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Abstract

Layered representations for object recognition are im-
portant due to their increased invariance, biological plau-
sibility, and computational benefits. However, most of exist-
ing approaches to hierarchical representations are strictly
feedforward, and thus not well able to resolve local ambigu-
ities. We propose a probabilistic model that learns and in-
fers all layers of the hierarchy jointly. Specifically, we sug-
gest a process of recursive probabilistic factorization, and
present a novel generative model based on Latent Dirichlet
Allocation to this end. The approach is tested on a stan-
dard recognition dataset, outperforming existing hierarchi-
cal approaches and demonstrating performance on par with
current single-feature state-of-the-art models. We demon-
strate two important properties of our proposed model: 1)
adding an additional layer to the representation increases
performance over the flat model; 2) a full Bayesian ap-
proach outperforms a feedforward implementation of the
model.

1. Introduction

One of the most successful and widely used develop-

ments in computer vision has been the rise of low-level lo-

cal feature descriptors such as SIFT [21]. The basic idea of

such local feature descriptors is to compactly yet discrim-

inatively code the gradient orientations in small patches of

an image. These features have been successfully used for

scene and object recognition by representing densely ex-

tracted descriptors in terms of learned visual words—cluster

centers in descriptor space [29]. On top of this quantized

representation, more global image representations such as

bags of words or spatial pyramids [17] can be assembled.

Recent publications in the field have started re-

evaluating the hard clustering approach of visual words

in favor of “softer” representations that allow a single de-

scriptor to be represented as a mixture of multiple compo-
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Figure 1: (a) Traditional visual hierarchies are feedforward

with known disadvantages [19]. In contrast, our probabilis-

tic model (b) learns and infers all layers jointly.

nents [32]. The increased robustness of such distributed

representations is appealing, and may exist in biological

systems [23]. It has also been shown that such factoriza-

tion leads to state-of-the-art performance on existing object

recognition datasets [5], and allows good performance on

novel datasets [10].

Despite increased representative power, these local fea-

tures are still input directly to global object representations.

While this approach has yielded some of the best recog-

nition performance to date [32] , some recent works have

shown that multi-layer intermediate visual representations

could improve recognition performance by increased ro-

bustness to variance [22, 9, 33].

This is also in line with current theories of hierarchi-

cal, or layered, processing in the mammalian visual cortex

[26]. Indeed, these theories give strong support to the im-

portance of feedback, which both improves features that are

being learned and disambiguates local information during

inference. However, most existing hierarchical models are

strictly feedforward (with a few notable exceptions, such

as [13]), with each layer of the hierarchy operating over the

fixed output of the previous layer [27, 25, 18].

The aim of this paper is to develop a fully probabilis-
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tic hierarchical model to learn and represent visual features

at different levels of complexity. The layers of the hierar-

chy are learned jointly, which, we show, has crucial advan-

tage in performance over its feedforward counterpart. Our

model is based on Latent Dirichlet Allocation (LDA) [4],

a probabilistic factorization method originally formulated

in the field of text information retrieval. It has been suc-

cessfully applied to the modeling of visual words [28], and,

more recently, to modeling of descriptors in an object detec-

tion task [10]. Here, we extend the latter representation to

a recursively defined hierarchical probabilistic model, and

show its advantage over the flat approach and the feedfor-

ward implementation of the model.

The approach is tested on a standard recognition dataset,

showing performance that is higher than previous hierar-

chical models and is on par with current single-descriptor-

type state of the art. We demonstrate two important prop-

erties of our proposed model: 1) adding an additional layer

to the LDA representation increases performance over the

flat model; 2) a full Bayesian approach outperforms a feed-

forward implementation of the model. This highlights the

importance of feedback in hierarchical processing, which is

currently missing from most existing hierarchical models.

Our probabilistic model is a step toward nonparametric ap-

proaches to distributed coding for visual representations.

2. Related work
There is strong biological evidence for the presence of

object-specific cells in higher visual processing areas. It is

believed that the complexity of represented shape gradually

increases as visual signal travels from the retina and LGN

through V1 and higher cortical areas [26]. While the con-

nectivity between different visual areas is far from being un-

derstood, there is evidence for a hierarchical organization of

the visual pathway, in which units at each level respond to

the output of the units at the level below, aggregated within

a larger spatial area [6].

We will refer to computational modeling of a hierar-

chy of stacked layers of increasing complexity as recur-
sive models. The main idea behind these approaches is

to achieve high-level representation through recursive com-

bination of low-level units, gradually encoding larger and

larger spatial areas in images. This allows more efficient

parametrization of image structures, and potentially better

recognition performance.

A number of recursive models have been proposed. The

HMAX model formulated the increase in shape complex-

ity as the interaction of two types of operations: template

matching and max pooling [27]. Units performing these op-

erations are stacked in layers, where the template-matching

units on the bottom of each layer receive inputs from small

patches of the image, and the pooling units on top of each

layer output more complex visual features. Implementa-

tions of this idea have shown promising classification re-

sults [22]. The units in the original HMAX model were

pre-designed, not learned, while the recent improvements

have included random template selection from a training

corpus [27].

Learning mid-level visual features in a recursive hi-

erarchical framework has motivated several recent works

on convolutional networks [25, 2], deep Boltzmann Ma-

chines [12, 18], hyperfeatures [1], fragment-based hierar-

chies [30], stochastic grammars [34] and compositional ob-

ject representations [9, 33]. The underlying ideas behind

these approaches are similar, but they differ in the type of

representation used.

Convolutional networks stack one or several feature ex-

traction stages, each of which consists of a filter bank layer,

non-linear transformation layers, and a pooling layer that

combines filter responses over local neighborhoods using

a pooling operation, thereby achieving invariance to small

distortions [25]. In [1], the authors propose a representa-

tion with “hyperfeatures” which are recursively formed as

quantized local histograms over the labels from the pre-

vious layer, which in turn are quantized local histograms

over smaller spatial areas in images. Compositional hierar-

chies [9, 33, 24] and stochastic grammars [34] define ob-

jects in terms of spatially related parts which are then re-

cursively defined in terms of simpler constituents from the

layers below.

Most of these models process information in a feedfor-

ward manner, which is not robust to local ambiguities in

the visual input. In order to disambiguate local informa-

tion, contextual cues imposed by more global image rep-

resentation may need to be used. A probabilistic Bayesian

framework offers a good way of recruiting such top-down

information [19] into the model.

In this paper, we propose a recursive Bayesian prob-

abilistic model as a representation for the intermediately

complex visual features. Our model is based on Latent

Dirichlet Allocation [4], a latent factor mixture model ex-

tensively used in the field of text analysis. Here, we ex-

tend this representation to a recursively defined probabilis-

tic model over image features and show its advantage over

the flat approach as well as a feedforward implementation.

Due to overlapping terminology, we emphasize that

our recursive LDA model is inherently different from

Hierarchical-LDA [3] which forms a hierarchy of topics

over the same vocabulary. In contrast, our hierarchy is

over recursively formed inputs, with a fixed base vocabu-

lary. Similar structure is seen in the Pachinko Allocation

Model [20], which generalizes the LDA model from a sin-

gle layer of latent topic variables to an arbitrary DAG of

variables. As we explain later, this structure is similar to

our model, but crucially, it is missing a spatial grid that al-

lows us to model image patches of increasing spatial sup-
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port. This allows us to keep the base vocabulary small,

while for PAM it would grow with the size of the support in

the image.

3. Recursive LDA Model
In contrast to previous approaches to latent factor mod-

eling, we formulate a layered approach that derives progres-

sively higher-level spatial distributions based on the under-

lying latent activations of the lower layer.

For clarity, we will first derive this model for two layers

(L0 and L1) as shown in Figure 2a, but will show how it

generalizes to an arbitrary number of layers. For illustra-

tion purposes, the reader may visualize a particular instance

of our model that observes SIFT descriptors (such as the L0

patch in Figure 2a) as discrete spatial distributions on the

L0-layer. In this particular case, the L0 layer models the

distribution of words from a vocabulary of size V = 8 gra-

dient orientation bins over a spatial grid X0 of size 4 × 4.

As words in our vocabulary correspond to orientation bins,

their frequency represents the histogram energy in the cor-

responding bin of the SIFT descriptor.

The mixture model of T0 components is parameterized

by multinomial parameters φ0 ∈ R
T0×X0×V ; in our partic-

ular example φ0 ∈ R
T0×(4×4)×8. The L1 aggregates the

mixing proportions obtained at layer L0 over a spatial grid

X1 to an L1 patch. In contrast to the L0 layer, L1 mod-

els a spatial distribution over L0 components. The mixture

model of T1 components at layer L1 is parameterized by

multinomial parameters φ1 ∈ R
T1×X1×T0 .

The spatial grid is considered to be deterministic at each

layer and position variables for each word x are observed.

However, the distribution of words / topics over the grid is

not uniform and may vary across different components. We

thus have to introduce a spatial (multinomial) distribution χ
at each layer which is computed from the mixture distribu-

tion φ. This is needed to define a full generative model.

The model for a single layer with a grid of size 1 × 1 is

equivalent to LDA, which is therefore a special case of our

recursive approach.

3.1. Generative Process

Given symmetric Dirichlet priors α, β0, β1 and the num-

ber of mixture components T0 and T1 for layer L1 and L0

respectively, we define the following generative process,

also illustrated in Figure 2b.

Mixture distributions are sampled globally according to:

• φ1 ∼ Dir(β1) and φ0 ∼ Dir(β0): sample L1 and L0

multinomial parameters
• χ1 ← φ1 and χ0 ← φ0 : compute spatial distributions

from mixture distributions

For each document, d ∈ {1, . . . , D} top level mixing pro-

portions θ(d) are sampled according to:

• θ(d) ∼ Dir(α) : sample top level mixing proportions

For each document d, N (d) words w are sampled according

to:

• z1 ∼ Mult(θ(d)) : sample L1 mixture distribution

• x1 ∼ Mult(χ
(z1,·)
1 ) : sample spatial position on L1

given z1
• z0 ∼ Mult(φ

(z1,x1,·)
1 ) : sample L0 mixture distribution

given z1 and x1 from L1

• x0 ∼ Mult(χ
(z0,·)
0 ) : sample spatial position on L0

given z0
• w ∼ Mult(φ

(z0,x0,·)
0 ) : sample word given z0 and x0

According to the proposed generative process, the joint dis-

tribution of the model parameters given the hyperparame-

ters can be factorized as:

p(w, z0,1, φ0,1, x0,1, χ0,1, θ|α, β0,1) = Pφ0
Pφ1

D∏

d=1

Pd

(1)
where

Pφi =

T1∏
t1=1

p(φ
(ti,·,·)
i |βi) p(χ

(ti,·)
i |φ(ti,·,·)

i )

Pd = p(θ(d)|α)
N(d)∏
n=1

Pz1Pz0 p(w(d,n)|φ(z0,x0,·)
0 )

Pz1 = p(z
(d,n)
1 | θ(d)) p(x(d,n)

1 |χ(z1,·)
1 )

Pz0 = p(z
(d,n)
0 |φ(z1,x1,·)

1 ) p(x
(d,n)
0 |χ(z0,·)

0 )

We use the superscript in parentheses to index each vari-

able uniquely in the nested plates. Whenever a “·” is speci-

fied, we refer to the whole range of the variable. As an ex-

ample, φ
(ti,·,·)
i refers to the multinomial parameters of topic

ti over the spatial grid and the topics of the lower layer L0.

The spatial distribution χ0 ∈ R
T0×X0 and χ1 ∈ R

T1×X1

are directly computed from φ0 and φ1 respectively by sum-

ming the multinomial coefficients over the vocabulary.

3.2. Learning and inference

For learning the model parameters we infer for each ob-

served word occurrence w(d,n) the latent allocations z
(d,n)
0

and z
(d,n)
1 , which indicate which mixture distributions were

sampled at L1 and L0. Additionally, we observe the posi-

tion variables x
(d,n)
0 and x

(d,n)
1 , which trace each word oc-

currence through the X0 and X1 grids to θ(d), as visualized

in Figure 2a.

As we seek to perform Gibbs Sampling over the latent

variables z for inference, we condition on the observed vari-

ables x and integrate out the multinomial parameters of the

model. The equations are presented in Figure 3. In equa-

tion (3) we are able to eliminate all terms referring to χ, as
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Figure 2: a) Concept for the Recursive LDA model. b) Graphical model describing two-layer RLDA.

p(w, z0,1|x0,1, α, β0,1) =

∫
θ

∫
φ1

∫
φ0

∫
χ1

∫
χ0

p(w, z1, z0, φ1, φ0, θ, χ1, χ0|x1, x0, α, β1, β0)dχ0dχ1dφ0dφ1dθ (2)

=

∫
θ

∫
φ1

∫
φ0

p(w, z1, z0, φ1, φ0, θ|x1, x0, α, β1, β0)dφ0dφ1dθ (3)

=

∫
θ

p(θ|α)p(z1|θ)dθ︸ ︷︷ ︸
top layer

∫
φ1

p(φ1|β1)p(z0|φ1, z1, x1)dφ1

︸ ︷︷ ︸
intermediate layer

∫
φ0

p(w|φ0, z0, x0)p(φ0|β)dφ0

︸ ︷︷ ︸
evidence layer

(4)

p(w, z1,...,L|x1,...,L, α, β1,...,L) =

∫
θ

p(θ|α)p(zL|θ)dθ︸ ︷︷ ︸
top layer L

L−1∏
l=1

∫
φl

p(φl|βl)p(zl−1|φl, zl, xl)dφl

︸ ︷︷ ︸
layer l

∫
φ0

p(w|φ0, z0, x0)p(φ0|β)dφ0

︸ ︷︷ ︸
evidence layer

(5)

Figure 3: RLDA conditional probabilities for a two-layer model, which is then generalized to an L-layer model.

all variables x are observed and the deterministic transfor-

mation between φ and χ has probability one. Our formula-

tion now closely resembles the Latent Dirichlet Allocation

but adds an additional layer in between that also performs

spatial grouping via the variables x. This formulation easily

generalizes to L layers, as shown in equation (5).

The derivation of the Gibbs Sampling equations is analo-

gous to derivations for LDA (for an excellent reference, see

[11]), with the addition of the observed position variables

x. Due to space constraints, the derivations are presented in

the supplementary materials.

4. Experiments
To evaluate the performance of our probabilistic recur-

sive model, we test on the classification dataset Caltech

101 [7], which has been the most common evaluation of

hierarchical local descriptors. We show performance for

different numbers of components at each of the layers and

explore single-layer, feed-forward (FLDA), and fully gen-
erative (RLDA) models, showing that 1) classification per-

formance improves with an additional layer over the single-

layer model, and 2) the fully generative RLDA model im-

proves over the feed-forward-only FLDA analog.

Our work seeks to improve local features for low and

mid-level vision independent of any specific object recog-

nition methods, and we do not innovate in that regard. We

note that we test our model using only a single feature, and

compare it only to other single-descriptor approaches, fo-

cusing on hierarchical models.

4.1. Implementation

The feature representation of an image for our approach

are SIFT descriptors of size 16 × 16 pixels, densely ex-

tracted from the image with a stride of 6 pixels. Individ-
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Table 1: Comparison of RLDA with 128 components at layer L1 and 1024 components at layer L2 to other hierarchical

approaches. Under layers, “bottom” refers to the L1 features of the RLDA model, “top” to L2 features, and “both” denotes

the feature obtained by stacking both layers.

Approach Caltech-101

Model Layer(s) used 15 30

Our Model

RLDA (1024t/128b) bottom 56.6± 0.8% 62.7± 0.5%
RLDA (1024t/128b) top 66.7± 0.9% 72.6± 1.2%
RLDA (1024t/128b) both 67.4± 0.5 73.7± 0.8%

Hierarchical

Models

Sparse-HMAX [22] top 51.0% 56.0%
CNN [16] bottom – 57.6± 0.4%
CNN [16] top – 66.3± 1.5%
CNN + Transfer [2] top 58.1% 67.2%
CDBN [18] bottom 53.2± 1.2% 60.5± 1.1%
CDBN [18] both 57.7± 1.5% 65.4± 0.4%
Hierarchy-of-parts [8] both 60.5% 66.5%
Ommer and Buhmann [24] top – 61.3± 0.9%

Table 2: Results for different implementations of our model with 128 components at layer L1 and 128 components at L2.

For LDA models, “bottom” refers to using SIFT patches as input, while “top” refers to using 4× 4 SIFT superpatches.

Approach Caltech-101

Model Basis size Layer(s) used 15 30

128-dim

models

LDA 128 “bottom” 52.3± 0.5% 58.7± 1.1%
RLDA 128t/128b bottom 55.2± 0.3% 62.6± 0.9%
LDA 128 “top” 53.7± 0.4% 60.5± 1.0%
FLDA 128t/128b top 55.4± 0.5% 61.3± 1.3%
RLDA 128t/128b top 59.3± 0.3% 66.0± 1.2%
FLDA 128t/128b both 57.8± 0.8% 64.2± 1.0%
RLDA 128t/128b both 61.9± 0.3% 68.3± 0.7%

ual descriptors were processed by our probabilistic mod-

els, and results of inference were used in a classification

framework described in section 4.2. Because LDA requires

discrete count data and SIFT dimensions are continuous-

valued, normalization of the maximum SIFT value to 100

tokens was performed; this level of quantization was shown

to maintain sufficient information about the descriptor.

We trained and compared the following three types of

models:

1. LDA: LDA models with various numbers of compo-

nents (128, 1024, and 2048) trained on 20K randomly

extracted SIFT patches. We also trained LDA models

on “superpatches” consisting of 4×4 SIFT patches, to

give the same spatial support as our two-layer models.

2. FLDA: The feed-forward model first trains an LDA

model on SIFT patches, as above. Topic activations

are output and assembled as 4 × 4 superpatches. An-

other LDA model is learned on this input. We tested

128 components at the bottom layer, and 128 and 1024

components at the top layer.

3. RLDA: The full model was trained on the same size

patches as FLDA described above: SIFT descriptors in

a 4×4 spatial arrangement, with model parameters set

accordingly. We tested 128 components at the bottom,

and 128 and 1024 components at the top layer.

4.2. Evaluation

The setup of our classification experiments follows the

Spatial Pyramid Match, a commonly followed approach in

Caltech-101 evaluations [17]. A spatial pyramid with 3 lay-

ers of 4 × 4, 2 × 2, and 1 × 1 grids was constructed on

top of our features. Guided by the best practices outlined

in a recent comparison of different pooling and factoriza-

tion functions [5], we used max pooling for the spatial pyra-

mid aggregation. For classification, we used a linear SVM,

following the state-of-the-art results of Yang et al. [32].

Caltech-101 is a dataset comprised of 101 object categories,
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Figure 4: Comparison of classification rates on Caltech-101 of the one-layer model (LDA-SIFT) with the feed-forward

(FLDA) and full generative (RLDA) two-layer models for different number of training examples, all trained with 128 at L1

and 128 at L2 layers. We also compare to the stacked L1 and L2 layers for both FLDA and RLDA, which performed the best.

with differing numbers of images per category [7]. Follow-

ing standard procedure, we use 30 images per category for

training and the rest for testing. Mean accuracy and stan-

dard deviation are reported for 8 runs over different splits

of the data, normalized per class.

We first tested the one-layer LDA model over SIFT fea-

tures. For 128 components we obtain classification accu-

racy of 58.7%. Performance increases as we increase the

number of components: for 1024 topics the performance is

68.8%, and for 2048 it is 70.4% (all numbers here and on

refer to the case of 30 training examples).

The emphasis of our experiments was to evaluate the

contribution of additional layers to classification perfor-

mance. We tested the FLDA and RLDA models (described

in 4.1) in the same regime as described above.

As an initial experiment, we constrained the number of

topics to 128 and trained three models: single-layer, FLDA,

and RLDA. The two-layer models were trained with 128

topics on the bottom layer, corresponding to SIFT descrip-

tors, and 128 on the top.

First, only the top-layer topics were used for classifica-

tion. The dimensionality of vectors fed into the classifier

was therefore the same for the two-layer and the single-

layer models. We present the results in Table 2.

Both of the two-layer models improved on the one-layer

model, obtaining classification rates of 61.3% for FLDA

and 66.0% for RLDA, compared to the single-layer results

of 58.7%, when trained on SIFT patches, and 60.6%, when

trained on 4×4 SIFT “superpatches” (which are reported in

Table 2 under LDA “top”). Detailed results across different

numbers of training examples are shown in Figure 4a. The

figure shows that the RLDA model always outperforms the

FLDA model, which in turn always outperforms the one-

layer model.

We have also tested the classification performance of

stacking both L1 and L2 features into a feature vector. This

feature contains more information, as both spatially larger

and smaller features are taken into account. This is a stan-

dard practice for hierarchical models [18, 14]. The results,

presented in Table 2 (under “both”) and in Figure 4b, show

that using information from both layers improves perfor-

mance further, by about 3% for FLDA and 2% for RLDA.

We also compared the performance of just the first

layer L1 obtained with the RLDA model to the single-

layer model (which also forms the first layer of the FLDA

model). Interestingly, the decomposition learned in L1

of the RLDA model outperforms the single layer model

(62.6% vs 58.7%). This demonstrates that learning the lay-

ers jointly is beneficial to the performance of both bottom

and top layers, separately examined.

Following this evaluation, we also learned two-layer

models with 1024 topics in the top layer and 128 in the

bottom layer. The results hold, but the difference between

the models becomes smaller—we hypothesize that single-

feature performance on the dataset begins saturating at these

levels. RLDA top layer performs at 72.6% vs. 72.5% for

FLDA and 68.8% for the single-layer model. The bottom

layer of RLDA achieves 62.7% classification accuracy vs

62.6% for FLDA. Using both layers, RLDA gets 73.7%
while FLDA gets 72.9%.

The comparison with related hierarchical models is given

in Table 1, which shows that while the baseline single-

layer LDA-SIFT model performs worse than most of the

approaches, the proposed RLDA model outperforms the ex-
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isting work by more than 5%.

Our best performance of 73.7% compares well to the

current best performing approaches: sparse coding with

73.2% [32] and 75.7% [5] (using increased spatial support

and much denser sampling), and LCC [31] with 73.5%.

State-of-the art single-feature performance has been shown

by keeping all training data in a non-parametric classifica-

tion scheme, obtaining 78.5% [15].

We note that in the existing literature on hierarchical

models, most authors report best performance with just one

learned layer, while adding another layer seems to decrease

the recognition performance [27, 25, 8]. In contrast, in our

model, the performance increases by adding another layer

to the representation. The most important result, however,

is that the full Bayesian model as proposed in the paper out-

performs the feed-forward approach. This supports the idea

that inference carried out in the Bayesian approach results

in more stable estimations of the feature activations, and

thus better and more robust recognition performance. This

highlights the importance of feedback in hierarchical recog-

nition.

4.3. Role of Feedback in the Model

Additional evidence for the crucial role of feedback in

the model comes from visualization of the average image

patches corresponding to top- and bottom-layer components

learned by the two models. Figure 5 shows that the full gen-

erative RLDA model uses lower-layer components in a no-

tably different way than the feed-forward model, and learns

different, more complex spatial structures at the top layer.

In the feed-forward model, the bottom-layer topics are

in essence orientation filters. The second layer does not

impose any additional structure on them, and therefore the

top-layer topics appear to be the same simple orientations,

localized within a bigger spatial support. In the fully gener-

ative RLDA model, the top-layer components seem to rep-

resent more interesting and potentially discriminative spa-

tial structures.

We also found that the RLDA bottom-layer activations

exhibit stronger correlations between topic activations in

neighboring patches, which suggests that the model allows

bottom layer inference to represent continuous structures

across subpatches.

5. Conclusions
We presented a probabilistic model for visual features

of increasing complexity and spatial support. The layers

of the hierarchy are trained jointly. We demonstrate per-

formance that is among the recent best in single-descriptor

approaches, and that outperforms existing hierarchical ap-

proaches. Most importantly, we show that adding an-

other layer to our model significantly improves performance

(something that is rarely true for layered models in vision),

(a
)

F
L

D
A

(b
)

R
L

D
A

top layer bottom layer

Figure 5: Comparison of the (a) feed-forward and (b)

full generative two-layer models in terms of components

learned, visualized as average image patches. While FLDA

learns only localized edge orientations, RLDA learns more

complex spatial structures.

and that the full generative process performs better than the

feed-forward approach. This emphasizes the necessity of

feedback in hierarchical visual recognition models.

Probabilistic models are robust, make modular combi-

nations easy, and form the basis of possible non-parametric

extensions. The theorized goal of hierarchical approaches

to vision is reaching object-level representations. With

additional layers and variables, our model can be developed

from merely a source of mid-level features to a full-scale

object recognition method. With a non-parametric exten-

sion, the number of components would be inferred from the

training data, which would appear especially important at

the part- and object-level representation. These topics are

subject of future work.

Acknowledgements: Various co-authors of this work

were supported in part by a Feodor Lynen Fellowship

granted by the Alexander von Humboldt Foundation; by

awards from the US DOD and DARPA, including contract

W911NF-10-2-0059; by NSF awards IIS-0905647 and IIS-

0819984; by EU FP7-215843 project POETICON; and by

Toyota and Google.

407



References
[1] A. Agarwal and B. Triggs. Multilevel Image Coding with

Hyperfeatures. International Journal of Computer Vision,

2008. 402

[2] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. P. Xing. Train-

ing Hierarchical Feed-Forward Visual Recognition Models

Using Transfer Learning from Pseudo-Tasks. ECCV, 2008.

402, 405

[3] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenen-

baum. Hierarchical Topic Models and the Nested Chinese

Restaurant Process. Advances in Neural Information Pro-
cessing Systems 16, 2010. 402

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet

allocation. Journal of Machine Learning Research, 2009.

402

[5] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learn-

ing Mid-Level Features For Recognition. CVPR 2010, 2010.

401, 405, 407

[6] C. E. Connor, S. L. Brincat, and A. Pasupathy. Transforma-

tion of shape information in the ventral pathway. Current
Opinion in Neurobiology, 17(2):140–147, 2007. 402

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Vi-

sual Models from Few Training Examples: An Incremental

Bayesian Approach Tested on 101 Object Categories. CVPR
2004, Workshop on Generative-Model Based Vision, 2004.

404, 406

[8] S. Fidler, M. Boben, and A. Leonardis. Similarity-based

cross-layered hierarchical representation for object catego-

rization. In CVPR, 2008. 405, 407

[9] S. Fidler and A. Leonardis. Towards Scalable Representa-

tions of Object Categories: Learning a Hierarchy of Parts.

CVPR 2007, 2007. 401, 402

[10] M. Fritz, M. J. Black, G. R. Bradski, S. Karayev, and T. Dar-

rell. An Additive Latent Feature Model for Transparent Ob-

ject Recognition. NIPS, 2009. 401, 402

[11] G. Heinrich. Parameter estimation for text analysis. Techni-
cal Report, 2008. 404

[12] G. E. Hinton. Learning multiple layers of representation.

Trends in Cogn. Sciences, 11(10):428–434, 2007. 402

[13] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning al-

gorithm for deep belief nets. Neural Computation, 18:1527–

1554, 2006. 401

[14] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun.

What is the Best Multi-Stage Architecture for Object Recog-

nition? CVPR, 2009. 406

[15] C. Kanan and G. Cottrell. Robust classification of objects,

faces, and flowers using natural image statistics. In CVPR,

2010. 407

[16] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor,

M. l. Mathieu, and Y. LeCun. Learning Convolutional Fea-

ture Hierarchies for Visual Recognition. NIPS, 2010. 405

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-

tures: Spatial Pyramid Matching for Recognizing Natural

Scene Categories. CVPR 2006, 2006. 401, 405

[18] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Con-

volutional deep belief networks for scalable unsupervised

learning of hierarchical representations. Proceedings of the
26th Annual International Conference on Machine Learning,

2009. 401, 402, 405, 406

[19] T. S. Lee and D. Mumford. Hierarchical Bayesian inference

in the visual cortex. Journal of the Optical Society of Amer-
ica Association, 2003. 401, 402

[20] W. Li and A. McCallum. Pachinko Allocation: DAG-

Structured Mixture Models of Topic Correlations. ICML
2006, 2006. 402

[21] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 2004.

401

[22] J. Mutch and D. G. Lowe. Object class recognition and lo-

calization using sparse features with limited receptive fields.

International Journal of Computer Vision, 2008. 401, 402,

405

[23] B. A. Olshausen and D. J. Field. Sparse coding with an over-

complete basis set: A strategy employed by V1? Vision
Research, 2003. 401

[24] B. Ommer and J. M. Buhmann. Learning the compositional

nature of visual objects. In CVPR, 2007. 402, 405

[25] M. A. Ranzato, F.-J. Huang, Y.-L. Boureau, and Y. LeCun.

Unsupervised Learning of Invariant Feature Hierarchies with

Applications to Object Recognition. CVPR, 2008. 401, 402,

407

[26] E. T. Rolls and G. Deco. Computational Neuroscience of
Vision. Oxford Univ. Press, 2002. 401, 402

[27] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-

gio. Object recognition with cortex-like mechanisms. PAMI,
29(3):411–426, 2007. 401, 402, 407

[28] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T.

Freeman. Discovering objects and their locations in images.

In ICCV, 2005. 402

[29] J. M. Sivic and A. Zisserman. Video Google: a text retrieval

approach to object matching in videos. Computer Vision,
2003. Proceedings. Ninth IEEE International Conference on,

2003. 401

[30] S. Ullman. Object recognition and segmentation by a

fragment-based hierarchy. TRENDS in Cognitive Sciences,

2006. 402

[31] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.

Locality-constrained Linear Coding for Image Classifica-

tion. CVPR 2010, 2010. 407

[32] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial

Pyramid Matching Using Sparse Coding for Image Classi-

fication. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009. 401, 405, 407

[33] L. L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille. Unsu-

pervised Structure Learning: Hierarchical Recursive Com-

position, Suspicious Coincidence and Competitive Exclu-

sion. ECCV 2008, 2008. 401, 402

[34] S. Zhu and D. Mumford. A stochastic grammar of images.

Foundations and Trends in Computer Graphics and Vision,

2(4):259–362, 2006. 402

408


