on a large collection of text related to the query word to learn
latent senses/uses of the word. LDA [6] discovers hidden topics, i.e. distributions over discrete
observations (such as words), in the data. Each document is modeled as a mixture of topics z ∈
{1, ...,K}. A given collection of M documents, each containing a bag of Nd words, is assumed
to be generated by the following process: First, we sample the parameters φj of a multinomial
distribution over words from a Dirichlet prior with parameter β for each topic j = 1, ...,K. For
each document d, we sample the parameters θd of a multinomial distribution over topics from a
Dirichlet prior with parameter α. Finally, for each word token i, we choose a topic zi from the
multinomial θd, and then choose a word wi from the multinomial φzi .

Since learning LDA topics directly from the images’ text contexts can lead to poor results due to
the low quantity and irregular quality of such data, an additional dataset of text-only web pages
is created for learning, using regular web search. The dictionary model then uses the limited text
available in the WordNet entries to relate dictionary sense to latent text topics. For example, sense
1 of “bass” contains the definition “the lowest part of the musical range,” as well as the hypernym
(“pitch”) and other semantic relations. The bag-of-words extracted from such a semantic entry for
sense s ∈ {1, 2, ..., S} is denoted by the variable es = (e1, e2, ..., eEs

), where Es is the total number
of words. The dictionary model assumes that the sense is independent of the words conditioned on
the distribution of topics in the document. For a web image with an associated text document dt, the
conditional probability of sense is given by

P (s|dt) =
K∑

j=1

P (s|z = j)P (z = j|dt), (1)

where the distribution of latent topics in the text context, P (z|dt) is given by the θdt variable,
computed by generalizing the learned LDA model to the (unseen) text contexts. The likelihood of
a sense given latent topic z = j is defined as the normalized average likelihood of words in the
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dictionary entry es, 3

P (s|z) ∝ 1
Es

Es∑
i=1

P (ei|z), (2)

Incorporating Image Features. The dictionary model (1) does not take into account the image part
of the image/text pair. Here, we extend it to include an image term, which can potentially provide
complementary information. First, we estimate P (s|di), or the probability of a sense given an image
di. Similar to the text-only case, we learn an LDA model consisting of latent topics v ∈ {1, ..., L},
using the visual bag-of-words extracted from the unlabeled images. The estimated θ variables give
P (v|di). To compute the conditional probability of a sense given a visual topic, we marginalize the
joint P (s, v) across all image and associated text documents {di, dt} in the collection

P (s|v) ∝
M∑

k=1

P (s|dt = k)P (v|di = k) (3)

Note that the above assumes conditional independence of the sense and the visual topic given the
observations. Intuitively, this provides us with an estimate of the collocation of senses with visual
topic. We can now compute the probability of dictionary sense for a novel image di

∗ as:

P (s|di
∗) =

L∑
j=1

P (s|v = j)P (v = j|di
∗) (4)

Finally, the joint text and image model is defined as the combination of the text-space and image-
space models via the sum rule,

P (s|di, dt) = λP (s|di) + (1− λ)P (s|dt) (5)

Our assumption in using the sum rule is that the combination can be modelled as a mixture of
experts, where the features of one modality are independent of sense given the other modality [3].

Adaptation. Recall that we can estimate θdt for the unseen web image contexts by generalizing the
web-text LDA model using Gibbs sampling. However, web topics can be a poor match to image
search data (e.g. the “genome research” topic of mouse.) Our solution is to adapt the web topics to
the image search data. We do this by fixing the z assignments of the web documents and sampling
the z’s of the image contexts for a few iterations. This procedure updates the topics to better reflect
the latent dimensions present in the image search data, without the overfitting effect mentioned
earlier.

4 Filtering out Abstract Senses

To our knowledge, no previous work has considered the task of detecting concrete vs. abstract senses
in general web images. We can do so by virtue of the multimodal sense grounding method presented
in the previous section. Given a set of senses for a paricular word, our task is to classify each sense
as being abstract or concrete. Fortunately, WordNet contains relatively direct metadata related to
the physicality of a word sense. In particular, one of the main functions of WordNet is to put words
in semantic relation to each other using the concepts of hyponym and hypernym. For example,
“scarlet” and “crimson” are hyponyms of “red”, while “color” is a hypernym of “red”. One can
follow the chain of direct hypernyms all the way to the top of the tree, “entity”. Thus, we can detect
a concrete sense by examining its hypernym tree to see if it contains one of the following nodes:
’article’, ’instrumentality’,’article of clothing’, ’animal’, or ’body part’. What’s more, we can thus
restrict the model to specific types of physical entities: living things, artifacts, clothing, etc.

In addition, WordNet contains lexical file information for each sense, marking it as a state, or an an-
imal, etc. For example, the sense “mouse, computer mouse” is marked <artifact>. In this paper, we
classify a WordNet sense as being due to a concrete object when the lexical tag is one of <animal>,
<artifact>, <body>, <plant> and <act>. We exclude people and proper nouns in the experiments
in this paper, as well as prune away infrequent senses.

3The average word likelihood was found to be a good indicator of how relevant a topic is to a sense. The
total word likelihood could be used, but it would allow senses with longer entries to dominate.
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5 Data

We evaluated the outlined algorithms on three datasets: the five-word MIT-ISD dataset [17], the
three-word UIUC-ISD dataset [14], and OFFICE dataset of ten common office objects that we col-
lected for the classification experiment. 4 All datasets had been collected automatically by issuing
queries to the Yahoo Image SearchTM engine and downloading the returned images and correspond-
ing HTML web pages. For the MIT-ISD dataset, the query terms used were: BASS, FACE, MOUSE,
SPEAKER and WATCH. For the UIUC-ISD dataset, three basic query terms were used: BASS,
CRANE and SQUASH. To increase corpus size, the authors also used supplemental query terms
for each word. The search terms selected were those related to the concrete senses (e.g. “con-
struction cranes”, “whooping crane”, etc.) Since these human-selected search terms require human
input, while our method only requires a list of words, we exclude them from our experiments. The
OFFICE dataset queries were: CELLPHONE, FORK, HAMMER, KEYBOARD, MUG, PLIERS,
SCISSORS, STAPLER, TELEPHONE, WATCH.

The images were labeled by a human annotator with all concrete senses for each word. The annotator
saw only the images, and not the surrounding text or any dictionary definitions. For the MIT-ISD
dataset, each concrete sense was labeled as core, related, and unrelated. Images where the object
was too small or too occluded were labeled as related. For the UIUC-ISD dataset, the labels for
each concrete sense were similarly core, related and unrelated. In addition, a people label was
used for unrelated images depicting faces or a crowd. 5 The OFFICE dataset was only labeled with
core and unrelated labels. We evaluated our models on two retrieval tasks: retrieval of only core
images of each sense, and retrieval of both core and related images. In the former case, core labels
were used as positive labels for each sense, with related, unrelated and people images labeled as
negative. In the latter case, core and related images were labeled as positive, and unrelated and
people as negative. Note that the labels were only used in testing, and not in training.

To provide training data for the web text topic model, we also collected an unlabeled corpus of text-
only webpages for each word. These additional webpages were collected via regular web search for
the single-word search term (e.g. CRANE), and were not labeled.

6 Features

When extracting words from web pages, all HTML tags are removed, and the remaining text is
tokenized. A standard stop-word list of common English words, plus a few domain-specific words
like “jpg”, is applied, followed by a Porter stemmer [16]. Words that appear only once and the
actual word used as the query are pruned. To extract text context words for an image, the image
link is located automatically in the corresponding HTML page. All word tokens in a 100-token
window surrounding the location of the image link are extracted. The text vocabulary size used for
the dictionary model ranges between 12K-20K words for the different search words.

To extract image features, all images are resized to 300 pixels in width and converted to grayscale.
Two types of local feature points are detected in the image: edge features [9] and scale-invariant
salient points. To detect edge points, we first perform Canny edge detection, and then sample a fixed
number of points along the edges from a distribution proportional to edge strength. The scales of the
local regions around points are sampled uniformly from the range of 10-50 pixels. To detect scale-
invariant salient points, we use the Harris-Laplace [15] detector with the lowest strength threshold
set to 10. Altogether, 400 edge points and approximately the same number of Harris-Laplace points
are detected per image. A 128-dimensional SIFT descriptor is used to describe the patch surround-
ing each interest point. After extracting a bag of interest point descriptors for each image, vector
quantization is performed. A codebook of size 800 is constructed by k-means clustering a randomly
chosen subset of the database (300 images per keyword), and all images are converted to bags of the
resulting visual words (cluster centers of the codebook.) No spatial information is included in the
image representation, rather it is treated as a bag-of-words.

4The MIT-ISD and OFFICE datasets are available at http://people.csail.mit.edu/saenko
5The UIUC-ISD dataset and its complete description can be obtained at

http://visionpc.cs.uiuc.edu/isd/index.html
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(a) Text Model (b) Image Model

Figure 2: The top 25 images returned by the text and the image models for mouse-4 (device).

7 Retrieval Experiments

In this section, we evaluate WISDOM on the task of retrieving concrete sense images from search
results. Below are the actual concrete senses that were automatically selected from WordNet by our
model for each word in the datasets:

MIT-ISD: bass-7 (instrument), bass-8 (fish), face-1 (human face), face-13 (surface), mouse-1 (ro-
dent), mouse-4 (device), speaker-2 (loudspeaker), watch-1 (timepiece)

UIUC-ISD: bass-7 (instrument), bass-8 (fish), crane-4 (machine), crane-5 (bird), squash-1 (plant),
squash-3 (game)

OFFICE: cellphone-1 (mobile phone), fork-1 (utensil), hammer-2 (hand tool), keyboard-1 (any
keyboard), mug-1 (drinking vessel), mug-1 (drinking vessel), pliers-1 (tool), scissors-1
(cutting tool), stapler-1 (stapling device), telephone-1 (landline phone), watch-1 (time-
piece)

We train a separate web text LDA model and a separate image LDA model for each word in the
dataset. The number of topics K is a parameter to the model that represents the dimensionality of
the latent space used by the model. We set K = 8 for all LDA models in the following experiments.
This was done so that the number of latent text topics is roughly equal to the number of senses. In the
image domain, it is less clear what the number of topics should be. Ideally, each topic would coincide
with a visually coherent class of images all belonging to the same sense. In practice, because images
of an object class on the web are extremely varied, multiple visual clusters are needed to encompass
a single visual category. Our experiments have shown that the model is relatively insensitive to
values of this parameter in the range of 8-32. To perform inference in LDA, we used the Gibbs
sampling approach of [10], implemented in the Matlab Topic Modeling Toolbox [19]. We used
symmetric Dirichlet priors with scalar hyperparameters α = 50/K and β = 0.01, which have the
effect of smoothing the empirical topic distribution, and 1000 iterations of Gibbs sampling.

Figure 2 shows the images that were assigned the highest probability for mouse-4 (computer device)
sense by the text-only model P (s|dt) (Figure 2(a)), and by the image-only model P (s|di) (Figure
2(b)). Both models return high-precision results, but somewhat different and complementary im-
ages. As we expected, the image model’s results are more visually coherent, while the text model’s
results are more visually varied.

Next, we evaluate retrieval of individual senses using the multimodal model (Eq. 5, with λ = 0.5)
and compare it to the Yahoo search engine baseline. This is somewhat unfair to the baseline, as here
we assume that our model knows which sense to retrieve (we will remove this assumption later.)
The recall-precision curves (RPCs) are shown in Figure 3. The figure shows the RPCs for each
word in the MIT-ISD (top row) and UIUC-ISD (bottom row) datasets, computed by thresholding
P (s|di, dt). WISDOM’s RPCs are shown as the green curves. The blue curves are the RPCs obtained
by the original Yahoo image search retrieval order. For example, the top leftmost plot shows retrieval
of bass-7 (musical instrument). These results demonstrate that we are able to greatly improve the
retrieval of each concrete sense compared to the search engine.
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(a) MIT-ISD data

(b) UIUC-ISD data

Figure 3: Recall-precision of each concrete sense (core labels) using the multimodal dictionary
model (green) and the search engine (blue), evaluated on two datasets.

(a) Core Senses, MIT-ISD (b) Core Senses, UIUC-ISD

(c) Core+Related Senses, MIT-ISD (d) Core+Related Senses, UIUC-ISD

Figure 4: Recall-precision of all concrete senses using WISDOM (green) and the search engine (blue).

WISDOM does fail to retrieve one sense – face-13, defined as “a vertical surface”. This is a highly
ambiguous sense visually, although it has an <artifact> lexical tag. One possibility for the future
is to exclude senses that are descendents of “surface” as being too ambiguous. Also, preliminary
investigation indicates that weighting the text and image components of the model differently can
result in improved results; model weighting is therefore an important topic for future work.

Next, we evaluate the ability of WISDOM to filter out abstract senses. Here we no longer assume that
the correct senses are known. Figure 4 shows the result of filtering out the abstract senses, which is
done by evaluating the probability of any of the concrete senses in a given search result. The ground
truth labels used to compute these RPCs are positive if an image was labeled either with any core
sense (Fig.4 (a,b)), or with any core or related sense (Fig.4 (c,d)), and negative otherwise. These
results demonstrate that our model improves the retrieval of images of concrete (i.e. physical) senses
of words, without any user input except for the word itself. Figure 5 shows how the model filters out
certain images, including illustrations by an artist named Crane, from search results for CRANE.

8 Classification Experiments

We have shown that our method can improve retrieval of concrete senses, therefore providing higher-
precision image training data for object recognition algorithms. We have conjectured that this leads
to better classification results; in this section, we provide some initial experiments to support this
claim. We collected a dataset of ten office objects, and trained ten-way SVM classifiers using
the vocabulary-guided pyramid match kernel over bags of local SIFT features implemented in the
LIBPMK library [12]. The training data for the SVM was either the first 100 images returned from
the search engine, or the top 100 images ranked by our model. Since we’re interested in objects, we
keep only the <artifact> senses that descend from “instrumentality” or “article”. Figure 6 shows
classification results on held-out test data, averaged over 10 runs on random 80% subsets of the
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(a) Yahoo Image Search (b) WISDOM

Figure 5: The top images returned by the search engine for CRANE, compared to our model.

Figure 6: Classification accuracy of ten objects in the OFFICE dataset.

data. Our method improves accuracy for most of the objects; in particular, classification of “mug”
improves greatly due to the non-object senses being filtered out. This is a very difficult task, as
evidenced by the baseline performance; the average baseline accuracy is 27%. Training with our
method achieves 35% accuracy, a 25% relative improvement. We believe that this relative improve-
ment is due to the higher precision of the training images and will persist even if the overall accuracy
were improved due to a better classifier.

9 Conclusion

We presented WISDOM, an architecture for clustering image search results for polysemous words
based on image and text co-occurrences and grounding latent topics according to dictionary word
senses. Our method distinguishes which senses are abstract from those that are concrete, allowing
it to filter out the abstract senses when constructing a classifier for a particular object of interest to
a situated agent. This can be of particular utility to a mobile robot faced with the task of learning
a visual model based only on the name of an object provided on a target list or spoken by a human
user. Our method uses both image features and the text associated with the images to relate estimated
latent topics to particular senses in a semantic database. WISDOM does not require any human
supervision, and takes as input only an English noun. It estimates the probability that a search result
is associated with an abstract word sense, rather than a sense that is tied to a physical object. We
have carried out experiments with image and text-based models to form estimates of abstract vs.
concrete senses, and have shown results detecting concrete-sense images in two multimodal, multi-
sense databases. We also demonstrated a 25% relative improvement in accuracy when classifiers are
trained with our method as opposed to the raw search results.
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