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Abstract— We consider the perceptual challenges inherent in
the robotic manipulation of previously unseen socks, with the
end goal of manipulation by a household robot for laundry. The
task poses challenging problems in modeling the appearance,
shape and configuration of these textile items that tend to
exhibit high variability in texture, design, and style while being
highly articulated objects.

At the heart of our approach is a holistic model of shape
and appearance that facilitates manipulation of those delicate
items—starting even from bunched up instances. We describe
novel approaches to two key perceptual problems: (i) Inferring
the configuration of the sock, and (ii) determining which socks
should be paired together.

Robust inference in our model is achieved by strong texture
based classifiers that, alone, are powerful enough to solve prob-
lems such as inside-out detection. Finally, a reliable prediction
of the overall configuration is achieved by combining local cues
in a global model that enforces structural consistency.

We perform an extensive evaluation of different feature types
and classifiers and show strong performance on each subtask
of our approach. Finally, we illustrate our approach with an
implementation on the Willow Garage PR2—a general purpose
robotic platform.

I. INTRODUCTION

Since Rosie the Robot first debuted on television’s “The

Jetsons” in 1962, the futuristic image of a personal robot

autonomously operating in a human home has captivated

the public imagination. Yet, while robots have become an

integral part of modern industrial production, their adoption

in these less well-defined and less structured environments

has been slow. Indeed, the high variability in, for example,

household environments, poses a number of challenges to

robotic perception and manipulation.

The problem of robotic laundry manipulation exemplifies

this difficulty, as the objects with which the robot must

interact have a very large number of internal degrees of

freedom. This presents a number of unique perceptual chal-

lenges. In this work, we examine the perceptual aspects

of one particular application: bringing scattered, arbitrarily

configured socks into organized pairs.

As many of the difficulties associated with this task are

shared with all clothing articles, we believe the strategies de-

veloped here will prove useful well beyond their immediate

scope.

Socks are extremely irregular, both in shape and appear-

ance. Like all deformable objects, they maintain no rigid

structure. Yet, more so than many common articles (such as

shirts or pants), they trace no easily-recognizable silhouette,
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Fig. 1. Given an initial image, we wish to recover the sock configuration.

and contour alone offers little guidance. Furthermore, their

tubular shape lends itself to highly complex configurations:

the sock may be rightside-out, inside-out, or arbitrarily

bunched. As it contains no overtly recognizable landmark

features—such as buttons or zippers—the perceptual task is

quite subtle, residing at the lowest levels of texture.

Our main contributions are as follows:

• Local texture and shape descriptors for patch recogni-

tion: The core of our approaches hinges on the use of

highly discriminative local features for cloth texture. To

this end, we examine a variety of texture- and shape-

based patch features and choices of kernels. We have

found that a combination of Local Binary Pattern (LBP)

and shape features, trained with a χ2 kernel, are well-

suited to this task. Our work shows that these cues alone

are typically powerful enough to determine whether, for

instance, a sock is inside-out.

• A model-based approach to determine sock configu-

ration: To reduce noise and enforce structural consis-

tency, we combine the aforementioned descriptors into

a global appearance model for socks. This model uses a

combination of local texture cues and global contour to

infer a basic parse of the sock’s configuration, as would

be relevant to most robotic manipulation tasks. We use

this both as a means of classification and description:

classifying whether a sock is flattened, inside-out, or

bunched, and determining the location of key features

within these configurations.

• A similarity metric for matching socks: We developed

a similarity score based on a variety of visual cues

(texture at different scales, color histogram represen-

tations, and size) for pairing socks. Our approach uses

this distance metric as input to a matching algorithm

to find the set of matches that maximize the sum

of the matches’ similarity scores. We achieve perfect

matching on our database of 100 socks and further show

robustness to adding stray socks to the set.

• Robotic implementation: To illustrate the effectiveness

of our perceptual tools, we implement our approach on

the Willow Garage PR2.
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(a) (b) (c) (d) (e)

Fig. 2. (a) We begin with an image of a sock in one of 8 poses. (b) The background is subtracted to obtain a mask of the sock. (c) A local texture
classifier is used to determine landmark patches. (d) Visualization of the response of landmark filters on a sock. (e) These local features are then combined
in a global shape model, which determines the configuration of the sock.

II. RELATED WORK

We present the related work along three axes: robotic

manipulation of cloth, grasping, and visual perception of

textures and material.

A. Robotic manipulation of cloth

The current state of the art in robotic cloth manipulation

is still far removed from having a generic robot perform

tasks such as laundry. In the context of robotic laundry, past

research has mostly considered shape cues for perception,

enabling tasks such folding polygonal shapes from a shape

library [1], spreading out a clothing article and classifying

its category [2], [3], [4], [5], detecting and removing wrin-

kles [6], [7], and folding previously unseen towels starting

from arbitrary configurations [8]. While shape cues have the

benefit of being robust across appearances and are a natural

choice in the aforementioned tasks, shape cues only provide

very limited information for the purpose of arranging socks.

In this paper we do not restrict ourselves to shape cues, but

also study, and in fact get most leverage from, cues based

on texture and color.

Socks require rather different manipulations than the grasp

and tugging strategies exhibited in prior cloth manipulation

work. Besides the mere scale and tubular structure of socks,

their structure necessitates particularly complex motions,

such as flipping and bunching. While the emphasis of this

work is on perception, we also integrated our perception

algorithms onto a general purpose robot. This work is the

first to perform such manipulation primitives with a general

purpose robot.

B. Grasping

Our aim is to provide a basic parse of the sock, such that

deft manipulations may be performed. The key to many of

these manipulations is an accurate initial grasp. Yet while

traditional grasp planning is done by reasoning about 3-D

configurations of gripper and object, these are often hard to

obtain for real-world objects—in particular for the thin lay-

ered structure of socks. More recent approaches have aimed

at relaxing this often difficult to meet assumption by inferring

grasp points for unseen objects from local statistics [9], [10]

or parallel structures [11]. However, these works aim only

to obtain an arbitrary grasp of the object, mostly for picking

it up. Likewise, we wish to enable fine manipulations such

as flipping or pairing, which are informed by the topology

of the sock rather than broad spatial reasoning.

���

���

Fig. 3. The MR8 filter bank consists of 6 gaussian derivative and 2
blob filters. A maximum operations is performed over different orientation
variants in order to achieve robustness with respect to rotations.

C. Visual Perception of Texture and Materials

Recognition of textures and materials have received wide

attention in computer vision. State-of-the-art methods as

evaluated on the Curet or KTH-TIPS database [12] include

filter- and texton-based techniques like MR8 features [13]

or Local Binary Patterns (LBP) [14] as well as MRF-based

methods [15]. More recent approaches have further included

shape-based techniques like edge maps and curvature [16].

Here we apply these descriptors to robotic manipulation

tasks. In particular, we show how to leverage micro-texture in

order to classify between different sides of fabric and adapt

robotic grasp strategies depending on material properties. We

additionally incorporate our descriptors into a broader global

cloth shape model, which builds upon [17]. This earlier work

is based on shape alone, and does not allow for more complex

articulations including flipped and spread-out configurations.

III. METHODS

The following are the key components in our approach:

• Extraction of appearance features;

• Learning a patch classifier;

• Specification of a global model for reconstructing sock

configuration;

• A strategy for matching alike socks based on the afore-

mentioned descriptors.

A. Appearance Features

In order to understand the configuration of a sock, our

approach relies on pinpointing the location of key landmarks.

To identify these landmarks, we study canonical texture cues

in a classification framework.

Two categories of features are of interest to us: those based

on texture, and those based on local shape.
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Fig. 4. LBP features are computed by taking a neighborhood (gray
circles) around each pixel (gray square) and computing the difference of
each neighborhood pixels to the center pixel. The sign of this difference
determines a binary value for each neighborhood pixel. The concatenated
sequence of binary values is mapped to a unique pattern id.

(a) (b) (c)

Fig. 5. We extract the local shape by using a HOG respresentation. (a)
An image of a sock. The blue region indicates a segment along the contour.
(b) A mask of a segment along the contour is computed, and rotated such
that it is upright. (c) For each segment mask, gradient information is binned
into local 9 dimensional orientation histograms. Each bin is visualized with
small line segments that have a length according to the accumulated gradient
strength.

1) Texture: For texture representation we consider two of

the most popular texture descriptors: the MR8 filter bank [13]

and Local Binary Patterns (LBP) [14]. Figure 3 and Figure 4

illustrate the basic concepts of those approaches.

MR8 features are computed by convolving the images with

a set of filters. For each pixel the maximum is computed

over groups of rotated versions of these filters in order to

obtain a rotation invariant representation. This results in an

8-dimensional feature space which is vector quantized by

k-means. The final descriptor is a histogram that counts

matches to the individual codebook vectors of the quantized

space.

LBP features are computed by considering the difference

in grayscale value between each pixel and its 8 neighbors.

Looking at the sign of these differences, we obtain a binary

vector. As there is only a limited set of distinct binary

patterns, each binary pattern is mapped to a unique pattern

id. The final feature is a histogram over these pattern ids.

For more details on both methods we refer to the given

references.

Both features are extracted at a fine scale as we intend to

capture the micro-texture of the fabric, which seems most

appropriate for our task.

2) Shape: Because some of the landmarks of a sock, such

as the toe and the heel, are additionally related to the local

shape, we augment our texture cues to include shape features.

The local shape along the contour of a sock can be captured

by a Histogram of Oriented Gradients (HOG) [18] computed

on the mask of a local contour region split into 2 cells.

Figure 5 illustrates the basic concept of this approach.

B. Classifier Training

The solution that we propose for the classification task

follows the standard literature on texture classification

(e.g., [19], [12]) and trains a discriminative SVM classifier

on those texture features. Given a labelled training set with

K classes

{[fp
1 , 1] | p = 1, . . . , N1} ∪ · · · ∪ {[fp

K ,K] | p = 1, . . . , NK}
(1)

with Ni instances of label i, we seek to train a classifier that

correctly predicts the associated class label:

fp
1 → 1 ; . . . ; fp

K → K (2)

Here fp
i is the feature vector extracted from a single patch

p whose correct label is i. The standard SVM approach [20]

learns a classifier by finding appropriate weight vectors wi

that attempt to ensure that for all p we have w�
i f

p
i > w�

j �=if
p
i .

Note that while the classifier is linear in wi the features are a

nonlinear function of the image pixels. The weight vector wi

is determined by solving the following (L2-loss) optimization

problem:

minw,ξ≥0

K∑
i=0

1

2
‖wi‖

2
2 + Ci‖ξi‖

2
2

s.t. ∀p, i, j �= i : w�
i f

p
i ≥ w�

j f
p
i + 1− ξpi

In addition, we train the SVM classifier with four different

types of kernels: linear, degree-3 polynomial, radial basis

function (RBF), and χ2. Following ([21], [22]), we define

the χ2 kernel as: χ2(x, y) = exp(−γ ∗
∑

i(xi − yi)
2/(xi +

yi)), and define the other kernels according to their standard

definition. The applications of the χ2 kernel to texture

classification are explored in [23].

C. Global Model

To infer global structure, we incorporate each local feature

into a holistic parametrized shape model. In [17] we de-

scribed the foundation of a parametrized global model using

a contour-based approach. Here we extend this method to

include local feature cues.

To determine the configuration of an article of clothing, we

first define a parametrized model associated with that article.

We then frame the task of determining global structure as a

numerical optimization problem, whose objective function

captures the “goodness of fit” of the model, and whose

constraints reflect our a priori knowledge of the article’s

possible variations. This entails three main components: a

framework for defining models, a means of determining

model fit, and an efficient method for determining good

parameters in this setting.

1) Model Definition: A model is, essentially, a

parametrized representation of a given shape. As such,

it requires a few key components:

• A contour generator MCG : {P ∈ R
p} → {C ∈ R

2×c}
which takes a set of scalar parameters P as input, and

returns the contour which would be observed were the

model physically present with these parameters.

• A set of feature detectors

MFD : {Di : {P ∈ R
p, I ∈ R

n×m×3} → {ri ∈ R}}K .
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Each detector Di takes the parameters and image as

input, and outputs the response of the patch to label i
at its current predicted location.

• A legal input set ML ⊆ R
p which defines a set of

parameters over which M is said to be in a legal

configuration.

2) Model Cost: Our model cost, which is a function of

the parameters P , the observed image I and the observed

contour C, is given by a weighted sum of shape- and

appearance-related penalties:

C(P, I, C) = β(CS(P,C)) + (1− β)(CA(P, I))

The shape cost is given by

CS(P,C) = (α)d̄(MCG(P ) → C)+(1−α)d̄(C → MCG(P )).

with d̄(A → B) the average nearest-neighbor distance from

contour A to contour B.

The appearance cost is given by

CA(P, I) =
[
α1 . . . αK

]
⎡
⎢⎣

r1
...

rK

⎤
⎥⎦ .

Here ri is the response1 of feature detector i at the

predicted feature location, and the weights dictate the im-

portance given to various landmarks. For instance, in de-

termining the configuration of a sock, we may have local

detectors for ankles, toes, and generic patches. These are

given respective weights of 0.5, 0.4, and 0.1: indicating that

it is most important that the model correctly predict the seam,

and comparitively unimportant to predict generic patches. In

the limit where β approaches 1, this cost function is identical

to that defined in [17].

3) Parameter Fitting: To ensure that the optimization

begins in a reasonable initial position, we use Principle

Component Analysis to infer the approximate translation,

rotation, and scale of the observed contour. The details of

this procedure may be found in [17].

We then locally optimize the parameters of our model

via a numerical coordinate descent algorithm. To guide the

optimization, this is often done in multiple phases, which

allow varying degrees of freedom. As we do so, we consider

only legal configurations, ensuring that the model will not

converge on an inconsistent state.

D. Matching

When considering texture thus far, we limited ourselves to

micro-texture, which attempts to capture the textile structure

of the socks without regard to the broad design of the sock

itself. For matching, however, the particular design is exactly

what is being matched: therefore we construct our feature

vector with a combination of micro texture, macro texture,

width, height and color features.

As LBP will show to be the better performer in our pure

texture-based experiments, we base our micro texture feature

1The response is given by w�f in the appropriate kernel, as discussed
in Sec. III-B

on it, and subsequently compute the macro texture feature by

down-scaling the image by a factor of two before extracting

the LBP features. Color features are obtained by computing

a hue histogram in HSV space with 19 bins, and we have an

additional “non-color” bin that collects all pixels with low

value or saturation.

We investigate the use of these cues both individually

as well as in combination by simply concatenating them

together into a feature vector of increased dimensionality. We

also investigated learning the weights for cue combination

from data in an optimization framework—but the naive

strategy of concatenation turns out to be sufficient for our

task at hand.

For the actual matching we look at a greedy as well as

an optimization-based scheme. For the greedy matching we

simply score all possible pairs (si, sj) by our feature distance

function dχ2(si, sj) =
∑

i(xi − yi)
2/(xi + yi) and accept

successively the best ranked pair. After accepting a pair, we

remove the involved socks from further consideration. In the

case of stacked features, the distance function is simply the

sum of the individual feature distances.

More interestingly, we also propose a optimization scheme

that seeks to minimize a global matching score across all

pairs. This can be seen as finding a permutation P such

that:

min
P

∑
i

dχ2(si, sP(i)) (3)

The problem of finding such a permutation is known as

the minimum cost perfect matching problem. Efficient algo-

rithms exist to find the exact solution: we used the algorithm

proposed in [24].

To handle stray socks we start with the lowest scoring

(best) pairs and work our way up until the cost exceeds the

maximum cost in which the algorithm considers indicative

of a proper match. In case of an odd number of socks in the

set, we introduce a “fake sock” which has equal similarity

with all socks. The true sock matched to the fake sock is

considered a stray sock.

IV. EXPERIMENTS

1) Dataset: We test our approach on 800 images, cor-

responding to 100 socks laid in 8 canonical configurations,

as detailed in Figure 6. The images were taken on a 12.3-

megapixel Nikon D90 camera with a 35mm Nikon DX lens,

using an external Sigma Macro ring flash. The photos were

taken from a birds-eye perspective against a green tablecloth,

allowing us to locate the sock contour via simple color

segmentation.2

Each image was then labelled in two ways. To train

the proper feature classifiers, the sock image was hand-

segmented by microtexture class: opening, heel, toe, or other

for non-bunched models, and inside or outside for bunched

2As the manipulation context we are considering will be that of a sock
on the floor or other fixed background, we do not consider segmentation
to be a particularly relevant problem. However, background subtraction and
color segmentation are a well-studied problem in computer vision, and we
invite interested readers to look further (see e.g. [25]).
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(a) (b) (c) (d)

Fig. 6. There are 4 canonical modes the sock may be in: (a) Sideways, (b) Heel Up, (c) Heel Down, or (d) Bunched. Additionally, the toe may be
rightside-out (top) or inside-out (bottom) for each configuration. In conjunction with 2D rotation and reflection, this suffices to capture all reasonable sock
configurations.

models. Additionally, to provide a ground truth comparison

for all configuration estimates, the precise locations of all

landmark points was hand-annotated.

We also supplement this dataset with a second one, which

shows all pairs of sock correctly flipped in a non-bunched

configuration in order to evaluate our sock matching algo-

rithm.

A. Inside-Out Classification

We first investigate purely texture-based classification of

inside-out vs rightside-out socks.

First we compare the 2 popular texture descriptors—LBP

and MR8 3—and a range of different kernel choices for the

SVM classifier: linear, polynomial (degree 3), RBF, and χ2.
4

We compute the accuracy over 5 random splits of the

dataset into equal-sized training and test sets. The SVM

parameters are determined by cross-validation on the training

set. Table I presents mean accuracy and standard deviation

of the different splits.

LBP in combination with the χ2 kernel shows the best

performance at 96.6 ± 1.82%, while the best MR8 result

lags behind at 87.8± 2.77%. 5

With this choice of texture descriptor and kernel, we

investigate how important resolution of the sock images is.

Figure 7 shows the result of the classifier training and testing

on images downscaled to various resolutions. The graph

shows a very graceful degradation in the performance of

the texture descriptor as we downscale the image resolution.

Furthermore, the performance of the texture descriptor does

not benefit from increased resolution after 4-megapixels, so

further increase in the resolution of the camera is unlikely

to increase the performance of our results.

B. Recognizing Sock Configuration

Our primary goal is to provide the perception necessary to

allow a robot to manipulate socks. To that end, we desire to

3We trained the MR8 descriptor with a texton dictionary consisting of
256 cluster centers.

4All classifiers were trained using the LIBSVM software package [26],
modified to include the χ2 kernel.

5In this work, patch rotation is normalized with respect to the contour it
borders. To ensure a fair comparison between descriptors, we additionally
tested modified versions of each descriptor: a rotationally variant MR8, and
invariant LBP as discussed in [27]. In the end, the rotationally variant LBP
with the χ2 kernel still shows the best performance.

Feature Linear Kernel Poly Kernel RBF Kernel χ2 Kernel

MR8 85.2± 2.28% 85.4± 1.95% 86.6± 3.13% 87.8± 2.77%

LBP 93.8± 3.35% 94.2± 3.63% 95.8± 2.39% 96.6± 1.82%

TABLE I

A COMPARISON OF THE PERFORMANCE OF MR8 AND LBP

DESCRIPTORS IN COMBINATION WITH VARIOUS KERNELS.

Fig. 7. Accuracy of using LBP in combination with χ2 kernel for
the inside-out vs. rightside-out classification on images from the dataset
downscaled to various resolutions.

perceive enough about the structure of the sock to perform

such motions as:

• Flipping an inside-out sock;

• Pairing socks at the ankle;

• Bringing a bunched sock into a planar configuration.

These manipulations require a general understanding of

the configuration of a sock, including for instance its orien-

tation, the locations of the sock opening, and whether or not

it is inside-out.

In the sections that follow, we demonstrate two approaches

to gain such an understanding: 1) Using only local features,

we attempt to recover the sock’s configuration 2) We inte-

grate these local features into a global model which considers

both appearance and contour information.

We evaluate the accuracy of these approaches via two

error metrics, giving a qualitative and quantitative measure

of accuracy per landmark prediction. The qualitative measure

is computed by comparing the predicted location to the

microtexture-labelled image. If the 10 pixel (roughly 1 mm)

neighborhood surrounding the prediction contains the proper

label, it is deemed a success. The quantitative measure is

the distance from the predicted location to the precise, hand-

annotated landmark.
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Appearance Contour Model Known Model Unknown

Configuration Landmark Qual (%) Quant (cm) Qual (%) Quant (cm) Qual (%) Quant (cm) Qual (%) Quant (cm)

Side
Opening 98.8± 0.4% 1.04± 0.67 92.0± 1.41% 1.65± 5.43 98.0± 0.63% 0.68± 0.64 96.0± 1.9% 0.85± 1.31

Heel 85.8± 1.72% 2.26± 2.25 83.6± 1.62% 1.63± 2.61 85.8± 2.64% 1.98± 2.30 — —
Toe 93.2± 3.54% 1.67± 1.76 95.0± 1.41% 1.65± 5.58 100.0± 0.0% 0.91± 0.61 99.6± 0.5% 1.08± 1.27

Heel Up/Down
Opening 91.5± 1.61% 1.87± 4.17 71.1± 1.43% 6.28± 10.9 94.7± 1.03% 1.40± 4.61 93.8± 0.5% 1.36± 3.42

Toe 92.8± 1.17% 2.21± 4.12 72.7± 1.57% 6.49± 10.9 97.0± 0.54% 1.91± 4.58 96.1± 0.4% 1.67± 3.42

Bunched Opening 44.6± 2.06% 2.25± 1.69 38.0± 3.03% 2.84± 1.95 73.0± 4.47% 1.46± 1.60 — —

TABLE II

THE PERFORMANCE OF THE APPEARANCE, CONTOUR ONLY, AND GLOBAL MODELS FOR EACH CONFIGURATION AND LANDMARK.

Detection via Appearance Features

We first attempt to determine the configuration using local

feature detectors. In this case, it is assumed that the general

configuration—sideways, flattened, or bunched—is given.

For each of these configurations, we train a set of detectors

to locate particular sock regions.

• Side View: For the side-view configuration, we trained

classifiers for four texture categories: the opening, the

toe, the heel, and generic patches. As each of these

features lie on the contour, this model does not consider

the response of interior patches.

• Heel Up/Down View: When the heel is entirely vertical,

we make no attempt at finding it. Rather, we simply

observe that the heel is not in a relevant location for

grasping, and search only for opening, toe, and generic

patches. This also does not consider the response of

interior patches.

• Bunched: For the bunched configuration, we trained

classifiers for the opening, and generic patches. This

model only considers the response of the interior

patches, as the opening does not lie on the contour.

Each landmark point is then determined to be the center

of the maximally-responding patch for its corresponding

detector. Table II details the results of this approach.

Detection via a Global Model

We then integrated the above feature detectors into a global

model, as detailed in III-C. To perform a global classification,

three separate models were considered. These models are

shown in Figure 8. Appearance scores were computed in the

following way:

• The Side-View Model computes the appearance cost

using Opening, Heel, Toe, and Generic responses, with

respective weights of 0.4, 0.35, 0.2, and 0.05. The loca-

tion of the first three landmarks can be inferred from the

skeletal structure of the model. The Generic responses,

in all models, are a weighted sum of the response of

the five remaining polygon points. This model was run

with 4 separate initializations, corresponding to every

combination of heel and toe directions.

• The Heel-Up/Down Model computes the appearance

cost using Opening, Toe, and Generic responses, with

respective weights of 0.5,0.4, and 0.1. The remaining

polygon points, as well as the top- and bottom- center

of the sock, are used to compute the Generic score.

This model was run with 2 separate initializations: one

in which the toe was left of the opening, and its mirror.

• The Bunched Model computes the appearance cost

using local inside and outside patch responses. The

appearance response is then computed as the sum of the

average inside-out response on one side of the predicted

opening and average rightside-out response on the other.

To keep the score continuous despite the discrete step

size between patch locations, a low-weighted term is

added to this which penalizes the distance from the

opening to those patches whose responses do not fit

our hypothesis. This model was run with 2 separate

initializations; one in which the inside-out half was

presumed to be on the left, and the other on the right.

For computational efficiency, patch responses are not

recomputed precisely at each pixel. Rather, a discrete set

of patch responses are precomputed, and the response at a

given point is given by bilinear interpolation between the

responses of its neighboring patches.

The results of this approach are tabulated in Table II. We

consider three cases. As a point of comparison, we first

consider the case where β is set to 1—analogous to the

pure shape-based approach of [17]. The latter two follow

the global model approach outlines above: in the former, the

correct model class is known a priori; in the latter, it is not.6

As can be seen, the global model improves significantly

on the baseline approach in most areas. While the texture

and curvature features of the Side View landmarks are fairly

telling, their precise location is rendered ambiguous by tex-

ture alone. Thus while the global model does little to improve

the qualitative accuracy of our predictions, it yields far more

precise landmarks. In dealing with the fairly homogenous

textures of the Heel Up/Down View, the contour fit proved

crucial to gaining high qualitative results. The Bunched

configuration, which could not be dealt with by looking for a

single local feature, was handled with reasonable accuracy by

our Model. While the inherent discrete nature of the approach

made it unlikely that the seam would fall precisely in the slim

labeled area (yielding lower qualitative results), it remained

6In the Model Known case, only the desired feature set (Side View, Heel
Up/Down, Bunched) is given: orientation and parity are always unknown. In
the Model Unknown case, we consider both Side View and Heel Up/Down
models simultaneously on all non-bunched configurations, and choose the
maximally scoring configuration between the two. As the recognition task
and required manipulations are fairly distinct for Bunched and Non-Bunched
cases, we do not include Bunched Models in the latter evaluation.
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Fig. 9. Example successes and failures of the global (top), contour (middle), and appearance (bottom) models. For the appearance models, the colored
circles represented the predicted landmark locations: red indicates the opening location, blue indicates the toe location, and green indicates the heel location.

Feature n=10 n=20 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

MicroLBPGreedy 96.0± 8.9% 96.0± 5.5% 94.4± 5.9% 96.0± 2.2% 95.2± 6.6% 93.0± 2.1% 94.6± 3.9% 93.2± 1.6% 91.8± 1.8% 92.0%

MicroLBPOpt 98.0± 4.5% 98.0± 4.5% 98.0± 3.0% 97.5± 3.5% 96.0± 2.8% 95.3± 2.5% 94.0± 1.2% 95.2± 1.0% 94.4± 0.0% 95.0%

MacroLBPGreedy 96.0± 8.9% 94.0± 8.9% 93.0± 4.9% 93.0± 5.7% 92.0± 8.6% 89.6± 4.7% 90.6± 3.9% 89.2± 2.2% 87.0± 2.8% 87.0%

MacroLBPOpt 96.0± 8.9% 98.0± 4.5% 93.3± 4.7% 94.0± 4.2% 92.8± 7.7% 92.7± 4.2% 92.6± 3.7% 91.5± 2.4% 89.8± 2.7% 89.0%

SizeGreedy 56.0± 18.2% 48.0± 9.1% 29.6± 6.5% 30.8± 4.6% 27.6± 3.8% 19.6± 3.8% 16.8± 3.4% 17.8± 2.4% 13.6± 1.5% 13.0%

SizeOpt 46.0± 11.4% 52.0± 6.9% 33.3± 7.0% 39.0± 7.4% 24.2± 3.3% 23.2± 6.5% 20.7± 5.6% 18.8± 5.1% 14.7± 1.4% 14.5%

ColorGreedy 92.0± 11.0% 96.0± 5.5% 98.6± 3.1% 94.8± 7.9% 93.6± 3.3% 94.4± 1.9% 90.4± 1.5% 92.0± 2.5% 91.2± 1.3% 91.0%

ColorOpt 96.0± 8.9% 98.0± 4.5% 98.7± 3.0% 94.8± 7.8% 88.6± 2.4% 91.3± 3.8% 89.3± 2.3% 91.0± 1.3% 89.0± 1.8% 89.0%

AllGreedy 100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0%

AllOpt 100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0± 0.0%100.0%

TABLE IV

ACCURACY OF SOCK PAIRING ALGORITHM FOR DIFFERENT FEATURE TYPES AND SOCK SET SIZES AS WELL AS THE GREEDY VS. THE GLOBAL
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