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Abstract

Color is known to be highly discriminative for many ob-
ject recognition tasks, but is difficult to infer from uncon-
trolled images in which the illuminant is not known. Tradi-
tional methods for color constancy can improve surface re-
flectance estimates from such uncalibrated images, but their
output depends significantly on the background scene. In
many recognition and retrieval applications, we have ac-
cess to image sets that contain multiple views of the same
object in different environments; we show in this paper that
correspondences between these images provide important
constraints that can improve color constancy. We intro-
duce the multi-view color constancy problem, and present
a method to recover estimates of underlying surface re-
flectance based on joint estimation of these surface prop-
erties and the illuminants present in multiple images. The
method can exploit image correspondences obtained by var-
ious alignment techniques, and we show examples based on
matching local region features. Our results show that multi-
view constraints can significantly improve estimates of both
scene illuminants and object color (surface reflectance)
when compared to a baseline single-view method.

1. Introduction
While it is well known that color is very discriminative

for many object recognition and detection tasks, contempo-

rary methods rarely attempt to learn color models from im-

ages collected in uncontrolled conditions where the illumi-

nant is not known. This is because illuminant color can have

a huge effect on the reported image color (see Fig. 1), and

when the illuminant is not known, the learned color model

ends up having limited discriminative utility in new images.

One approach to dealing with this difficulty is to com-

pensate for illumination effects by applying a traditional

color constancy technique to each training image. This ap-

proach has limited benefit, however, because methods for

computational color constancy—including various forms of

Bayesian estimation [3, 18, 11], gamut mapping [9], and

“gray world” [4, 20, 5]—rely on prior models for the dis-

Figure 1. Top row: An object in three different environments with

distinct and unknown illuminants. Bottom rows: Five local regions

from the same object, extracted from five uncontrolled images like

those above, demonstrating the extent of the variation in observed

color. Our goal is to jointly infer the object’s true colors and the

unknown illuminant in each image.

tribution of surface reflectances in a scene. This means that

a color model that is learned for a particular object can be

heavily influenced by the background scenes that happen to

appear during training, and again, its utility is limited.

This paper exploits the simple observation that when

learning object appearance models from uncontrolled im-

agery, one often has more than one training view avail-

able. Figure 1 shows an example where images of an object

are acquired in distinct environments with unknown light-

ing. When images like these are available, we can estab-

lish region-level correspondences between images and use

multi-view color constraints to simultaneously improve our

object color model and our estimates of the illuminant color
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in each image. This can be useful, for example, for obtain-

ing better object color estimates for image-based modeling

from uncontrolled images, and for object recognition in do-

mains where the training images are uncontrolled but the

sensor is known or color-calibrated at run-time (e.g., on a

robot or mobile phone).

Our task can be interpreted as one of multi-view color
constancy, where we leverage well-known techniques for

establishing correspondence between images (e.g., spatial

interest points and invariant descriptors) and re-formulate

the color constancy problem in terms of joint inference

across multiple images. When correspondences are derived

from patches on an object, this process naturally provides

a more useful object color model, one that is jointly opti-

mized with respect to the multiple input views.

We evaluate our multi-view approach using the database

of Gehler et al. [11] as well as a new real-world database

containing books and DVD covers. Our results suggest

that multi-view constraints are effective in improving color

constancy and learning object color models from uncon-

trolled data, particularly in cases where the training set in-

cludes images that are challenging for traditional single-

image color constancy.

2. Background and Related Work
In order to use color as a reliable cue for recognition,

we seek to compensate for illumination effects and learn an

object color model that is stable despite changes in lighting

(and variations in the background scene). An alternative to

this approach would be to use color invariants for recogni-

tion. When using an invariant, one avoids the explicit es-

timation of object colors and instead computes a feature,

such as a color ratio [10, 13] or something more sophisti-

cated [8, 12], that does not change with illuminant spec-

trum. Invariant-based approaches have been shown to im-

prove recognition performance relative to monochromatic

object appearance models, but in exchange for their invari-

ance, they necessarily discard information that could other-

wise be used for discrimination. This is perhaps why the

human visual system does not solely rely on invariants, as

evidenced by the existence of color names [2] and the role

of object memory in the perception of color [16].

Our work is related to that of Barnard et al. [1], who

exploit correspondences between points in a single image

when inferring the spatially-varying illumination of the un-

derlying scene. It is also related to image-based model-

ing for outdoor scenes, where one seeks to infer color-

consistent texture maps from images taken under varying

lighting conditions (e.g., [14, 19]).

2.1. Computational Color Constancy

To define notation, let f(λ) = (f1(λ), f2(λ), f3(λ)) be

the three spectral filters of a linear sensor, and denote by yp

the color measurement vector produced by these filters at

pixel location p in a single image. Assuming perfectly dif-

fuse (Lambertian) reflection, negligible mutual illumination

between surface points, and a constant illuminant spectrum

throughout the scene, we can write

yp = (y1
p, y2

p, y3
p) =

∫
f(λ)�(λ)x(λ, p)dλ, (1)

where �(λ) is the spectral power distribution of the illumi-

nant, and x(λ, p) is the spectral reflectance of the surface at

the back-projection of pixel p. Given only a single image,

we use the phrase color constancy to mean the ability to in-

fer a canonical color representation of the same scene, or

one that would have been recorded if the illuminant spec-

trum were a known standard �s(λ), such as the uniform

spectrum or Illuminant E. We express this canonical rep-

resentation as

xp = (x1
p, x

2
p, x

3
p) =

∫
f(λ)�s(λ)x(λ, p)dλ, (2)

and achieving (single image) color constancy then requires

inferring the map yp �→ xp.

We follow convention by parameterizing this map us-

ing a linear diagonal function, effectively relating input and

canonical colors by

yp = Mxp, (3)

with M = diag(m1,m2,m3). According to this model, the

input color at every pixel is mapped to its canonical coun-

terpart by gain factors that are applied to each channel in-

dependently. This process is termed von Kries adaptation,

and the conditions for its sufficiency are well understood. It

can always succeed when the filters (f1(λ), f2(λ), f3(λ))
do not overlap, and in this case it is common to refer

to the parameters m � (m1,m2,m3) as the “illumi-

nant color”, and the canonical values xp as being the “re-

flectance” (e.g., [18]). For overlapping filters, including

those of human cones and a typical RGB camera, the map-

ping yp �→ xp need not be bijective, and von Kries adapta-

tion can only succeed if the “world” of possible spectral re-

flectances xp(λ) and illuminants �(λ) satisfies a tensor rank

constraint [6] and an optimized (“sharpening”) color trans-

form is applied to all measurements [6, 7]. While our cam-

eras’ filters overlap, we do not employ a sharpening trans-

form in this paper, and our results therefore give a conser-

vative estimate of what is achievable with our approach.

3. Multi-view Color Constancy
The key idea in our approach is to exploit correspon-

dence constraints between multiple views when attempt-

ing color constancy. When a set of images contains one

or more common objects, the fact that these objects share
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the same underlying reflectance provides us with additional

information about the illuminant in each scene. In this sec-

tion, we describe the constraints implied by these shared

reflectances, and then we describe how to combine them

with an existing single-view method for color constancy to

achieve our end goal.

3.1. Joint Constraints from Shared Reflectances

Let us assume that we are given a set of N images

{Ii} and have identified P uniformly-colored correspond-

ing patches between these images. We let yip ∈ R
3
+ be

the observed RGB color of the pth patch in image Ii. Let

Mi ∈ diag(R3), referred to as the “illuminant,” represent a

diagonal (and invertible) linear transform that describes the

mapping to the colors in Ii from their canonical counter-

parts, as in (3).

The observed colors {yip}i have the same reflectance

and therefore the same canonical color, i.e.,

∀i, yip = ρipMix̂p, ‖x̂p‖2 = 1, (4)

where x̂p is a unit vector representing the canonical color

of the patch, as in (2), (also referred to as the “reflectance”

or “patch color”), and ρip is a scalar brightness term that

depends on both the albedo and the per-image shading ef-

fects. Equation (4) implies that, ideally, the canonical patch

colors {M−1
i yip}i are scaled versions of each other. We al-

low the scale factors ρip to be arbitrary and express (4) in

normalized form as

M−1
1 y1p

‖M−1
1 y1p‖

=
M−1

2 y2p

‖M−1
2 y2p‖

. . . =
M−1

N yNp

‖M−1
N yNp‖

= x̂p, (5)

which is independent of {ρip}. This relates the canonical

patch colors in terms of their chromaticities, or the ratios of

their different components.

When the illuminants are unknown, (5) provides a con-

straint on the possible illuminants among the images shar-

ing corresponding color patches. Given approximate esti-

mates of the illuminants {Mi}, statistics regarding the cor-

responding patch colors {M−1
i yip} can be used to infer x̂p;

and similarly, given estimates of the patch color, x̂p, one

can update the illuminants {Mi} to values that better sat-

isfy (5). Such an iterative algorithm could take many forms,

and we have experimented with two. The method described

here uses the constraints (5) to enhance the single-view op-

timization framework of Chakrabarti et al. [5]. The sec-

ond, which we refer to as the “ratio method” makes similar

use of this constraint. Viewed per color channel, c, work-

ing in the normalized space, this constraint for 2 images is:

∀i1 �= i2
yc

i1,p

mc
i1

= xp =
yc

i2,p

mc
i2

, which provides information

on the ratio of illuminants between images. This method

perform similarly and works with any initial single image

color constancy method. It is described further in an asso-

ciated technical report [17].

3.2. Estimation

We configure the estimation problem as one of optimiz-

ing a combined cost function that incorporates both {Mi}
and the patch colors x̂p. This cost function merges the joint

reflectance constraints in (5) with single-view illuminant in-

formation extracted from each image. Since the constraints

are expressed in terms of unit vectors (patch chromatici-

ties), we express them by penalizing the angle between the

illuminant-corrected image data M−1
i yip and the estimated

patch color x̂p. For patch p and image i, we denote this

angle as θip.

Single-view illuminant information could be extracted

using almost any existing method for single-view color

constancy. We use the spatial correlations method of

Chakrabarti et al. [5], which models the distribution of

canonical colors in a typical scene using a collection of

zero-mean Gaussian distributions of RGB colors in distinct

spatial frequency sub-bands. The distribution parameters

are fixed as in [5], and given these parameters and a sin-

gle input image i, the illuminant is estimated through the

eigen-decomposition of a 3 × 3 matrix that measures the

difference between the observed RGB covariances in each

sub-band and those expected under the model.

Formally, let wi ∈ R
3 be the diagonal elements of the

corrective transform M−1
i to be applied to Ii, with the addi-

tional constraint ‖wi‖2 = 1. (We refer to wi as the “illumi-

nant” since it is just the inverse of mi.) Following [5], we

write the single-view cost of illuminant parameters wi for

image i as wT
i Aiwi, where the matrix Ai ∈ R

3×3 is com-

puted from the RGB distributions of the spatial frequency

sub-bands of image i.

Combining this single-view information with our corre-

spondence constraints, the joint cost is written

C({wi}, {x̂p}) =
1
N

∑
i

wT
i Aiwi︸ ︷︷ ︸

Single View Cost

+ α
∑
i,p

sin2(θip)

︸ ︷︷ ︸
Reflectance Constraints

,

(6)

with

sin2(θip) = 1 −
(

x̂T
p

diag(wi)yip

‖diag(wi)yip‖
)2

, (7)

and a parameter α that controls the relative importance of

the patch constraints and the single-view information. Since

the matrices Ai are all positive semi-definite [5], the overall

cost (6) is always positive.

The cost C(·) is hard to optimize due to the appearance

of {wi} in the denominators of the second term. To cir-

cumvent this, we use the approximation ‖diag(wi)yip‖ ≈
‖yip‖/

√
3 (corresponding to wi ∝ [1, 1, 1]) in the denomi-
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(a) Align images, remove background (b) Detect stable re-

gions

(c) Output dominant color of matched regions

Figure 2. Corresponding color regions are extracted as follows: 2(a) images are aligned and segmented using grayscale SIFT features; 2(b)

Maximally Stable Extremal Regions (MSER) are detected; 2(c) the dominant color in each region is used to produce the final observed

color correspondences.

nator of (7) to obtain

sin2(θip) ≈
‖diag(wi)yip)‖2 − (x̂T

p diag(wi)yip)2

‖yip‖2/3

= wT
i (YipY

T
ip )wi − wT

i (Yipx̂px̂
T
p Y T

ip )wi
Δ= z2(θip), (8)

with Yip =
√

3 diag(yip)/‖yip‖. We find this to be a useful

approximation in practice, and minimizing z2(θip) typically

also decreases the value of sin2(θip).
We now describe an iterative scheme to minimize this

approximate cost with respect to both the illuminants {wi}
and the true patch colors {x̂p}. We begin by setting wi to

the single-view estimates, i.e. the smallest eigenvectors of

each Ai, respectively. Then, at each iteration, given the cur-

rent estimates of wi, we set x̂p as

x̂p = arg min
‖x̂p‖2=1

∑
i

z2(θip)

= arg max x̂T
p

(∑
i

Y T
ip wiw

T
i Yip

)
x̂p, (9)

which is the largest eigen-vector of
∑

i Y T
ip wiw

T
i Yip. These

estimates of x̂p are in turn used to update each wi as

wi = arg min
‖wi‖2=1

1
N

wT
i Aiwi + α

∑
p

z2(θip)

= arg minwT
i (Ai + Nα

∑
p

Yip(I − x̂px̂
T
p )Y T

ip )

︸ ︷︷ ︸
A+

i

wi, (10)

which is given by the smallest eigen-vector of A+
i .

Since both (9) and (10) reduce the value of the approx-

imate cost function which is bounded below by zero, the

iterations are guaranteed to converge to a local minimum.

Moreover, we evaluate the true cost in (6) after each itera-

tion, and we terminate the iterations if the decrease of this

true cost is sufficiently small.

As a final improvement, we use a weighted version of the

cost function to diminish the effects of outliers and avoid

converging to undesirable local minima when starting from

poor initial estimates of wi. We use z′2(θip) = kipz
2(θip)

with the weights kip given by

kip ∝
∑

j �=i(M
−1
i yip)T (M−1

j yjp)

(M−1
i yip)T (M−1

i yip)
,
∑
i,p

kip = 1. (11)

Note that the stopping criteria (based on the true cost, (6))

remains unweighted.

4. Establishing Color Correspondences
Our method relies on having some number of regions

matched across several views of the same object, such that

each set of image regions corresponds to the same physical

surface patch on an object. Such regions can be found using

any number of multi-view stereo techniques, and since the

images used in this paper contain mostly planar objects like

book covers, we use a straight-forward matching algorithm

based on local features and homography-based geometric

consistency. Extending the method to more general surfaces

and textures is left to future work.

The process is illustrated in Fig. 2. First, we detect

SIFT features in the grayscale images of the object, use

RANSAC with a homography constraint to extract a set

of geometrically-consistent matches (Fig. 2(a)), and use

these to align the images. A conservative object mask is

computed as the convex hull of the feature matches, and
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this is used to remove the background (and more) in each

image. At this point, we could use the matched SIFT

patches to provide us with color correspondences, how-

ever, we would have to account for the fact these patches

typically fall on corners and blobs and thus have inhomo-

geneous color. A better choice for extracting uniformly-

colored patches is the Maximally Stable Extremal Region

detector [15] (Fig. 2(b)). Experimentally, we find that after

removing very small regions this provides good coverage of

the colors contained in the object. Nevertheless, we find that

MSER patches can contain more than one distinct color, so

in the final step (Fig. 2(c)), we select the dominant color by

computing a histogram of the color values in each detected

region, selecting the histogram bin with the largest value,

and using the average of the color samples in that bin as the

observed patch color yi,p in our method.

5. Results
In this section, the proposed method is evaluated using

two datasets of real-world images, with patch correspon-

dences being manually provided and automatically detected

respectively. We gauge the benefits of joint multi-view es-

timation relative to single view estimation obtained by the

original spatial correlations method [5], which serves as our

baseline. We do this using different numbers of images and

patches in correspondence, and in all cases, we use the an-

gular error metric to measure the accuracy of estimated col-

ors (of illuminants or patches):

Angular Error(x, xg) = cos−1

⎛
⎝ xT xg√

(xT x)(xT
g xg)

⎞
⎠ ,

(12)

where x and xg are the estimated and “true” RGB vectors.

5.1. Color Checker Database

We first use 560 images from the database introduced

in [11]. The provided RAW camera data was used to

generate gamma-corrected RGB images using the program

DCRAW1, leaving out the camera’s auto-white balance cor-

rection. The images were scaled down by a factor of five to

remove potential demosaicking artifacts. Each image in this

database contains a twenty-four patch color-checker chart at

a known location. As illustrated in Fig. 3, we use the bottom

row of gray patches to estimate the ground truth illuminant

in each image. Of the remaining eighteen patches, six are

used to train α, and the remaining are used for evaluation.

The “true colors” of these patches are computed as per (9),

using all 560 images and ground-truth values for wi.

To evaluate the proposed method on this database, we

use three-fold cross validation to train both the baseline

1We used DCRAW version 8.77 with command dcraw -C 0.99967

0.99967 -o 0 -4 -q 3 -c RAWfilename > ppmfilename

Figure 3. Every image in the Color Checker database contains this

24-patch color chart at a known location. We use the grey patches

to estimate the scene illuminant, and the rest as known matched

colors between images.

spatial correlations method as well as to learn α. We use

a simple grid-search to determine the optimal α using six

patches (see Fig. 3) and sets of four images in correspon-

dence. When reporting results for P patches in correspon-

dence, we divide the remaining twelve patches into sets of

P and average the computed error quantiles for each of

these sets.

Figure 4 shows various error quantiles in the estimated

image illuminants for different numbers of images and

patches in correspondence. We note that joint illuminant

estimation leads to significant gains in performance over

single-view independent estimation (denoted by 0 corre-

sponding patches in the figure). With just one correspond-

ing patch and using pairs of images, the mean error drops

from 3.9◦ to 3.5◦, and to as low as 1.7◦ when using sets of

sixteen images with twelve corresponding patches.

We next examine the variation in performance over the

choice of patch that is assumed to be in correspondence. As

noted in Sec. 2.1, using a diagonal transform to correct all

colors is only an approximation and is likely to be less accu-

rate for some patches in comparison to others. Accordingly,

we define “angular spread” for each patch in the chart to be

the mean angular error between the “true color” of the patch

estimated across all images, and the corrected color in every

individual image obtained using the diagonal transform cor-

responding to the ground truth illuminant. Figure 5 shows

the relationship between the observed angular spread of a

patch and estimation accuracy when using it during joint

estimation (with sets of four images). Note that lower val-

ues of angular spread typically lead to better performance.

However, even though some patches have angular spread

greater than 6◦, the mean illuminant error is lower than that

of baseline single-view estimation in all cases.

Finally, we look at the effect that the number of images

has on the accuracy of estimated patch colors (i.e. x̂p). Fig-

ure 6 shows the mean error in estimated patch colors when

different numbers images are available as input for joint es-

timation (with only one patch in correspondence at a time).

Performance improves rapidly with the number of images.

5.2. Real World Object Database

To evaluate our method on real-world objects, we col-

lected a database of 39 images with five objects in differ-
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Figure 4. Performance, in terms of angular errors of estimated illuminants, for joint estimation with different numbers of matched patches

and images. We report mean and median errors for each case, as well as the mean of the 25% largest error values to gauge robustness (note

that axes have different scales). Values for zero matched patches correspond to the “single-view” (baseline) independent estimates.
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Figure 6. Accuracy of estimated patch colors x̂p with different

numbers of images used for joint estimation.

ent scenes (see Figure 9) under natural illuminants, both in-

doors and outdoors. Some illuminants are heavily colored

and thus present a significant challenge for most single-

view color constancy methods. Each image additionally

contains a color-checker chart, used only to determine the

ground truth illuminant, in the same way as for the color-

checker dataset. The color-checkers are all in full view and

are oriented towards the dominant source of light in the

scene. We refer to this data set as DVDSBOOKS. In the

following, we will refer to each set of images with an object

in common as an object set. We automatically find patch

correspondences between images with the same object in

common as described in Section 4. This provides a more re-

alistic setting under which the multi-view algorithm can be

used for actual objects, compared to the color-checker chart

patches as described in Sect. 5.1. Several of the objects have

over 100 patches in common between all images; most have

on the order of 40 stable regions in common. In our exper-

iments, we use the matches corresponding to the top ten

largest MSER regions. Decreasing the number of patches

to ten puts an upper bound on the error we would reason-

ably expect from the method. The parameters of the single-

view method and the α parameter of the multi-view method

were trained on the color-checker database. We mask out

the color-checker and object in each scene to obtain the sin-

gle image illuminant estimate using local image evidence

in the spatial correlations method, both the single-view and

multi-view versions.

The errors in the estimated illuminants are summarized

in Fig. 7. As before, we show the mean, median and

mean of the worst 25% of the angular errors between the

ground truth and the estimated illuminant. The mean er-

ror in true patch color estimate is shown in Fig. 8. As is

the case for many single-view color constancy techniques,

the single-view baseline method can perform poorly when

the color statistics of the scene deviate significantly from

its model [5]. One such case is shown in the top row of

Fig. 9. However, even for these poor monocular illumi-

nant estimates, we find that the multi-view method is able to

leverage the additional information from multiple views to

produce strikingly good results. Note that both the illumi-

nant and canonical object color estimates have improved.

6. Conclusion

We have presented a method to learn canonical models

of object color from multiple images of the object in differ-

ent scenes and/or different illuminants. Traditional meth-

ods for color constancy can improve surface reflectance
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Figure 7. Results of illuminant estimation using the single-view and multi-view methods on the DVDSBOOKS dataset. We report mean

and median errors for each case, as well as the mean of the 25% largest error values to gauge robustness (note that axis scales differ).

The single-view method performs poorly on images that have color statistics that deviate significantly from the model that it assumes.

However, using only ten automatically-identified patches and in seven images, the proposed multi-view approach is still able to leverage

the correspondences to provide good illuminant estimates.

Figure 8. Results of estimating true patch colors x̂p on the DVDS-

BOOKS dataset. We report mean angular errors for the single-

view and multi-view methods.

estimates in uncalibrated images, but use only a single

view and depend significantly on individual backgrounds.

This greatly complicates the use of color in many recog-

nition and retrieval applications. We defined a multi-view

color constancy task, and presented techniques for aggre-

gating color information across the several views. We de-

velop an efficient multi-view method extending the monoc-

ular spatial correlations method; this method jointly opti-

mizes estimates of corresponding patch colors and the illu-

minants present in multiple images. Correspondences can

be formed using a number of alignment methods; we per-

formed matching using local region features. We presented

experiments on two databases, a standard color constancy

dataset and a real-world dataset of objects. Our results show

that multi-view constraints can significantly improve esti-

mates of both scene illuminants and true object color (re-

flectance) when compared to baseline methods. Our method

performs well even when monocular estimates are poor.
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