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Abstract

During a disaster, children may be quickly wrenched
from their families. Research shows that children in such
circumstances are often unable or unwilling to give their
names or other identifying information. Currently in the
US, there is no existing system in the public health infras-
tructure that effectively expedites reunification when chil-
dren can’t be identified. Working with the Children’s Hos-
pital Boston, we have engineered a system to speed reunifi-
cation of children with their families, should they get sepa-
rated in a disaster. Our system is based on a Content Based
Image Retrieval and attribute search. In this paper we will
describe the system and a series of evaluations, including a
realistic disaster drill set up and run jointly with the Chil-
dren’s Hospital.

1. Introduction

There are 70 million children in the US, 22 million of
whom are 5 years old or younger. After a disaster, children
can be quickly wrenched from their families due to limited
space in rescue vehicles [7], the rapid pace of evacuation
efforts [7], and the disaster striking at a time of day when
children are at school/daycare and parents are at work. Af-
ter a disaster, children are at most risk for adverse conse-
quences. They are often unable or unwilling to give their
name, address, or phone number [10].

After Katrina hit in 2005, more than 5000 children were
separated from their families for as long as 18 months. In
addition to the US, children are at high risk after disasters
worldwide, as seen following the Haiti earthquake of 2010
and the Sichuan, China earthquake of 2008 where more than
7000 schoolrooms collapsed [1].

Currently in the US, there is no system in the public
health infrastructure that effectively expedites reunification
when children can’t be identified. In particular, there is no
central database of children separated from their families.
After Katrina, parents had to drive around, checking hospi-
tals, shelters, etc in a large multi-state radius. If they were
lucky, each hospital would have a book of photos of every-
one admitted. Many hospitals did not. International Red
Cross data state that current methods for reunification re-

main primitive around the globe [2].
Working with the Children’s Hospital Boston, we have

engineered an image-based browsing system and central
database to quickly reunify children with their families,
should they get separated in a disaster. The work is part of a
Federally funded grant, and based on the hospital’s findings
that many children can not give their information.

Based on the findings in [2], the system overview is as
follows: 1) Obtain digital images of each child as he/she
enters a health care facility/triage/etc. 2) Automatically in-
dex images and archive. 3) Parents can go to a designated
center, input facial characteristics of their child, and search.

For privacy and the reduction of mental anguish, the par-
ent should look through as few images as possible. Also,
based on information from previous events [10], the system
must be easy to use, and must address the need for surge ca-
pacity. Similarly, based on information provided by hospital
ER workers who have worked through several disasters, we
must assume that the parents may not have photos of their
children.

We can frame step 3 of the system as a specific appli-
cation of mental image search. In particular, we want to
be able to search a set of images and find an image that
matches a particular one that the user has in mind – i.e. a
mental image. In our case, the images are images of chil-
dren’s faces.

In this paper we will describe the system and a series
of evaluations, including a realistic disaster drill set up and
run jointly with the Children’s Hospital. The drill was per-
formed with hospital workers, social workers, parents and
children.

2. Previous Work

To our knowledge, there are no previously implemented
systems specifically designed for pediatric reunification.
However, there has been previous work on mental image
searching. Mental image search is a subfield of the rich field
of Content Based Image Retrieval, or CBIR [5]. CBIR can
be divided into three main categories: open browsing, cat-
egory browsing, and target search. Open browsing is when
the user isn’t sure what she is looking for, and can change
her mind partway through. Category browsing is when the
user is looking for an image in a particular category. One
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of the main challenges here is that, even if the user provides
an example image, it may be unclear what specific category
the user wishes to search for. For example, if the user pro-
vides an image of a red car, she may want to see other red
objects, or more cars. A target search is where the user is
looking for a specific thing (object, person, etc.). Since in
our case the parent is looking for her specific child, brows-
ing the database of images can be thought of as a target
CBIR search.

Target CBIR searches can be further divided into query-
by-example and mental image search. In query-by-
example, the user supplies a photo of the specific thing she’s
looking for, and then tries to find more of that same thing.
In a mental image search, since there is no initial query im-
age, nor does there have to be any initial information of any
kind, there needs to be relevance feedback. Relevance feed-
back allows the user to be in the loop, iteratively interacting
with the browsing system.

There has been some previous work on mental image
retrieval with relevance feedback. In particular, [4, 6, 9].
Navarrete et al. [9] use self-organizing maps. With each it-
eration of relevance feedback, the weights on the map are
updated and those nodes with the highest weights are cho-
sen as the images to display at the next step. The works
of Cox et al. [4] and Fang and Geman [6] are more closely
related to the system described here. Cox et al. describe a
Bayesian method that, at each iteration, updates the prob-
ability P (image is target | browser history). Here, the
browser history includes all previously displayed images
and user actions. Fang and Geman is a specific application
of Cox et al. using faces. In both cases, the user is presented
with a set of images and can select some subset of images
similar to her mental target. These methods do not exploit
extracted or labeled attributes. Below, we describe a hybrid
attribute and CBIR browsing system.

3. System Overview
Figure 1 shows the general overview of a parent’s search.

The parent first enters some semantic attributes about her
child. We believe it is useful to have the parent enter at-
tribute labels for the child she is trying to find, and for at-
tribute labels to already be stored with the images in the
database. Working with the Children’s Hospital Boston, we
came up with a list of distinguishing attributes, such as eye
color, skin color, and age. Attributes have been used in the
past as a natural way to perform mental image search. Ku-
mar et al. [8] successfully used attributes in their FaceTracer
system, which was able to perform a better facial image
search using attribute text queries.

After entering attributes, the parent browses over the
photos. The browsing GUI we use can be seen in Figure 2.
The parent will be presented with a screen of children’s
faces, and will be allowed to click on zero or more faces

Figure 1. System overview.

Figure 2. Screenshot of the search GUI.

that are similar to her mental image. She can then refine her
search by clicking the“Refine” button. Doing this will allow
the parent to see a new set of images and make new simi-
larity decisions. Once she sees her child in the set, she can
click “Found”. Based on feedback from our collaborators at
the Children’s Hospital Boston, we included three other but-
tons in addition to “Refine” and “Found”. If the parent feels
that she is continually seeing screens of faces that look noth-
ing like her child, she can choose “Select Random”, which
displays a random set of images on the next screen. Using
this random screen for the next update should pull the par-
ent out of the area in which she’s stuck. The other buttons,
“Back” and “Forward”, are available if the parent feels that
she has made a mistake, or changes her mind about having
made a mistake, respectively.

4. Algorithm
The initial inputs to the search algorithm are the database

of lost children’s photos and the semantic information
stored with them, as well as the parent’s semantic labels for
the same set of attributes. In a real disaster, when children
are admitted to hospitals, triages, etc, they will have their
photos taken and their attributes labeled (see below), and
this information will be uploaded to the central database.
The parent’s choice of semantic labels will influence the ini-
tial ranking of the images in the database, when the images
are passed to the search algorithm for browsing. As the
parent searches, she is presented with screens of images.
On each screen, she can choose photos similar looking to
her missing child. When the parent finds her child in the
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Figure 3. Overview of Cox et al.

database, the output of the algorithm will be the other meta-
information stored with the image – e.g. the hospital name
and room number the child is in.

The algorithm used in this system is based on the brows-
ing system by Cox et al. [4], but with the addition of seman-
tic features. Because of this, we will first give an overview
of the Cox et al. method. Then we will describe how at-
tributes were added.

4.1. Cox et al. Method

There are three main parts to the retrieval problem as
outlined by Cox et al: 1) Which images to show at each it-
eration, 2) How the user interacts with the data, and 3) How
we interpret the user’s feedback. Figure 3 shows the three
steps. Here, T is some mental representation of the thing
the user is trying to find, and T1...Tn is the entire database
of images. At each timestep t of relevance feedback, Dt

is the set of images currently shown, At is the user action
taken on those images, and Ht = D1, A1, ..., Dt, At is the
browser history.

We can rewrite the probability P (image is target |
browser history) as

P (T = Ti|Ht) =
P (At|T = Ti, Dt, Ht−1)P (T = Ti|Ht−1)

normalization
(1)

P (At|T = Ti, Dt, Ht−1) is called the user model, and is
a probability of the user’s action at that timestep given that
Ti is the mental image, and the entire history. Cox et al.
make the assumption that the user model is time invariant,
so Ht−1 is actually dropped. P (T = Ti|Ht) is the posterior
at timestep t, and is an update of the user model times the
prior, P (T = Ti|Ht−1).

One can see that after the user takes an action, we can
evaluate the user model of that action At for each T = Ti.
Because the prior is just the posterior from the previous
round (initialized with a uniform distribution), we can eas-
ily update the posterior for the current iteration.

Thus, step 3, how Cox et al. interpret the user’s feedback,
can be reformed as how do they update the user model.

First, we must answer step 2, how the user interacts with
the data, in order to get At. Although it depends somewhat
on the way the user model is updated, in general the user
may select zero or more similar images per screen.

Cox et al. describe two main methods for evaluating the
user model: Relative and Absolute Distance. In the rela-
tive distance framework, the set of selected images (from
the current screen Dt) is denoted by X+ and the set of
unselected images is X−. For each Ti, and each pair
(x+, x−), x+ ∈ X+, x− ∈ X−, they calculate the distance
Dist = d(Ti, x+) − d(Ti, x−), put it through a sigmoid,
and combine. Thus, in the relative distance framework, they
are assuming that all images not chosen are specifically not
similar to the target image. In the absolute distance frame-
work, only one image is chosen per screen. Here, there are
no assumptions on the images that weren’t chosen. Instead,
only the distance between each Ti and the chosen image
X+, i.e. d(Ti, X+), is calculated and put through a mono-
tonically decreasing function such that images closer to X+

have a higher value.
Once the user model is updated, and thus the posterior,

Cox et al. use the new posterior to determine step 1, i.e.,
which images to show at each iteration. Cox et al. go over
two main display algorithms: Most Probable, and Most In-
formative. In the most probable framework, the new display
Dt+1 is chosen from the highest probabilities in the current
posterior. The idea behind the most informative method is
to minimize the number of expected iterations by choosing
the new display that minimizes the entropy of the posterior
distribution.

In our system, “Refining” updates the user model (uni-
form distribution if no similar images are selected). We
have functionality to update the user model using either rel-
ative or absolute distances, but our experiments are with rel-
ative distance. The features used in calculating distances
between faces are PCA features on the faces after align-
ment and cropping. We plan to also add distances and ra-
tios of landmarks points on the face. After the user model
and posterior are updated, we show a new set of images Dt.
We have functionality to choose each Dt based on high-
est probability or sampling, but our experiments so far use
highest probability. Because we want to reduce the number
of photos parents view, once a face has been seen it won’t
be shown again unless “Back” or “Forward” is used. To do
this, we set the posterior of those images to be 0. Once a
probability is set as 0, it will remain so. Choosing “Select
Random” updates the user model with a uniform distribu-
tion, thus keeping the posterior the same as at the previous
iteration.

4.2. Attributes

As previously mentioned, we initialized the ranking of
the images input to the browsing system based on some se-
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mantic attributes of the child. At the start of the search, a
parent chooses a label for each attribute from a discrete set.
(If she isn’t sure of the answer or wishes to skip, the label
would be ‘unknown’.) We call her labels L = l1, l2, .., lm
where each lj is her label for the jth attribute, with m at-
tributes total. Each image i in the database also has labeled
attributes stored with it, L′i = l′i1, l

′
i2, ...l

′
im. Because our

Bayesian browsing method is based on probabilities over
the images in the database, we want the attribute informa-
tion to influence these probabilities. More specifically, we
chose to initially weight the prior for those images with
matching labels higher than those without. For example,
if L and Li have two of the same labels, but L and Lj have
none of the same labels, then i will have a higher prior value
than j. A prior is calculated for each attribute type. Then
they are multiplied together and the result is re-normalized.
We also add a constant at the end so that none of the proba-
bilities is actually 0. Zero probability is reserved for images
we never want to view again.

Attributes with binary labels are assigned prior values of
either 0 or S, a softness value. This value can be tuned per
attribute type. An attribute with n > 2 possible labels will
have n discrete values in its prior – i.e. n softness values.
The softness values for such attributes are determined by
monotonically decreasing functions over discrete variables,
where each possible label is assigned a different function.
We assume the labels are evenly spaced and ordered seman-
tically, and the input to each function is the number of la-
bels away from the target. The shape of each function is a
tunable parameter. These softness values affect how much
the attributes influence the overall search. If all the softness
values are 0, then the attributes would make no difference
and there is just browsing. If they are all 1, then, depend-
ing on the shape of the sigmoid used in the user model, the
parent will probably have to look through all images with
exactly the same attribute labels that she listed, before see-
ing any images with different attribute labels. If we are sure
there is no error in the attribute labeling, then it would make
sense to make the softness equal to 1. However, as we will
discuss shortly, error can happen even when using “ground
truth” attribute labels in the image database.

It is important to note why using both attributes and
browsing is useful. While attributes have been shown to be
useful in searches, they are generic. Depending on the pop-
ulation in the area of the disaster and the number of children
affected, thousands of children might have the same set of
attribute labels. We could refine the class labels, or add
more attribute types, but doing so increases the error (since
the ground truth task itself becomes more difficult), and it
becomes burdonsome for the parent. Thus, the parent needs
to be able to look efficiently through the large number of
images with the specified labels. Not only that, but extrac-
tion is not perfect – errors in the extraction/classification

and differences in user judgement are common. So not only
is there a need for browsing, but there is a need to account
for and accommodate the initial attribute error with user
feedback. Hence, our use of a Bayesian CBIR browsing
system.

5. Dataset

Testing the system required collecting a dataset of front-
facing children’s faces, over a range of ethnicities, eye col-
ors, and age. These images were used as the children sep-
arated during a disaster. We downloaded thousands of im-
ages from the Parenting.com website [3], uploaded as part
of a modeling contest. From those, we hand selected im-
ages, trying to only choose ones that were high enough res-
olution, front facing, and preferably with a natural wide-
spectrum indoor or outdoor lighting. Because of the quality
of most of the images on the site, however, many of the
images chosen still had widely varying lighting and other
noise. All of the tests we performed (and will later report
on) were using some subset of 1213 of these images.

Note that in the field, a standard camera, a Canon Pow-
erShot SD1100 IS, will be used, with flash, preferably in-
doors, to try to standardize the lighting. We have written an
instruction manual for how to set the camera, and how to
take the photos – front-facing, eye-level, little or no out-of-
plane rotation, and preferably against a neutral background.

5.1. Attribute Labels

In order to get the ground truth attribute labels for each
of the browsing sets, we ran Mechanical Turk experiments
on all 1213 images from the Parenting.com dataset. We de-
cided to use eye color, skin color and age as attributes. In the
tests described later, we used these “ground truth” attributes
(since it is reasonable for a hospital worker to mark the in-
formation after taking the child’s photo), but one could also
try to automatically label the attributes. Part of the problem
with automatic labeling, however, is that even the “ground
truth” labeling has a lot of noise.

For the Mechanical Turk task, each image was labeled by
5 different people. Out of the 1213 images, only 1027 had
an interrater agreement of 60% or more for eye color, and
714 for skin color. In addition, the mean interrater agree-
ment for eye color was .73 with a standard deviation of .21.
The mean interrater agreement for skin color was .56 with
a standard deviation of .17. We determined that a natural
grouping of eye colors would be “Hazel”, “Light Brown”
and “Dark Brown” as one category, and “Blue”, “Green”,
and “Gray” as another. With this new binary labeling, and
grouping the original labels from Mechanical Turk, 1211
had an interrater agreement of 60% or more. The mean
interrater agreement for eye color became .92 with a stan-
dard deviation of .13. Similarly for skin color, we grouped
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skin colors 1-4 and 5-8. With this new binary labeling, and
grouping the labels from Mechanical Turk, 1210 had an in-
terrater agreement of 60% or more for skin color. The mean
interrater agreement for skin color became .91 with a stan-
dard deviation of .14. The automatic extraction of these
attributes is future work.

6. Tests/Results
6.1. Disaster Drill

One of the difficulties in testing the browsing system is
that it’s very difficult to perform a mental image search un-
less one is very familiar with the person he/she is looking
for. Since we’re searching for children, aside from teach-
ers or other care workers who see the same children every
day, parents/guardians are probably the only group of peo-
ple familiar enough with a child to perform a purely mental
image search. Since we are ultimately gearing the system
to parents/guardians, it is therefore important to run the ex-
periment using real parents.

To do this, we ran a complete disaster drill with the Chil-
dren’s Hospital Boston. For this test, we used real parents
and ran the mental image search as we might in the field.
Seventeen children from 8 familes were enrolled. The par-
ents and children were both given family identifiers, and the
children were given extra identifiers according to their age.
The children were taken into a room where they had their
photos taken. The volunteer taking the photos hand-noted
the children’s eye and skin color, and asked them their age,
if they were willing to provide it. When the volunteer was
done, the information and photos were uploaded to the sys-
tem and onto three laptops.

The laptops were then taken to a separate room, where
the parents filed in as there was space. The parents had
been being prepped in a separate room by social workers
who were evaluating their mental stress. The procedure fol-
lowed was the same as if there had been an actual disaster.
The parents did not work the system on their own, but in-
stead pointed to the screen and communicated with a vol-
unteer. Each volunteer and parent pair was monitored by a
social worker, and some of the parents were instructed to be
argumentative. Because some families had more than one
parent participate, there were 20 searches total. Figure 4
shows a photo of the drill in progress.

The searches were performed on 730 images: 713 im-
ages chosen from the pre-made Parenting.com set, plus the
17 children who were participating in the drill. The images
from the Parenting.com set were chosen from the full 1213
so that the eye, skin, and age distributions were roughly
even. Parents saw 9 images per screen.

For the drill, we used eye and skin color, and age at-
tribtues. For skin and eye color, binary labels were used.
The labels for the dataset (aside from the new children en-

Figure 4. Photo taken during the disaster drill.

rolled) were determined by the Mechanical Turk results.
For those images with an interrater agreement > 60%, the
mode label was used, and then grouped into the appropriate
binary class. Images with too low an interrater agreement
were hand-fixed with the appropriate binary classes. When
a parent was asked to enter skin and eye color, she chose la-
bels from the finer-level as input, and these labels were then
grouped into the corresponding binary value.

For age, the dataset (aside from the new children en-
rolled) was labeled using information directly from the orig-
inal Parenting.com website the photos came from – the age,
within a range, was stored with the photos on the site, as it
was a required field for parents to fill in when uploading the
photos. Because there were many fewer children 5 years
or older on the site, we condensed those age ranges into
one. Thus, the age ranges used for labeling both the orig-
inal dataset and children added during the drill was: “1-12
months”, “13-23 months”, “2-4 years”, “5 years or older”.
When the parents were asked to input the age, they chose
from this same set of ranges. The softness values used for
the eye and skin attributes were .6. The variances used to
determine the softness values for age ranges were [5 5 3 2].

Parents looked at an average of 7.10 screens with a vari-
ance of 6.83 to find their child, with chance performance
being 40.6 screens. This experiment shows the validity of
the overall system over random browsing. In this experi-
ment, we used hand-labeled attributes, and the parents of-
ten chose the same labels for their children as the volunteer
who ground truthed them. Depending on time or personnel
restrictions after a disaster, it might be necessary to use au-
tomatic attribute labels. This will likely mean more ‘error’
in the attributes, and therefore more of a need for the level
of softness we used, and for browsing in general. We are
currently running experiments on real parents to evaluate
browsing in these scenarios.

6.2. Synthetic Parents

We have also run a series of experiments on “synthetic
parents” – i.e. people who are not parents, but who can
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look at the target image throughout the search. These ex-
periments demonstrate the effectiveness of browsing, albeit
not in a purely mental image framework. This section goes
over the setup and results of the two main tests.

In the first experiment using synthetic parents, we tested
browsing only. The synthetic parents searched over 861 im-
ages taken from the pre-made Parenting.com dataset. Even
grouping the labels, this set of images had a very uneven
distribution of skin colors. We displayed only black and
white versions of the images, and the only user options were
“Refine” and “Found”. We had 7 people run trials – 5 peo-
ple ran 10 trials, 1 person ran 6, and 1 person ran 4. Because
they could see the actual image they were looking for, we
asked them to take into account not only identity, but also
hairstyle and facial expression. Random performance was
47.8 screens (a total of 861 images, 9 images per screen),
and with browsing it took on average 16.3 screens with a
variance of 13.4 to find the missing child.

In the second test, we still used synthetic parents, but
we also tried adding attributes. This time the search was
performed on 1213 images from the pre-made dataset, such
that the distribution of skin colors was more even. The user
options were still only “Refine” and “Found”, but this time
we used color images. Five users evaluated the system with
and without attributes. Most users performed 5 trials for
each of the two settings, with the exception of one user who
only did 2 trials for the browse only setting.

For the attributes and browsing setting, only skin and
eye color binary attributes were used. The labels for the
browsing set were determined the same as in the disaster
drill. When the synthetic parent searched, she chose la-
bels from the finer-level as input, and these labels were then
grouped into the corresponding binary value. She chose the
attributes looking at the target image. However, errors could
still be introduced if there was a difference between what
the synthetic parent thought and the consensus on Mechan-
ical Turk.

For these tests, the prior was set to “all or nothing” –
i.e. if the image had both of the labels the same, it was
given a high score, otherwise it was given a low score. The
“softness” was set to the equivalent of 1− 10−6 – i.e., error
in attributes would make a large difference.

Because there are 1213 images in the browsing set with
9 images per screen, chance performance is 67.4 screens.
Browsing only yields 23.5 screens with a variance of 22.2,
and browsing with attributes yields 16.3 screens with a vari-
ance of 15.7.

7. Conclusion
In this paper we described a system to quickly reunify

children with their families should they get separated in a
disaster. To our knowledge, this is the first system specif-
ically designed for pediatric reunification using CBIR. We

presented a series of evaluations, including a realistic dis-
aster drill set up, run jointly with the Children’s Hospital
Boston, which reported quick retrieval times for the overall
system. Synthetic experiments demonstrated the merit of
browsing, in addition to the usefulness of attributes. We are
currently performing further evaluations of our system to
better show how browsing is helpful, in particular how using
browsing and attributes is better than purely using attributes.
Additionally, we are running an experiment using automat-
ically extracted attributes to show how browsing aids in the
presence of noisy attribute labels.
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