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Generalized Sparselet Models for Real-Time
Multiclass Object Recognition

Hyun Oh Song, Ross Girshick, Stefan Zickler, Christopher Geyer, Pedro Felzenszwalb, and Trevor Darrell

Abstract—The problem of real-time multiclass object recognition is of great practical importance in object recognition. In this paper, we
describe a framework that simultaneously utilizes shared representation, reconstruction sparsity, and parallelism to enable real-time
multiclass object detection with deformable part models at 5Hz on a laptop computer with almost no decrease in task performance. Our
framework is trained in the standard structured output prediction formulation and is generically applicable for speeding up object
recognition systems where the computational bottleneck is in multiclass, multi-convolutional inference. We experimentally demonstrate
the efficiency and task performance of our method on PASCAL VOC, subset of ImageNet, Caltech101 and Caltech256 dataset.

Index Terms—Obiject detection, sparse coding, deformable part models, real-time vision

1 INTRODUCTION

EAL-TIME category level recognition is a core require-

ment for visual competence in everyday environments.
Domains of modest complexity typically have hundred to
thousands of categories, and as one considers uncon-
strained search problems, the space of possible categories
becomes practically unlimited. On top of that, modern
object models [1], [2] consists of mixture of hundreds to
thousands of object filters.

As the number of categories grows, individual models
are increasingly likely to become redundant. In the case
of part-based models this redundancy can be exploited
by constructing models with shared parts. In this regard,
shared intermediate representations are highly appealing
due to their potential for gains in computational and sta-
tistical efficiency. These representations appear under a
variety of guises, such as steerable filter banks [3], low-
rank approximations for collaborative filtering [4], and
shared part models for object detection [5], [6], [7].

Recently, sparselets [8], [9] were introduced as a new
shared intermediate representation for multiclass object
detection with deformable part models (DPMs) [1]. In this
application, each sparselet can be thought of as a small,
generic part (e.g., a corner or edge) that is shared between
all object categories. The parts of a DPM, for any class, are
then constructed by tiling sparse linear combinations
(“activations”) of the sparselet mini-parts. With this
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representation, sparselets reconstruct approximate part
responses using a sparse matrix-vector product instead of
exhaustive convolutions.

In contrast to standard applications of sparse coding,
where features are encoded as sparse combinations of over-
complete dictionary elements, sparselet models learn a dic-
tionary of model parameters, and the models themselves are
encoded as sparse combinations of dictionary elements.
This leads to a compression of the models that can be
exploited to speed-up computation.

The computational efficiency gains of this approach were
demonstrated in a GPU sparselets implementation of DPM
detection that outperformed a baseline GPU implementa-
tion by a factor of 3 to 5x, and outperformed the CPU ver-
sion of the cascade algorithm in [10] by a factor of 15x, with
almost no loss in detection average precision. The sparsity
level used in this construction naturally trades off a
decrease in detection accuracy for greater speed. However,
the reconstructive method for learning activations proposed
in [8] is brittle, and pushing slightly beyond these speedup
factors leads to a substantial loss in detection accuracy.

This paper also helps unify sparselets with the steerable
part models of [11]. The fundamental differences between
the two methods lies in how they accelerate inference and
how they are trained. Steerable part models use a small part
dictionary with dense linear combinations and discrimina-
tive training, whereas sparselets use a larger dictionary
with sparse linear combination, and a reconstructive error
training paradigm. With regard to dictionary size and linear
combination density, the two approaches can be viewed as
operating at different points within the same algorithm
design space. The remaining difference, then, lies in the
training method. This paper unifies the two approaches by
showing how to train sparselet activations discriminatively,
or alternately, how to train steering coefficients sparsely.

2 RELATED WORK

Our work is related to three strands of active research: (1)
part sharing with compositional models [5], [6], [7], [12],
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[13], (2) sparse coding and dictionary learning [14], [15],
[16], and (3) modeling and learning with low-rank approxi-
mations [3], [17], [18]. None of these methods, however,
simultaneously exploit shared interclass information and
discriminative sparsity learning to speed up inference while
maintaining task performance.

A preliminary version of our system was described in [8],
[9]. First we introduce the notion of generalized sparselets in
structured output prediction problems [19], [20] and analyze
the computational gains in efficiency. Also, we formulate a
discriminative sparselet activation training framework and
several regularization schemes that lead to improved spar-
sity and task performance. We experimentally demonstrate
that the proposed sparselet activation learning algorithm
substantially outperforms reconstructive sparselets and gen-
eralizes to previously unseen object categories.

The paper is structured as follows. In Section 3, we start
with a brief overview of sparselets [8] and formulate struc-
tured output prediction with generalized sparselets [9]. In
Section 4, we describe how discriminative sparselet activa-
tion training fits into the framework and discuss several reg-
ularization methods for sparse activation learning. In
Section 5, we discuss important applications of the pro-
posed approach to multiclass object detection with mixtures
of deformable part models [1] and to multiclass image clas-
sification. Before we conclude in Section 7, we provide
experimental results on sensitivity of the sparselet dictio-
nary learned form random subset of object classes, the effect
of different sparselet block sizes, multiclass object detection,
multiclass image classification, and wall clock run time
experiments with and without GPU in Section 6.

3 SPARSELETS

In general, convolution of a feature pyramid with thousands
of object model filters becomes the major computational bot-
tleneck in multiclass object detection tasks. The sparselet model
tackles this problem by learning a dictionary of “universal”
object models that allows filter convolutions to be computed
as sparse linear combinations of sparselet convolutions. The
sparselet dictionary size is independent of the number of clas-
ses, and as the number classes increases the speedup offered
by the method approaches the ratio between the number of
classes and the reconstruction sparsity.

3.1 Sparse Reconstruction of Object Models
Formally, a sparselet model is defined by a dictionary
S =Is1,...,84] In R™% where each column s; in R” is
called a sparselet. We formulate the following optimization
problem to compute a sparselet model that reconstructs a
matrix of linear object filters W = [wy, ..., wg| € R™X col-
lected from a set of trained models

d

K ,
min Z w; — Zams:
min 3w =3 e

= (1)
leei [y < Ao

lIs;l] <1

Vi=1,..., K
Vi=1,...,d.

subject to

Although the above optimization is NP-hard, greedy
algorithms such as orthogonal matching pursuit algorithm
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(OMP) [21] can be used to efficiently compute an approxi-
mate solution. OMP iteratively estimates the optimal match-
ing projections of the input signal onto the dictionary S. The
above optimization problem is convex with respect to S if «;
is fixed, and so we can optimize the objective in a coordinate
descent fashion by iterating between updating «; while fix-
ing S and vice versa. For our experiments we use the online
dictionary learning algorithm from [15].

3.2 Precomputation and Efficient Reconstruction
We can precompute convolutions for all sparselets, and by
linearity of convolution we can then use the activation vec-
tors estimated for a target object detector to approximate
the convolution response we would have obtained from
convolution with the original filters. Denoting the feature
pyramid of an image as ¥, we have

W 5w, Ql\p*z:ai].si :Zaij(\lf*sj). (2)
J J

Concretely, we can recover individual part filter
responses via sparse matrix multiplication (or lookups)
with the activation vector replacing the heavy convolution
operation as shown in Eq. (3):

—————— W% Wi-————- Q-
—————— | Y Wo-—--—- el S
: N W 51—
: I W * S9-----
: ~ . . )
) I W % Sq-—----
————— W« Wg-—-—- | 0K |

(3)

where the first matrix on the right hand side is the matrix of
sparse activation vectors and the second matrix is a matrix
of all sparselet responses. The sparselet responses V¥ « s; are
independent of any filter, and thus their cost can be amor-
tized over all filters from all object models. Fig. 1 shows the
overview of the approach. In the remainder of this section
we present a generalization of this technique. First, we illus-
trate how to generalize sparselets for simple multiclass lin-
ear classifiers, and then for any linear structured output
prediction model.

3.3 Generalized Sparselets for Structured Output
Prediction

Consider a set of K linear classifiers parameterized by the

weight vectors wy, ..., wg each in R". An input feature vec-

tor x € R" is assigned to a class fw(x) € {1,..., K} accord-

ing to the rule

fw(x) = argmax w, x. 4)
kef{1,.... K}

Our objective is to reduce the computational cost of comput-
ing Eq. (4).

We begin by partitioning each parameter vector wy, into
several m-dimensional blocks. A block is a subvector of
parameters chosen so that the set of all blocks admits a sparse
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Fig. 1. Overview diagram of object detection with sparselets. Once we evaluate the image with learned sparselets, the reconstruction phase can be

done via efficient sparse matrix vector multiplications.

representation over S. Concretely, in the examples that fol-
low blocks will be chosen to be fragments of part filters in a
deformable part model (see Fig. 3), or simply contiguous
subvectors of the parameters in a bag-of-visual-words classi-
fier. For clarity, we will assume that n = pm for some posi-
tive integer p. We can rewrite each linear classifier in terms
of its blocks, b;; in R™, such that w; = (va . ,bzp)T. Simi-
larly, we can partition an input feature vector into m-dimen-
sional subvectors, c; in R™, such that x = (cl, ..., c;)T.
Given a sparselet model S, we can approximate any
vector b € R™ as a sparse linear combination of the sparse-

lets in S
b ~ Sa =

P ®

a;£00iSi
where o = (ay, ... ,ad)T € R%is a sparselet activation vector for
b. The quality of the approximation depends on the fixed
dictionary and the chosen activation vector. Now, the dot
product in Eq. (4) can be approximated as

T

WX = (b;l, .. .,b;p) (CL .. .,cZT))T

= iblici ~ i(Sam)Tci = ia{,i(STci).
i=1 i1

i=1

(6)

We note two important properties of Eq. (6): (1) the sparselet
responses S'c, are independent of any particular classifier,
and (2) the subsequent product with «;; can be computed
efficiently by accessing only the nonzero elements of ;. In
the following, let Ay be the average number of nonzero ele-
ments in each ay;.

Multiclass classification is a special case of structured
output prediction. To complete the description of general-
ized sparselets for structured output prediction, consider
the linear discriminant function

fuw(x) = argmax w' ®(x,y), (7
yey

where the input x comes from an arbitrary input space
&, and f,, outputs an element from the label space ). In
the following section, we give concrete examples of how
the weight vector w is partitioned into blocksand analyze
the computational cost for three scenarios: multiclass
classification, multiclass convolutional classifiers and
part based models.

3.4 Computational Cost Analysis

We can analyze generalized sparselets for multiclass clas-
sification by looking at the cost of computing b],c; for a
single block i and for all classes k. The original classifiers
require K'm additions and multiplications. The general-
ized sparselet approach has a shared cost of dm opera-
tions for computing the sparselet responses, r; =S'c,,
and a cost of K\, operations for computing a].r; for all
classes. The overall speedup is thus Km/(dm + K)\y). To
make this value large, the dictionary size d should be
much smaller than the number of classes K, and the aver-
age number of nonzero coefficients in the activation vec-
tors should be much less than the sparselet size m. As the
number of classes becomes large, the cost of computing
sparselet responses becomes fully amortized which leads
to a maximum theoretical speedup of m/X, [8]. This
emphasizes the importance of a sparse representation, in
contrast, for example, to the dense steering coefficients in
[11]. This analysis shows that generalized sparselets are
most applicable to multiclass problems with a large num-
ber of classes. This is a regime of growing interest, espe-
cially in computer vision as exemplified by new datasets
such as ImageNet [22], which includes more than 10,000
categories [23]. In Section 6.5 we show results on the
Caltech-{101, 256} [24], [25] datasets demonstrating that
even with only one or two hundred classes generalized
sparselets can accelerate simple linear classifiers.

Analysing the speedup for general structured prediction
problems requires reasoning about the feature map ®(z,y)
and the inference algorithm used to compute the argmaz in
Eq. (7). Let A be an algorithm such that A(w,z) computes
fw(z), i.e. it solves the argmax in Eq. (7). To analyze the
speedup, we will build a bipartite graph G = (BUC, £) that
encodes certain computations performed by A. The graph
depends on A’s inputs w and z, but to lighten notation we
will omit this dependence. As before, we assume w is parti-
tioned into a set of blocks {b;} in R™ such that
w=(bl,..., b[T))T, each of which will be approximated with
sparselets.

Each node in G corresponds to a vector in R” (either a
block of features or a block of model parameters). With a
slight abuse of notation we will label each node with the
vector that it is in correspondence with. Similarly, we will
label the edges with a pair of vectors (i.e., nodes), each in
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Fig. 2. Computation graph for a multiclass problem with K = 3. Let the sparselet size be m and the number of blocks be p = 2. We define w =
(wl,wl,whT in RE?™. Each per-class classifier wy, in R is partitioned into p blocks such that w;, = (b}, bJ,)T. An input vector x in R”™ is parti-
tioned into subvectors such that x = (cT,cl)". The feature map ®(x,k) in RE» is defined as: ®(x,1) = (x',0,...,0)"; ®(x,2) = (0,...,0,
x",0,...,0)"; ®(x,3) = (0,...,0,x")". The edges in the graph encode the dot products computed while solving argmax;, 5 5 W' ®(x, k).

R™. We define the first set of disconnected nodes in G to be
the set of all blocks in w: B = {by,...,b,}. We will define
the second set of disconnected nodes, C, next.

Any algorithm that computes Eq. (7) performs some
number of computations of the form b'c, for a block b € B
and some vector ¢ € R". The vectors ¢ appearing in these
computations are most likely subvectors of ®(z,y) arising
from various values of y. The graph G encodes all unique
computations of this form. Conceptually, C could be con-
structed by running algorithm A and adding each unique
vector c that appears in a computation of the form b'c to C.
The edge set £ is constructed by connecting a node b € 5 to
a node in c € C if and only if A performs the computation
b'c. For a specific algorithm A, we can construct G analyti-
cally (instead of by running the algorithm as just described).
An example graph for a multiclass classification problem is
given in Fig. 2.

The edges in G encode exactly all of the computations of
the form b'c and therefore we can use it to analyze the
computational costs of A with and without generalized
sparselets.

Obviously, not all of the computation performed by A
are of the form captured by the graph. For example, when
generalized distance transforms are used by A to solve in
the computation of Eq. (7) for deformable part models, the
cost of computing the distance transforms is outside of the
scope of G (and outside the application of sparselets). We let
the quantity T'(w, z) account for all computational costs not
represented in G.

We are now ready to write the number of operations per-
formed by A(w, z). First, without sparselets we have

TOriginal (W7 1') = T(W7 l’) +m Z ng(C), (8)

ceC

where deg(v) is the degree of a node v in G. The second term
in Eq. (8) accounts for the m additions and multiplications
that are performed when computing b'c for a pair of nodes
(b,c) €&

When sparselets are applied, the cost becomes

TSparselet,s (W7 1’) = T(W, 33) + dmlcl + )\0 Z deg(c), (9)

ceC

The second term in Eq. (9) accounts for the cost of precom-
puting the sparselet responses, r = Sc (cost dm), for each
node in C. The third term accounts for the sparse dot

product a(b)"r (cost \g) computed for each pair (b,c) € &,
where «(b) is the sparselet activation vector for b.
The speedup is the ratio Toyiginal / Leparselets

T(w,x)+m Zlc:‘l deg(c;)

i . (10)
T(w,z) +dm|C| + X D, deg(c;)

In all of the examples we consider in this paper, the degree
of each node in C is a single constant: deg(c) = @ forall c € C.
In this case, the speedup simplifies to the following:

T(w,z) + QICIm

. 11
T(w,z) + dm|C| + Q|C|\o (1)

This analysis shows that sparselets are not applicable to
inference algorithms where T'(w,z) is large. However, in
many interesting cases, such as those discussed below,
T(w,z) is small. If we narrow our scope to only consider
the speedup restricted to the operations of A affected by
sparselets, we can ignore the 7'(w,z) terms and note that
the |C| factors cancel

Qm

This narrowing is justified in the multiclass classification
case (with K classes) where the cost 7'(w,z) amounts to
computing the maximum value of K numbers, which is
negligible compared to the other terms. We also observe
that @ = K, yielding the following speedup:

Km

dm+ KXy’ (13

The computation graph for a simple multiclass example
with K = 3 is given in Fig. 2. For more intuition, we con-
sider two examples below.

Multiclass convolutional classifiers. Consider the multiclass
setting and let w = (w1,...,wk)" in RE". As before, each
wy, is partitioned into p blocks. But now, instead of an
n-dimensional input feature vector, consider larger input
vectors x € R?, ¢ > n, and the feature map ®(x, (k,y)) =
0,...,0,%x],,,0,..., 0)". We write x,,, to denote the length-n
subvector of x starting at position y. This subvector is placed
into the kth “slot” of ® (corresponding to the slot for w; in
w). The label space ) consists of all valid (class, position)
pairs (k,y). This setup is equivalent to the problem of
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searching for the subvector of x that has maximum correla-
tion with a weight vector in {wy}. A concrete example of
this is multiclass object detection with Dalal and Triggs style
scanning window detectors [26]. In contrast to the non-con-
volutional multiclass setting, now each block of w must be
multiplied with each subvector of x while scanning for the
maximum response (imagine “sliding” each w; over x
while computing a dot product at each position), and thus
Q= Kp.

Part-Based Models. Another common situation that leads
to a large @ value is when w parameterizes a set of “parts”
and fy(z) computes the optimal assignment of the parts to
locations y in the input x. For example, a location y might be
a position in a sentence or an image. In this problem setting,
there is a (typically very large) pool of feature vectors,
where each vector in the pool describes one location in z.
The feature map ®(z,y) acts on a label y by installing the
selected subset of local feature vectors into the appropriate
slots of ®. These problems typically also involve pairwise
interactions between the labels assigned to some pairs of
parts. When these interactions form a tree, dynamic pro-
gramming can be used to efficiently compute the optimal
label assignments. In the dynamic programming algorithm,
the dot product between each part model and each local fea-
ture vector must be evaluated. As a concrete example, con-
sider the deformable part models of [1]. For this model, the
dynamic programming algorithm implicitly generates the
large set of local feature vectors through the convolution of
each part with a histogram of oriented gradients (HOG) fea-
ture image [1], [26]. Given object detectors for K classes,
each with NV parts, each of which is partitioned into p blocks,
this model and algorithm result in Q = KNp. The part-
based structure of this problem increases sparselet response
reuse by a factor of N.

4 DISCRIMINATIVE ACTIVATION OF GENERALIZED
SPARSELETS

Throughout the rest of this paper we consider linear models
defined by parameter vectors that are partitioned into K

slots: w = (w],...,wk)". In the multiclass setting, slots cor-
respond to the individual classifiers. More generally, slots
might be structures like the filters in a deformable part
model. Generalized sparselets may be applied to any subset
of the slots. For a slot w;, to which sparselets are applied, it
T
The {w}} may have different dimensions, as long as each is
a multiple of the sparselet dimension m.

In [8], the task of learning the sparselet model S from a
training set of parameter blocks {by;} was naturally posed
as a sparse coding dictionary learning problem [14], [15].
The objective was to find a dictionary S and activation vec-
tors {ey;} that minimize reconstruction error, subject to an
ly-pseudo-norm sparsity constraint on each activation vec-
tor. Then, given the learned dictionary S, the activation vec-
tors for a model w (either previously unseen or from the
training set) were learned by minimizing reconstruction
error, subject to the same sparsity constraint.

The experimental results in [8] show that task perfor-
mance (average precision for object detection) quickly

is further partitioned into p; blocks: wj, = (va ...,b
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degrades to undesirable levels as the activation vectors are
made increasingly sparse. This result is intuitive given the
reconstructive activation vector learning method used in
[8]. When reconstruction error is low (i.e. low sparsity), the
original decision boundary of the model is roughly pre-
served. However, as sparsity increases, and the reconstruc-
tion error becomes larger, the decision boundary of the
reconstructed model changes in an uncontrolled way and
may no longer be discriminative for the target task.

Our solution is to replace reconstruction error with a dis-
criminative objective. To do this (assuming a fixed dictio-
nary), we propose to rewrite the original optimization
problem used for training the linear model in terms of spar-
selet responses, which now act as training features, and the
activation vectors, which now act as the model parameters.
To achieve sparsity, we augment this new objective function
with a sparsity inducing regularizer. As we show below, the
somewhat obvious choice of /¢; regularization leads to
unsatisfactory results, motivating the development of an
alternative approach.

4.1 Learning Discriminative Activation Vectors

Here we consider learning the activation vectors for a pre-
dictor w in the structural SVM (SSVM) framework [19], [20].
The SSVM training equation is

* : A 2
w" = argmin —||w||;
w2

M
+%;rggyx<ww<xi,@> AL ) — WD (),

(14)
where A(y,y') is a loss function. Given a fixed sparselet
model S, we can rewrite Eq. (14) in terms of the activation
vector parameters and sparselet responses. For clarity,
assume the slots of w have been arranged so that slots 1
through s are represented with sparselets, and slots s + 1

bl )T that

through K are not." For each slot w;, = (b, .. -
is represented by sparselets, we define a corresponding acti-

vation parameter vector o) = (aj,... ,a{pk)T € R+ Let

) T
o= (a,...,0q

)" and w = (Wlis... ,wk)", and define the
new model parameter vector 8 = (', \7VT)T.

We transform the feature vector in a similar manner. For
a feature vector slot ®(z,y) = (c],..., c;k)T that will be rep-

resented by sparselets, we transform the features into spar-
c!'S)" € R7#, The fully

> TPk
transformed feature vector is ®(z,y) = (P](z,y),...,
®[(z,y), P!

s+1

selet responses: (i)k(x7y) =(cfS,...
(@, ), .., ‘I)I((:r, y))T. The resulting objective is
* . A
B* = argmin R(«) +§ %l
B
1M L -
+ M; rgg%?(ﬁ (D(xiw y) + A(z-/h y)) - ﬁ (I)(ZIZ'Z;7 yj)’

(15)

where R(«) is a regularizer applied to the activation vectors.

1. This flexibility lets us leave slots where sparselets don’t make
sense unchanged, e.g. a bias parameter slot.
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4.2 Inducing Sparsity
We consider three sparsity inducing regularizers R.

I. Lasso penalty [27]
Rpasso(a) = A1 |e]|
II.  Elastic net penalty [28]
Rex(@) = Alell; + el
II. Combined ¢, and /; penalty
Roa(a) = Aoler]|3 subject to [|et]|, < Ao
The first two regularizers lead to convex optimization
problems, however the third does not. We consider two
alternative methods for approximately minimizing Eq. (15)
when R(«) = Rj2(«). Both of these methods employ a two
step process. In the first step, a subset of the activation coef-
ficients is selected to satisfy the constraint [|e||, < A¢. In the
second step, the selection of nonzero variables is fixed (thus
satisfying the sparsity constraint) and the resulting convex
optimization problem is solved. We consider the following
variable selection strategies.

III-A. Owershoot, rank, and threshold (ORT). In this method,
we first apply either Ry, or Rpn with A; set to
overshoot the target number of nonzero variables
Xo. We then rank the nonzero activation coeffi-
cients by their magnitudes and select the ) varia-
bles with the largest magnitudes. Each variable in
the selected variable set’s complement is thresh-
olded to zero.

Orthogonal matching pursuit. In this method, we select
the nonzero variables by minimizing the reconstruc-
tion error between parameter blocks and their sparse
coding approximation subject to the constraint
[lee|[; < Ag. In practice, we use orthogonal matching
pursuit [21] as implemented in SPAMS software
package [15]. This produces the same initial set of
activation vectors as the baseline method [8]. How-
ever, we then learn the selected variables discrimina-
tively according to Eq. (15).

III-B.

5 APPLICATION OF GENERALIZED SPARSELETS

We first focus on the application of our novel sparselet
activation vector learning approach to object detection
with mixtures of deformable part models [1] in order to
facilitate direct comparison with the results in [8]. In
brief, the deformable part model from [1] is specified by
a root filter that models the global appearance of an
object class and a set of N part filters that capture local
appearance. The part filters are attached to the root filter
by flexible “springs” that allow the model to match the
image with a deformed arrangement of parts. In practice,
several DPMs are combined into one mixture model to
better represent more extreme variation in object class
appearance.

A DPM is matched to an image by maximizing a score
function over latent variables z. Let z= (¢, pg,..-,0n)
specify a mixture component c¢ € {1,...,C}, root filter
location p,, and part filter locations p;, ..., p) for a model
with C' components and N part filters. The score function
can be written as

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.37, NO.5, MAY 2015

N
SCOI’G(.’L‘, Z) =W, + W;rz‘/fm(lv pz)
1=0

N (16)
+ Z dz—is(ii(pﬂv pz) = WTCI)(.Z’, Z)v
=1

where w,; are the weights in filter ¢ of component ¢, d; are
the quadratic deformation parameters specifying the stiff-
ness of the spring connecting the root filter and part filter :
of component ¢, and w, is a score bias. The feature functions
Y.i(x, p;) and 8. (py, p;) are local image features (HOG) and
deformation features, respectively. The score can be written
as a single dot production between

T T T T
W= (Wi, .. WE, Wiy oo s Wins oo s Wegs - s Wepys
T T T T \T (17)
diy,..diy, o dey, - dey)

and a sparse cumulative feature vector ®(z,z) that is laid
out with the same slots as w.

We apply sparselets to all filter slots of w, i.e., the {w;}.
The part filters all have the same 6 x 6 shape, but the root
filters, both within a mixture model and across classes, have
a variety of dimensions. Unlike [8] and [11] we decompose
the root filters, not just the part filters. To do this, we employ
3 x 3 sparselets and pad the root filters with an extra one or
two rows and columns, as needed, to ensure that their
dimensions are multiples of 3. Summed over the models for
all 20 object classes [29] in the PASCAL VOC 2007 dataset
[30], there are a total of 4954 3 x 3 subfilters. In our experi-
ments below, we represent all of these subfilters by sparse
linear combinations of only 256 sparselets — effectively
achieving more than an order of magnitude reduction in the
number of model parameters. The HOG image features are
32-dimensional, leading to a sparselet size of m = 288. Our
dictionary is thus undercomplete — which is desirable from
a runtime perspective. Our experimental results confirm
that the sparselets spans a sufficient subspace to represent
the subfilters in the 20 PASCAL classes (Section 6.3), as well
as to generalize to previously unseen classes from the
ImageNet dataset (Section 6.4). Our DPM sparselets are
visualized in Fig. 3.

5.1 LatentSVM
The DPMs in [1] are learned by optimizing a latent SVM
(LSVM):

* . A 2
w" = argmin— ||w||
w 2

1M
+Mlzl:max(0,l -y Zgé%ii)w-rq)(xi,z)) (18)

The objective function in Eq. (18) is not convex in w and in
practice a local optimum is found by coordinate descent on
an auxiliary function that upper bounds Eq. (18) (see [1] for
details). The coordinate descent algorithm alternates
between two steps. In the first step, the set Z(z;) is made
singleton—for each positive example—by setting its only
member to be an optimal latent value assignment for exam-
ple x;. This step results in a convex optimization problem
that has the same form as a structural SVM. It is therefore
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Fig. 3. (Left) 128 of the 256 sparselets learned from 20 DPMs trained on the PASCAL VOC 2007 dataset. (Right) The top 16 sparselets activated for

the motorbike category.

straightforward to apply discriminative activation learning
to a LSVM: we follow the same coordinate descent scheme
and apply the SSVM problem transformation from Sec-
tion 4.1 to the LSVM'’s convex optimization subproblem.

Our implementation is based on the voc-release4
source code from [29]. To optimize the transformed objec-
tive function Eq. (15) when R(«) is either Ryaso(c) or
Rpx(«), we modified the default stochastic subgradient
descent (SGD) code to implement the truncated gradient
descent update of Langford et al. [31]. This method achieves
actual sparsity by shrinking parameters and then truncating
small values every few SGD iterations.

5.2 Visualizing Learned DPM Sparselets

Each DPM sparselet can be visualized as a 3 x 3 filter. In
Fig. 3 (left) we show the positive weights of 128 of the 256
sparselets that we learned from DPMs for the 20 classes
from the PASCAL VOC 2007 dataset. Regular structures,
such as horizontal, vertical, and diagonal edges, as well as
arcs and corners, are visible. We can order the sparselets
activated for a particular category model by sorting them by
the magnitude of their activation coefficients. Fig. 3 (right)
shows the top 16 sparselets for the motorbike category.
Some of the activated sparselets resemble circular fragments
of wheels.

5.3 Image Classification

To illustrate generalized sparselets applicability beyond
DPMs, we evaluated our approach on the Caltech-101 [24]
(102 classes, including background) and Caltech-256 (257
classes) [25] datasets. Since our aim is not state-of-the-art
accuracy, but rather to demonstrate our learning method,
we implemented sparselets atop a basic, publicly available
image classification framework. Specifically, we used the
phow_caltech101 method included in VLFeat [32]. This
approach trains one-against-all linear SVMs using bag-of-
visual-words features (600 word vocabulary, 2 x 2 and
4 x 4 spatial pooling, and an approximate x> feature map
[33]). In Section 6.5 we experiment with two block sizes,
m € {100,200}. These values of m lead to 36,720 (or 18,360)
blocks in total for the 102 Caltech-101 classifiers, and 92,520
(or 46,260) blocks in total for the 257 Caltech-256 classifiers.

We represent all of these blocks as sparse linear combina-
tions of d = 40 sparselets.

6 EXPERIMENTS

We performed six sets of experiments. The first experiment
evaluates the sensitivity of the sparselet dictionary learned
from random subset of object classes. The second experi-
ment was designed to evaluate the effect of sparselet block
size when the precomputation time is fixed versus when the
representation space is fixed. The third experiment com-
pares each of the regularization methods described in
Section 4.2. The fourth experiment was designed to evaluate
how well a set of sparselets learned on one set of models
generalizes to a new set of models when learning the activa-
tion vectors in our discriminative framework. The fifth
experiment shows results in multiclass classification. The
last experiment compares wall clock run time with and
without GPU.

6.1 Sensitivity to Heterogeneity of Object Classes
Used in Dictionary Construction

To test how sensitive the learned dictionary of sparselets is
with respect to the set of object classes used for the dictio-
nary construction, we designed the following experiment
on PASCAL VOC 2007 [30] dataset. For a test object class,
we ran five trials of constructing the dictionary from five
randomly chosen object models excluding the test object
class (five different dictionaries per class). Empirically
(Table 1), a dictionary learned from a randomly chosen sub-
set of the object classes shows negligible loss in average pre-
cision compared to the dictionary learned from all the
classes with insignificant standard deviation. This also
shows the dictionary learned on a subset of object classes
generalizes to previously unseen object classes.

6.2 Effect of Different Sparselet Block Sizes

In practice we can divide a part filter into smaller subfilters
before computing the sparselet representation. The subfilter
size (which equals the sparselet size) determines certain
runtime and memory tradeoffs. Let F'be a hp x wr x [ filter,
and let the sparselet size be h; x wy x I. We require that A
and w; are divisors of hy and wp, respectively, and divide F'
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TABLE 1
Statistics of Average Precision for All 20 Classes over Five
Trials of Constructing the Dictionary from Five Randomly
Chosen Classes (Five Different Dictionaries Per Class)

Average Precision

Mean Std Max Min Full Dict
aeroplane 0.2922  0.0065 0.3024 0.2851 0.2966
bicycle 0.5542  0.0133  0.5747  0.5430 0.5688
bird 0.0690  0.0365 0.0948 0.0143 0.0343
boat 0.1236  0.0075 0.1352  0.1175 0.1394
bottle 0.1995 0.0104 0.2170 0.1903 0.2298
bus 0.4788 0.0129 0.4883  0.4581 0.5009
car 0.5479  0.0036 0.5526  0.5436 0.5640
cat 0.1296  0.0287 0.1631  0.0870 0.1432
chair 0.2008  0.0062  0.2075 0.1934 0.2057
cow 0.2226  0.0028 0.2258 0.2196 0.2384
diningtable  0.2136  0.0068  0.2215  0.2051 0.2381
dog 0.0574  0.0287 0.1054  0.0344 0.0590
horse 0.5408 0.0036 0.5442  0.5367 0.5542
motorbike 04611 0.0105 04721 0.4446 0.4724
person 0.3538 0.0080 0.3622  0.3459 0.3834
pottedplant ~ 0.1048  0.0084 0.1163  0.0954 0.1127
sheep 0.1435 0.0148 0.1575 0.1236 0.1622
sofa 0.2940 0.0262 0.3144 0.2584 0.3191
train 0.4205 0.0102 0.4319 0.4039 0.4481
tvmonitor 0.3884 0.0059 0.3966 0.3826 0.3791

The last column (Full Dict) denotes the result when all 20 classes were used to
construct the dictionary.

into an hp/hs x wp/w;, array of tiled subfilters. We approxi-
mate (or “reconstruct”) a filter response by summing over
approximate subfilter responses.

Given precomputed sparselet responses, reconstruct-
ing the response to F requires at most A\o(hp/hs)(wp/ws)
operations. Low-cost approximation is essential, so
we fix the reconstruction budget for F' at Ao(hp/hs)
(wp/ws) < Bi. Within this budget, we can use fewer,
smaller sparselets, or more, larger sparselets. We consider
two other budget constraints. Precomputation time Bp:
convolving an input with the entire sparselet dictionary
requires h,wgld operations. For a fixed budget h w,ld <
Bp, we can use more, smaller sparselets, or fewer, larger
sparselets. Representation space Bg: the space required to
store the intermediate representation is proportional to
the dictionary size d.

We evaluated the filter reconstruction errors for four dif-
ferent subfilter sizes. For these experiments we fixed the
reconstruction budget A\o(hr/hs)(wp/ws) = 112 by setting
Ao to be {112,28,13,3} for subfilter size of {6 x 6,
3 x3,2x 2,1 x 1}. Fig. 4 (left) shows the result as the subfil-
ter sizes vary while both the precomputation time and
reconstruction time budget is fixed. We set the dictionary
size d = {128,512,1152,4608} for {6 x 6,3 x 3,2 x2,1 x 1}
sized sparselets to fix the precomputation budget
hswyd = 4608.

For fixed reconstruction and precomputation budgets Br
and Bp, we studied the effect of varying sparselet size.
Empirically, filter reconstruction error always decreases as
we decrease sparselet size. When there are not too many
classes, the precomputation time is not fully amortized and
we would like to make Bp small. For a fixed, small Bp we
minimize reconstruction error by setting h; and w; to small
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values as shown is Fig. 4 (top). However, as we make the
sparselets smaller, d grows, possibly making the representa-
tion space budget By too large. In our experiments, we bal-
ance memory usage with sparselet size by setting h; and w,
to 3.

When precomputation is amortized, minimizing precom-
putation time is less important. However, in this case we are
still concerned with keeping the intermediate representa-
tion reasonably small. Fig. 4 (bottom) shows the results as
the subfilter sizes vary while both the representation space
and reconstruction time budget is fixed. We fixed the dictio-
nary size d = 512 for this experiment. By fixing the response
and representation space budgets, we observe that using
more, larger sparselets minimizes reconstruction error (at
the expense of requiring a larger precomputation budget) as
shown in Fig. 4 (bottom).

6.3 Comparison of Regularization Methods

We evaluated the reconstructive sparselets [8] and the dis-
criminatively trained activation vectors [9] on the PASCAL
VOC 2007 dataset [30]. Fig. 5 (left) shows the mean average
precision (mAP) at various activation vector sparsity levels.
We set the sparsity regularization constant A; to
{0.010, 0.015,0.020} for the lasso penalty (“R-Lasso”) and to
{0.025,0.030,0.035} for the elastic net penalty (“R-EN”).
For the combined 4, and /¢, penalty, Ay was set to
{48,32,16,8,4,2}.

The /,-based regularization methods were very difficult
to tune. Adjusting A; to hit a desired sparsity level
requires an expensive grid search. Additionally, the ratio
between hinge-loss and the regularization term varied sig-
nificantly between different classes, leading to a wide
range of sparsity levels. Ultimately, these methods also
underperformed in terms of mAP. Combined ¢, and ¢;
regularization (“R-0,2 ORT” and “R-0,2 OMP”), in con-
trast, produces exactly the desired sparsity level and out-
performs all other methods by a large margin. One
interesting observation is that the mAP margin grows as
the activation vectors become increasingly sparse.

6.4 Universality and Generalization to Previously
Unseen Categories

To test the hypothesis that our learned dictionary of sparse-
lets, in conjunction with the proposed discriminative activa-
tion training, are “universal” and generalize well, we used
the sparselet dictionary learned from 20 PASCAL classes
and evaluated detection performance on novel classes from
the ImageNet [22] dataset. We selected nine categories (sail-
boat, bread, cake, candle, fish, goat, jeep, scissors and tire)
that have substantial appearance changes from the PASCAL
classes. Fig. 5 (right) shows that our method generalizes
well to novel classes and maintains competitive detection
performance even in the high sparsity regime.

6.5 Image Classification with Generalized
Sparselets

Fig. 6 compares classification accuracy versus speedup fac-
tor (averaged over six machines with different CPU types).
Generalized sparselets consistently provide a good

speedup, however only the discriminatively trained
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Fig. 4. Reconstruction error for all 20 object categories from PASCAL 2007 dataset as sparselet parameters are varied. The precomputation time is
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B33 .........................................................
- e __
30-——f?5:=—f¥:§ ................
28"9-“7‘ .................................... O s <
g 25 S S N
=) :
é 3 Original
20—+ Reconstructive sparselets
-3~ R-Lasso
181~ R-EN
154 2¢ R-0,2 ORT
- R-0,2 OMP § .
81 88 94 97 99
Sparsity (%)

ImageNet object detection (9 classes)

Original

| — Reconstructive sparselets
—*—R 0,2 OMP

........... o TE— ................ ....... ¥

81

88
Sparsity (%)

Fig. 5. Mean average precision (mAP) vs. sparsity for object detection on the PASCAL 2007 dataset (left) and for nine classes from ImageNet (right).
The dictionary learned from the PASCAL detectors was used for the novel ImageNet classes. “Original” is the original linear model; “Reconstructive
sparselets” is the baseline method from [8]; the remaining methods correspond to discriminative learning [9] with each of the regularizers described

in Section 4.2.
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sparselet activation models provide high accuracy, occa-
sionally besting the original classifiers. In these experi-
ments, we used a fixed dictionary size d = 40. We explored
two block sizes m = 100 or 200. Each curve shows results at
three sparsity levels: 0.6, 0.8, and 0.9. We trained and tested
with 15 images per class on both datasets. As predicted by
our cost analysis, increasing the class count (from 102 to
257) magnifies the speedup factor.

6.6 Run Time Experiments
We performed two sets of experiments to measure the wall
clock runtime performance with and without GPU.

GPU experiment. Fig. 7 shows the relative comparisons for
DPM implementation on GPU, reconstructive sparselets
and discriminatively activated sparselets. For sparselets, the
dictionary size K was set to 256 and the sparsity parameter
Ao was varied in the following range {48,32,16,8,4,2}
which corresponds to {81,88,94,97,98,99} percent sparsity

32
30

mAP (%)
NN

16 =¥ Discriminatively activated sparselets
144 ——Reconstructive sparselets

I 2 3 4 5 6 71 8
Speedup factor over CPU cascade

Fig. 7. Run time comparison for DPM implementation on GPU, recon-
structive sparselets and discriminatively activated sparselets in contrast
to CPU cascade.
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respectively. As a reference for comparison, the CPU cas-
cade took about 17.1 seconds per image to detect all 20
classes.

In all the GPU experiments, detection thresholds were
automatically adjusted at runtime via binary search to deliver
500010 detections per object class, per frame. This was done
to ensure sufficient detection coverage for approaching each
object category’s maximum-recall point, while limiting mem-
ory consumption and runtime of the non-maximum suppres-
sion algorithm to a known upper bound.

The CPU cascade experiment was performed on a quad-
core Intel Core i5-2400 CPU @ 3.10 GHz with 8 GB of RAM.
GPU experiments were conducted on NVIDIA GeForce
GTX 580 with 3 GB of memory.

Single core CPU experiment. On a single core CPU experi-
ment (Intel Core i7) with 8 GB memory, we compare our
method against our efficient baseline implementation of
DPM which utilizes SSE floating point SIMD instructions.

The sparsity levels {81, 88,94, 97, 98,99} percent resulted
in {2.63,3.99,10.92,15.81,19.90, 22.57} times speedup in fil-
ter convolution stage and {1.83,2.25,3.16,3.39,3.51, 3.54}
times speedup in end-to-end detection of 20 PASCAL clas-
ses per image, respectively. The variance of the experiments
over test images were insignificant. The wall clock convolu-
tion and end-to-end time for detecting 20 classes per image
per core for the baseline DPM code was 46.64 and 59.77 sec-
onds respectively. For comparison, the speedup factor for
the cascade method with respect to the baseline DPM code
was 3.04x per image per core for the end-to-end detection.

Even though the convolution stage is substantially accel-
erated via sparselets, other stages of the DPM framework
(i.e. distance transform, zero padding filter responses)
upper bounds the maximum possible end-to-end detection
speedup (if the convolution stage and zero padding convo-
lution responses takes 0 seconds) to be about 4x per core.
However, our implementation of sparselets nearly reaches
maximum possible speedup (up to 3.5x). In both GPU and
CPU implementations, discriminatively activated sparselets
significantly outperformed reconstructive sparselets in the
high speedup, high sparsity regime.
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For completeness, we plan to maintain the source code at
the following link:
https://github.com/rksltnl/sparselet-releasel

7 CONCLUSION

We described an efficient object recognition model that
simultaneously utilizes model redundancy and reconstruc-
tion sparsity to enable real-time multiclass object recogni-
tion. We also showed that the framework generalizes to any
structured output prediction problem. The experimental
results show that a fixed number of sparselets learned from
one dataset generalizes to novel objects from other datasets.
This allows for reusing the pretrained sparselets with vari-
ous other designs of activation vectors. In the future, we
would like to design more flexible activation vectors to
enable computational complexity which is logarithmic in
number of object classes.
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