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Abstract—Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final

years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level

image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean

average precision (mAP) by more than 50 percent relative to the previous best result on VOC 2012—achieving a mAP of 62.4 percent.

Our approach combines two ideas: (1) one can apply high-capacity convolutional networks (CNNs) to bottom-up region proposals in

order to localize and segment objects and (2) when labeled training data are scarce, supervised pre-training for an auxiliary task,

followed by domain-specific fine-tuning, boosts performance significantly. Since we combine region proposals with CNNs, we call

the resulting model an R-CNN or Region-based Convolutional Network. Source code for the complete system is available

at http://www.cs.berkeley.edu/~rbg/rcnn.

Index Terms—Object recognition, detection, semantic segmentation, convolutional networks, deep learning, transfer learning
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1 INTRODUCTION

RECOGNIZING objects and localizing them in images is
one of the most fundamental and challenging prob-

lems in computer vision. There has been significant prog-
ress on this problem over the last decade due largely to
the use of low-level image features, such as SIFT [1] and
HOG [2], in sophisticated machine learning frameworks.
But if we look at performance on the canonical visual rec-
ognition task, PASCAL VOC object detection [3], it is gen-
erally acknowledged that progress slowed from 2010
onward, with small gains obtained by building ensemble
systems and employing minor variants of successful
methods.

SIFT and HOG are semi-local orientation histograms, a
representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be
hierarchical, multi-stage processes for computing features
that are even more informative for visual recognition.

In this paper, we describe an object detection and seg-
mentation system that uses multi-layer convolutional net-
works to compute highly discriminative, yet invariant,
features. We use these features to classify image regions,
which can then be output as detected bounding boxes or
pixel-level segmentation masks. On the PASCAL detection

benchmark, our system achieves a relative improvement of
more than 50 percent mean average precision (mAP) com-
pared to the best methods based on low-level image fea-
tures. Our approach also scales well with the number of
object categories, which is a long-standing challenge for
existing methods.

We trace the roots of our approach to Fukushima’s
“neocognitron” [4], a hierarchical and shift-invariant model
for pattern recognition. While the basic architecture of the
neocognitron is used widely today, Fukushima’s method
had limited empirical success in part because it lacked a
supervised training algorithm. Rumelhart et al. [5] showed
that a similar architecture could be trained with supervised
error backpropagation to classify synthetic renderings of
the characters ‘T‘ and ‘C‘. Building on this work, LeCun
et al. demonstrated in an influential sequence of papers
(from [6] to [7]) that stochastic gradient descent (SGD) via
backpropagation was effective for training deeper networks
for challenging real-world handwritten character recogni-
tion problems. These models are now known as convolu-
tional (neural) networks, CNNs, or ConvNets.

CNNs saw heavy use in the 1990s, but then fell out of
fashion with the rise of support vector machines. In 2012,
Krizhevsky et al. [8] rekindled interest in CNNs by showing
a substantial improvement in image classification accuracy
on the imagenet large scale visual recognition challenge
(ILSVRC) [9], [10]. Their success resulted from training a
large CNN on 1.2 million labeled images, together with a
few twists on CNNs from the 1990s (e.g., maxðx; 0Þ “ReLU”
non-linearities, “dropout” regularization, and a fast GPU
implementation).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do the
CNN classification results on ImageNet generalize to object
detection results on the PASCAL VOC Challenge?
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We answered this question in a conference version
of this paper [11] by showing that a CNN can lead to
dramatically higher object detection performance on
PASCAL VOC as compared to systems based on simpler
HOG-like features. To achieve this result, we bridged the
gap between image classification and object detection by
developing solutions to two problems: (1) How can we
localize objects with a deep network? and (2) How can
we train a high-capacity model with only a small quantity
of annotated detection data?

Unlike image classification, detection requires localizing
(likely many) objects within an image. One approach is to
frame detection as a regression problem. This formulation
can work well for localizing a single object, but detecting
multiple objects requires complex workarounds [12] or an
ad hoc assumption about the number of objects per image
[13]. An alternative is to build a sliding-window detector.
CNNs have been used in this way for at least two decades,
typically on constrained object categories, such as faces [14],
[15], hands [16], and pedestrians [17]. This approach is
attractive in terms of computational efficiency, however its
straightforward application requires all objects to share a
common aspect ratio. The aspect ratio problem can be
addressed with mixture models (e.g., [18]), where each com-
ponent specializes in a narrow band of aspect ratios, or with
bounding-box regression (e.g., [18], [19]).

Instead, we solve the localization problem by operating
within the “recognition using regions” paradigm [20],
which has been successful for both object detection [21] and
semantic segmentation [22]. At test time, our method gener-
ates around 2,000 category-independent region proposals
for the input image, extracts a fixed-length feature vector
from each proposal using a CNN, and then classifies each
region with category-specific linear SVMs. We use a simple
warping technique (anisotropic image scaling) to compute a
fixed-size CNN input from each region proposal, regardless
of the region’s shape. Fig. 1 shows an overview of a region-
based convolutional network (R-CNN) and highlights some
of our results.

A second challenge faced in detection is that labeled data
are scarce and the amount currently available is insufficient
for training large CNNs from random initializations. The
conventional solution to this problem is to use unsupervised

pre-training, followed by supervised fine-tuning (FT) (e.g.,
[17]). The second principle contribution of this paper is to
show that supervised pre-training on a large auxiliary dataset
(ILSVRC), followed by domain-specific fine-tuning on a
small dataset (PASCAL), is an effective paradigm for learn-
ing high-capacity CNNs when data are scarce. In our
experiments, fine-tuning for detection can improve mAP by
as much as 8 percentage points. After fine-tuning, our sys-
tem achieves a mAP of 63 percent on VOC 2010 compared
to 33 percent for the highly-tuned, HOG-based deformable
part model (DPM) [18], [23].

Our original motivation for using regions was born out of
a pragmatic research methodology: move from image classi-
fication to object detection as simply as possible. Since then,
this design choice has proved valuable because R-CNNs are
straightforward to implement and train (compared to slid-
ing-window CNNs) and it provides a unified solution to
object detection and segmentation.

This journal paper extends our earlier work [11] in a
number of ways. First, we provide more implementation
details, rationales for design decisions, and ablation studies.
Second, we present new results on PASCAL detection using
deeper networks. Our approach is agnostic to the particular
choice of network architecture used and we show that
recent work on deeper networks (e.g., [24]) translates into
large improvements in object detection. Finally, we give a
head-to-head comparison of R-CNNs with the recently pro-
posed OverFeat [19] detection system. OverFeat uses a slid-
ing-window CNN for detection and was a top-performing
method on the ILSVRC 2013 detection challenge. We train
an R-CNN that significantly outperforms OverFeat, with a
mAP of 31.4 percent versus 24.3 percent on the 200-class
ILSVRC2013 detection dataset.

2 RELATED WORK

Deep CNNs for object detection. Therewere several efforts [12],
[13], [19] to use convolutional networks for PASCAL-style
object detection concurrent with the development of R-
CNNs. Szegedy et al. [12] model object detection as a regres-
sion problem. Given an image window, they use a CNN to
predict foreground pixels over a coarse grid for the whole
object aswell as the object’s top, bottom, left and right halves.
A grouping process then converts the predicted masks into
detected bounding boxes. Szegedy et al. train their model
from a random initialization on VOC 2012 trainval and get a
mAP of 30.5 percent on VOC 2007 test. In comparison, an R-
CNN using the same network architecture gets a mAP of
58.5 percent, but uses supervised ImageNet pre-training.
One hypothesis is that [12] performs worse because it does
not use ImageNet pre-training. Recent work from Agrawal
et al. [25] shows that this is not the case; they find that an R-
CNN trained from a random initialization on VOC 2007
trainval (using the same network architecture as [12])
achieves a mAP of 40.7 percent on VOC 2007 test despite
using half the amount of training data as [12].

Scalability and speed. In addition to being accurate, it’s
important for object detection systems to scale well as the
number of object categories increases. Significant effort has
gone into making methods like DPM [18] scale to thousands
of object categories. For example, Dean et al. [26] replace

Fig. 1. Object detection system overview. Our system (1) takes an input
image, (2) extracts around 2000 bottom-up region proposals, (3) com-
putes features for each proposal using a large CNN, and then (4) classi-
fies each region using class-specific linear SVMs. We trained an R-CNN
that achieves a mean average precision of 62.9 percent on PASCAL
VOC 2010. For comparison, [21] reports 35.1 percent mAP using the
same region proposals, but with a spatial pyramid and bag-of-visual-
words approach. The popular deformable part models perform at
33.4 percent. On the 200-class ILSVRC2013 detection dataset, we
trained an R-CNN with a mAP of 31.4 percent, a large improvement over
OverFeat [19], which had the previous best result at 24.3 percent mAP.
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exact filter convolutions in DPM with hashtable lookups.
They show that with this technique it’s possible to run 10k
DPM detectors in about 5 minutes per image on a desktop
workstation. However, there is an unfortunate tradeoff.
When a large number of DPM detectors compete, the
approximate hashing approach causes a substantial loss in
detection accuracy. R-CNNs, in contrast, scale very well
with the number of object classes to detect because nearly
all computation is shared between all object categories. The
only class-specific computations are a reasonably small
matrix-vector product and greedy non-maximum suppres-
sion. Although these computations scale linearly with the
number of categories, the scale factor is small. Measured
empirically, it takes only 30 ms longer to detect 200 classes
than 20 classes on a CPU, without any approximations. This
makes it feasible to rapidly detect tens of thousands of
object categories without any modifications to the core
algorithm.

Despite this graceful scaling behavior, an R-CNN can
take 10 to 45 seconds per image on a GPU, depending on
the network used, since each region is passed through the
network independently. Recent work from He et al. [27]
(“SPPnet”) improves R-CNN efficiency by sharing compu-
tation through a feature pyramid, allowing for detection at
a few frames per second. Building on SPPnet, Girshick [28]
shows that it’s possible to further reduce training and test-
ing times, while improving detection accuracy and simplify-
ing the training process, using an approach called “Fast R-
CNN.” Fast R-CNN reduces detection times (excluding
region proposal computation) to 50 to 300 ms per image,
depending on network architecture.

Localization methods. The dominant approach to object
detection has been based on sliding-window detectors.
This approach goes back (at least) to early face detectors
[15], and continued with HOG-based pedestrian detection
[2], and part-based generic object detection [18]. An alter-
native is to first compute a pool of (likely overlapping)
image regions, each one serving as a candidate object, and
then to filter these candidates in a way that aims to retain
only the true objects. Multiple segmentation hypotheses
were used by Hoiem et al. [29] to estimate the rough geo-
metric scene structure and by Russell et al. [30] to automat-
ically discover object classes in a set of images. The
“selective search” algorithm of van de Sande et al. [21]
popularized the multiple segmentation approach for object
detection by showing strong results on PASCAL object
detection. Our approach was inspired by the success of
selective search.

Object proposal generation is now an active research
area. EdgeBoxes [31] outputs high-quality rectangular
(box) proposals quickly (�0.3 s per image). BING [32]
generates box proposals at �3 ms per image, however it
has subsequently been shown that the proposal quality
is too poor to be useful in R-CNNs [33]. Other methods
focus on pixel-wise segmentation, producing regions
instead of boxes. These approaches include RIGOR [34]
and MCG [35], which take 10 to 30 s per image and
GOP [36], a faster methods that takes �1 s per image.
For a more in-depth survey of proposal algorithms,
Hosang et al. [33] provide an insightful meta-evaluation
of recent methods.

Transfer learning. R-CNN training is based on inductive
transfer learning, using the taxonomy of Pan and Yang [37].
To train an R-CNN, we typically start with ImageNet classi-
fication as a source task and dataset, train a network using
supervision, and then transfer that network to the target
task and dataset using supervised fine-tuning. This method
is related to traditional multi-task learning [38], [39], except
that we train for the tasks sequentially and are ultimately
only interested in performing well on the target task.

This strategy is different from the dominant paradigm in
recent neural network literature of unsupervised tranfer learn-
ing (see [40] for a survey covering unsupervised pre-train-
ing and represetation learning more generally). Supervised
transfer learning using CNNs, but without fine-funing, was
also investigated in concurrent work by Donahue et al. [41].
They show that Krizhevsky et al.’s CNN, once trained on
ImageNet, can be used as a blackbox feature extractor,
yielding excellent performance on several recognition tasks
including scene classification, fine-grained sub-categoriza-
tion, and domain adaptation. Hoffman et al. [42] show how
transfer learning can be used to train R-CNNs for classes
that have image-level labels, but no bounding-box training
data. Their approach is based on modeling the task shift
from image classification to object detection and then trans-
fering that knowledge to classes that have no detection
training data.

R-CNN extensions. Since their introduction, R-CNNs have
been extended to a variety of new tasks and datasets.
Karpathy et al. [43] learn a model for bi-directional image
and sentence retrieval. Their image representation is
derived from an R-CNN trained to detect 200 classes on the
ILSVRC2013 detection dataset. Gkioxari et al. [44] use
multi-task learning to train R-CNNs for person detection,
2D pose estimation, and action recognition. Hariharan et al.
[45] propose a unification of the object detection and seman-
tic segmentation tasks, termed “simultaneous detection and
segmentation” (SDS), and train a two-column R-CNN for
this task. They show that a single region proposal algorithm
(MCG [35]) can be used effectively for traditional bounding-
box detection as well as semantic segmentation. Their PAS-
CAL segmentation results improve significantly on the ones
reported in this paper. Gupta et al. [46] extend R-CNNs to
object detection in depth images. They show that a well-
designed input signal, where the depth map is augmented
with height above ground and local surface orientation with
respect to gravity, allows training an R-CNN that outper-
forms existing RGB-D object detection baselines. Song et al.
[47] train an R-CNN using weak, image-level supervision
by mining for positive training examples using a submodu-
lar cover algorithm and then training a latent SVM.

Many systems based on, or implementing, R-CNNs
were used in the recent ILSVRC2014 object detection chal-
lenge [48], resulting in substantial improvements in detec-
tion accuracy. In particular, the winning method,
GoogLeNet [49], [50], uses an innovative network design
in an R-CNN. With a single network (and a slightly sim-
pler pipeline that excludes SVM training and bounding-
box regression), they improve R-CNN performance to
38.0 percent mAP from a basline of 34.5 percent. They also
show that an ensemble of six networks improves their
result to 43.9 percent mAP.
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3 OBJECT DETECTION WITH AN R-CNN

Our object detection system consists of three modules. The
first generates category-independent region proposals.
These proposals define the set of candidate detections avail-
able to our detector. The second module is a convolutional
network that extracts a fixed-length feature vector from
each region. The third module is a set of class-specific linear
SVMs. In this section, we present our design decisions for
each module, describe their test-time usage, detail how their
parameters are learned, and show detection results on PAS-
CAL VOC 2010-12 and ILSVRC2013.

3.1 Module Design

3.1.1 Region Proposals

A variety of recent papers offer methods for generating cate-
gory-independent region proposals. Examples include:
objectness [51], selective search [21], category-independent
object proposals [52], constrained parametric min-cuts
(CPMC) [22], multi-scale combinatorial grouping [35], and
Cireşan et al. [53], who detect mitotic cells by applying
a CNN to regularly-spaced square crops, which are a special
case of region proposals. While R-CNN is agnostic to the
particular region proposal method, we use selective search
to enable a controlled comparison with prior detection work
(e.g., [21], [54]).

3.1.2 Feature Extraction

We extract a fixed-length feature vector from each region
proposal using a CNN. The particular CNN architecture
used is a system hyperparameter. Most of our experiments
use the Caffe [55] implementation of the CNN described by
Krizhevsky et al. [8] (TorontoNet), however we have also
experimented with the 16-layer deep network from Simon-
yan and Zisserman [24] (OxfordNet). In both cases, the fea-
ture vectors are 4,096-dimensional. Features are computed
by forward propagating a mean-subtracted S � S RGB
image through the network and reading off the values out-
put by the penultimate layer (the layer just before the soft-
max classifier). For TorontoNet, S ¼ 227 and for OxfordNet
S ¼ 224. We refer readers to [8], [24], [55] for more network
architecture details.

In order to compute features for a region proposal, we
must first convert the image data in that region into a form
that is compatible with the CNN (its architecture requires
inputs of a fixed S � S pixel size).1 Of the many possible
transformations of our arbitrary-shaped regions, we opt for
the simplest. Regardless of the size or aspect ratio of the can-
didate region, we warp all pixels in a tight bounding box
around it to the required size. Prior to warping, we dilate
the tight bounding box so that at the warped size there are
exactly p pixels of warped image context around the origi-
nal box (we use p ¼ 16). Fig. 2 shows a random sampling of
warped training regions. Alternatives to warping are dis-
cussed in Section 7.1.

3.2 Test-Time Detection

At test time, we run selective search on the test image to
extract around 2,000 region proposals (we use selective
search’s “fast mode” in all experiments). We warp each pro-
posal and forward propagate it through the CNN in order
to compute features. Then, for each class, we score each
extracted feature vector using the SVM trained for that class.
Given all scored regions in an image, we apply a greedy
non-maximum suppression (for each class independently)
that rejects a region if it has an intersection-over-union
(IoU) overlap with a higher scoring selected region larger
than a learned threshold.

3.2.1 Run-Time Analysis

Two properties make detection efficient. First, all CNN
parameters are shared across all categories. Second, the fea-
ture vectors computed by the CNN are low-dimensional
when compared to other common approaches, such as spa-
tial pyramids with bag-of-visual-word encodings. The fea-
tures used in the UVA detection system [21], for example,
are two orders of magnitude larger than ours (360 k versus
4 k-dimensional).

The result of such sharing is that the time spent comput-
ing region proposals and features (10 s/image on an NVI-
DIA Titan Black GPU or 53 s/image on a CPU, using
TorontoNet) is amortized over all classes. The only class-
specific computations are dot products between features
and SVM weights and non-maximum suppression. In prac-
tice, all dot products for an image are batched into a single
matrix-matrix product. The feature matrix is typically
2;000� 4;096 and the SVM weight matrix is 4;096�N ,
whereN is the number of classes.

This analysis shows that R-CNNs can scale to thou-
sands of object classes without resorting to approximate
techniques, such as hashing. Even if there were 100 k clas-
ses, the resulting matrix multiplication takes only 10 sec-
onds on a modern multi-core CPU. This efficiency is not
merely the result of using region proposals and shared fea-
tures. The UVA system, due to its high-dimensional fea-
tures, would be two orders of magnitude slower while
requiring 134 GB of memory just to store 100 k linear pre-
dictors, compared to just 1.5 GB for our lower-dimensional
features.

It is also interesting to contrast R-CNNs with the recent
work from Dean et al. on scalable detection using DPMs
and hashing [56]. They report a mAP of around 16 percent
on VOC 2007 at a run-time of 5 minutes per image when
introducing 10 k distractor classes. With our approach, 10 k
detectors can run in about a minute on a CPU, and because
no approximations are made mAP would remain at
59 percent with TorontoNet and 66 percent with OxfordNet
(Section 4.2).

Fig. 2. Warped training samples from VOC 2007 train.

1. Of course the entire network can be run convolutionally, which
enables handling arbitrary input sizes, however then the output size is
no longer a fixed-length vector. The output can be converted to a fixed-
length through another transformation, such as in [27].
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3.3 Training

3.3.1 Supervised Pre-Training

We discriminatively pre-trained the CNN on a large auxil-
iary dataset (ILSVRC2012 classification) using image-level
annotations only (bounding-box labels are not available for
this data). Pre-training was performed using the open
source Caffe CNN library [55].

3.3.2 Domain-Specific Fine-Tuning

To adapt the CNN to the new task (detection) and the new
domain (warped proposal windows), we continue stochas-
tic gradient descent training of the CNN parameters using
only warped region proposals. Aside from replacing the
CNN’s ImageNet-specific 1000-way classification layer with
a randomly initialized (N þ 1)-way classification layer
(where N is the number of object classes, plus 1 for back-
ground), the CNN architecture is unchanged. For VOC,
N ¼ 20 and for ILSVRC2013, N ¼ 200. We treat all region
proposals with � 0:5 IoU overlap with a ground-truth box
as positives for that box’s class and the rest as negatives. We
start SGD at a learning rate of 0.001 (1/10th of the initial
pre-training rate), which allows fine-tuning to make prog-
ress while not clobbering the initialization. In each SGD iter-
ation, we uniformly sample 32 positive windows (over all
classes) and 96 background windows to construct a mini-
batch of size 128. We bias the sampling towards positive
windows because they are extremely rare compared to
background. OxfordNet requires more memory than Toron-
toNet making it necessary to decrease the minibatch size in
order to fit on a single GPU. We decreased the batch size
from 128 to just 24 while maintaining the same biased sam-
pling scheme.

3.3.3 Object Category Classifiers

Consider training a binary classifier to detect cars. It’s clear
that an image region tightly enclosing a car should be a pos-
itive example. Similarly, it’s clear that a background region,
which has nothing to do with cars, should be a negative
example. Less clear is how to label a region that partially
overlaps a car. We resolve this issue with an IoU overlap
threshold, below which regions are defined as negatives.
The overlap threshold, 0:3, was selected by a grid search
over f0; 0:1; . . . ; 0:5g on a validation set. We found that
selecting this threshold carefully is important. Setting it to
0:5, as in [21], decreased mAP by 5 points. Similarly, setting

it to 0 decreased mAP by four points. Positive examples are
defined simply to be the ground-truth bounding boxes for
each class.

Once features are extracted and training labels are
applied, we optimize one linear SVM per class. Since the
training data are too large to fit in memory, we adopt the
standard hard negative mining method [18], [58]. Hard neg-
ative mining converges quickly and in practice mAP stops
increasing after only a single pass over all images.

In Section 7.2 we discuss why the positive and negative
examples are defined differently in fine-tuning versus SVM
training. We also discuss the trade-offs involved in training
detection SVMs rather than simply using the outputs from
the final softmax layer of the fine-tuned CNN.

3.4 Results on PASCAL VOC 2010-12

Following the PASCAL VOC best practices [3], we validated
all design decisions and hyperparameters on the VOC 2007
dataset (Section 4.2). For final results on the VOC 2010-12
datasets, we fine-tuned the CNN on VOC 2012 train and
optimized our detection SVMs on VOC 2012 trainval. We
submitted test results to the evaluation server only once for
each of the two major algorithm variants (with and without
bounding-box regression).

Table 1 shows complete results on VOC 2010.2 We com-
pare our method against four strong baselines, including
SegDPM [57], which combines DPM detectors with the out-
put of a semantic segmentation system [59] and uses addi-
tional inter-detector context and image-classifier rescoring.
The most germane comparison is to the UVA system from
Uijlings et al. [21], since our systems use the same region pro-
posal algorithm. To classify regions, their method builds a
four-level spatial pyramid andpopulates it with densely sam-
pled SIFT, Extended OpponentSIFT, and RGB-SIFT descrip-
tors, each vector quantized with 4,000-word codebooks.
Classification is performedwith a histogram intersection ker-
nel SVM. Compared to their multi-feature, non-linear kernel
SVM approach, we achieve a large improvement in mAP,
from 35.1 percent to 53.7 percent mAP with TorontoNet and
62.9 percentwith OxfordNet, while also beingmuch faster. R-
CNNs achieve similar performance (53.3 percent / 62.4 per-
centmAP) onVOC 2012 test.

TABLE 1
Detection Average Precision (Percent) on VOC 2010 Test

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

DPM v5 [23] 49.2 53.8 13.1 15.3 35.5 53.4 49.7 27.0 17.2 28.8 14.7 17.8 46.4 51.2 47.7 10.8 34.2 20.7 43.8 38.3 33.4
UVA [21] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
Regionlets [54] 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7
SegDPM [57] 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4

R-CNN T-Net 67.1 64.1 46.7 32.0 30.5 56.4 57.2 65.9 27.0 47.3 40.9 66.6 57.8 65.9 53.6 26.7 56.5 38.1 52.8 50.2 50.2
R-CNN T-Net BB 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7
R-CNN O-Net 76.5 70.4 58.0 40.2 39.6 61.8 63.7 81.0 36.2 64.5 45.7 80.5 71.9 74.3 60.6 31.5 64.7 52.5 64.6 57.2 59.8
R-CNN O-Net BB 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

T-Net stands for TorontoNet and O-Net for OxfordNet (Section 3.1.2). R-CNNs are most directly comparable to UVA and Regionlets since all methods use selec-
tive search region proposals. Bounding-box regression is described in Section 7.3. At publication time, SegDPM was the top-performer on the PASCAL VOC
leaderboard. DPM and SegDPM use context rescoring not used by the other methods. SegDPM and all R-CNNs use additional training data.

2. We use VOC 2010 because there are more published results com-
pared to 2012. Additionally, VOC 2010, 2011, 2012 are very similar data-
sets, with 2011 and 2012 being identical (for the detection task).
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3.5 Results on ILSVRC2013 Detection

We ran an R-CNN on the 200-class ILSVRC2013 detection
dataset using the same system hyperparameters that we
used for PASCAL VOC. We followed the same protocol of
submitting test results to the ILSVRC2013 evaluation server
only twice, once with and once without bounding-box
regression.

Fig. 3 compares our R-CNN to the entries in the ILSVRC
2013 competition and to the post-competition OverFeat
result [19]. Using TorontoNet, our R-CNN achieves a mAP
of 31.4 percent, which is significantly ahead of the second-
best result of 24.3 percent from OverFeat. To give a sense of
the AP distribution over classes, box plots are also pre-
sented. Most of the competing submissions (OverFeat,
NEC-MU, Toronto A, and UIUC-IFP) used convolutional
networks, indicating that there is significant nuance in how
CNNs can be applied to object detection, leading to greatly
varying outcomes. Notably, UvA-Euvision’s entry did not
use CNNs and was based on a fast VLAD encoding [60].

In Section 5, we give an overview of the ILSVRC2013
detection dataset and provide details about choices that we
made when training R-CNNs on it.

4 ANALYSIS

4.1 Visualizing Learned Features

First-layer filters can be visualized directly and are easy to
understand [8]. They capture oriented edges and opponent
colors. Understanding the subsequent layers is more chal-
lenging. Zeiler and Fergus present a visually attractive
deconvolutional approach in [63]. We propose a simple
(and complementary) non-parametric method that directly
shows what the network learned.

The idea is to single out a particular unit (feature) in the
network and use it as if it were an object detector in its
own right. That is, we compute the unit’s activations on a
large set of held-out region proposals (about 10 million),
sort the proposals from highest to lowest activation, per-
form non-maximum suppression, and then display the

top-scoring regions. Our method lets the selected unit
“speak for itself” by showing exactly which inputs it fires
on. We avoid averaging in order to see different visual
modes and gain insight into the invariances computed by
the unit.

We visualize units from layer pool5 of a TorontoNet,
which is the max-pooled output of the network’s fifth
and final convolutional layer. The pool5 feature map is
6� 6� 256 ¼ 9216-dimensional. Ignoring boundary effects,
each pool5 unit has a receptive field of 195� 195 pixels in
the original 227� 227 pixel input. A central pool5 unit has a
nearly global view, while one near the edge has a smaller,
clipped support.

Each row in Fig. 4 displays the top 16 activations for a
pool5 unit from a CNN that we fine-tuned on VOC 2007
trainval. Six of the 256 functionally unique units are visual-
ized. These units were selected to show a representative
sample of what the network learns. In the second row, we
see a unit that fires on dog faces and dot arrays. The unit
corresponding to the third row is a red blob detector. There
are also detectors for human faces and more abstract pat-
terns such as text and triangular structures with windows.
The network appears to learn a representation that com-
bines a small number of class-tuned features together with
a distributed representation of shape, texture, color, and
material properties. The subsequent fully connected layer
fc6 has the ability to model a large set of compositions of
these rich features. Agrawal et al. [25] provide a more in-
depth analysis of the learned features.

4.2 Ablation Studies

4.2.1 Performance Layer-by-Layer, without Fine-

Tuning

To understand which layers are critical for detection perfor-
mance, we analyzed results on the VOC 2007 dataset for
each of the TorontoNet’s last three layers. Layer pool5 was
briefly described in Section 4.1. The final two layers are
summarized below.

Fig. 3. (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data (images and labels
from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per method. A box plot for the post-com-
petition OverFeat result is not shown because per-class APs are not yet available. The red line marks the median AP, the box bottom and top are the
25th and 75th percentiles. The whiskers extend to the min and max AP of each method. Each AP is plotted as a green dot over the whiskers (best
viewed digitally with zoom).
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Layer fc6 is fully connected to pool5. To compute features,
it multiplies a 4;096� 9;216 weight matrix by the pool5 fea-
ture map (reshaped as a 9,216-dimensional vector) and then
adds a vector of biases. This intermediate vector is compo-
nent-wise half-wave rectified (x maxð0; xÞ).

Layer fc7 is the final layer of the network. It is imple-
mented by multiplying the features computed by fc6 by a
4;096� 4;096 weight matrix, and similarly adding a vector
of biases and applying half-wave rectification.

We start by looking at results from the CNN without fine-
tuning on PASCAL, i.e., all CNN parameters were pre-
trained on ILSVRC 2012 only. Analyzing performance
layer-by-layer (Table 2 rows 1-3) reveals that features from
fc7 generalize worse than features from fc6. This means that
29 percent, or about 16.8 million, of the CNN’s parameters
can be removed without degrading mAP. More surprising
is that removing both fc7 and fc6 produces quite good results
even though pool5 features are computed using only 6 per-
cent of the CNN’s parameters. Much of the CNN’s represen-
tational power comes from its convolutional layers, rather
than from the much larger densely connected layers. This
finding suggests potential utility in computing a dense fea-
ture map, in the sense of HOG, of an arbitrary-sized image
by using only the convolutional layers of the CNN. This

representation would enable experimentation with sliding-
window detectors, including DPM, on top of pool5 features.

4.2.2 Performance Layer-by-Layer, with Fine-Tuning

We now look at results from our CNN after having fine-
tuned its parameters on VOC 2007 trainval. The improve-
ment is striking (Table 2 rows 4-6): fine-tuning increases
mAP by 8.0 percentage points to 54.2 percent. The boost
from fine-tuning is much larger for fc6 and fc7 than for
pool5, which suggests that the pool5 features learned from
ImageNet are general and that most of the improvement is
gained from learning domain-specific non-linear classifiers
on top of them.

4.2.3 Comparison to Recent Feature Learning Methods

Relatively few feature learning methods have been tried on
PASCAL VOC detection. We look at two recent approaches
that build on deformable part models. For reference, we
also include results for the standard HOG-based DPM [23].

The first DPM feature learning method, DPM ST [61],
augments HOG features with histograms of “sketch token”
probabilities. Intuitively, a sketch token is a tight distribu-
tion of contours passing through the center of an image

TABLE 2
Detection Average Precision (Percent) on VOC 2007 Test

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN pool5 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2
R-CNN fc6 59.3 61.8 43.1 34.0 25.1 53.1 60.6 52.8 21.7 47.8 42.7 47.8 52.5 58.5 44.6 25.6 48.3 34.0 53.1 58.0 46.2
R-CNN fc7 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7

R-CNN FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3
R-CNN FT fc6 63.5 66.0 47.9 37.7 29.9 62.5 70.2 60.2 32.0 57.9 47.0 53.5 60.1 64.2 52.2 31.3 55.0 50.0 57.7 63.0 53.1
R-CNN FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

R-CNN FT fc7 BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

DPM v5 [23] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DPM ST [61] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1
DPMHSC [62] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC
2007 trainval. Row 7 includes a simple bounding-box regression stage that reduces localization errors (Section 7.3). Rows 8-10 present DPMmethods as a strong
baseline. The first uses only HOG, while the next two use different feature learning approaches to augment or replace HOG. All R-CNN results use TorontoNet.

Fig. 4. Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts, such as people
(row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).
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patch. Sketch token probabilities are computed at each pixel
by a random forest that was trained to classify 35� 35 pixel
patches into one of 150 sketch tokens or background.

The second method, DPM HSC [62], replaces HOG with
histograms of sparse codes (HSC). To compute an HSC,
sparse code activations are solved for at each pixel using a
learned dictionary of 100 7� 7 pixel (grayscale) atoms. The
resulting activations are rectified in three ways (full and
both half-waves), spatially pooled, unit ‘2 normalized, and
then power transformed (x signðxÞjxja).

All R-CNN variants strongly outperform the three DPM
baselines (Table 2 rows 8-10), including the two that use
feature learning. Compared to the latest version of DPM,
which uses only HOG features, our mAP is more than
20 percentage points higher: 54.2 percent vs. 33.7 percent—a
61 percent relative improvement. The combination of HOG
and sketch tokens yields 2.5 mAP points over HOG alone,
while HSC improves over HOG by four mAP points (when
compared internally to their private DPM baselines—both
use non-public implementations of DPM that underperform
the open source version [23]). These methods achieve mAPs
of 29.1 percent and 34.3 percent, respectively.

4.3 Network Architectures

Most results in this paper use the TorontoNet network
architecture from Krizhevsky et al. [8]. However, we have
found that the choice of architecture has a large effect on R-
CNN detection performance. In Table 3, we show results on
VOC 2007 test using the 16-layer deep OxfordNet recently
proposed by Simonyan and Zisserman [24]. This network
was one of the top performers in the recent ILSVRC 2014
classification challenge. The network has a homogeneous
structure consisting of 13 layers of 3� 3 convolution ker-
nels, with five max pooling layers interspersed, and topped
with three fully-connected layers.

To use OxfordNet in an R-CNN, we downloaded the
publicly available pre-trained network weights for the
VGG_ILSVRC_16_layers model from the Caffe Model
Zoo.3 We then fine-tuned the network using the same proto-
col as we used for TorontoNet. The only difference was to
use smaller minibatches (24 examples) as required in order
to fit within GPU memory. The results in Table 3 show that
an R-CNN with OxfordNet substantially outperforms an R-
CNN with TorontoNet, increasing mAP from 58.5 percent
to 66.0 percent. However there is a considerable drawback
in terms of compute time, with the forward pass of Oxford-
Net taking roughly seven times longer than TorontoNet.

From a transfer learning point of view, it is very encourag-
ing that large improvements in image classification translate
directly into large improvements in object detection.

4.4 Detection Error Analysis

We applied the excellent detection analysis tool from Hoiem
et al. [64] in order to reveal our method’s error modes,
understand how fine-tuning changes them, and to see how
our error types compare with DPM. A full summary of the
analysis tool is beyond the scope of this paper and we
encourage readers to consult [64] to understand some finer
details (such as “normalized AP”). Since the analysis is best
absorbed in the context of the associated plots, we present
the discussion within the captions of Figs. 5 and 6.

4.5 Bounding-Box Regression

Based on the error analysis, we implemented a simple
method to reduce localization errors. Inspired by the
bounding-box regression employed in DPM [18], we train a
linear regression model to predict a new detection window

TABLE 3
Detection Average Precision (Percent) on VOC 2007 Test for Two Different CNN Architectures

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN T-Net 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
R-CNN T-Net BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5
R-CNN O-Net 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2
R-CNN O-Net BB 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

The first two rows are results from Table 2 using Krizhevsky et al.’s TorontoNet architecture (T-Net). Rows three and four use the recently proposed 16-layer
OxfordNet architecture (O-Net) from Simonyan and Zisserman [24].

Fig. 5. Distribution of top-ranked false positive (FP) types for R-CNNs
with TorontoNet. Each plot shows the evolving distribution of FP types
as more FPs are considered in order of decreasing score. Each FP is
categorized into 1 of 4 types: Loc—poor localization (a detection with an
IoU overlap with the correct class between 0.1 and 0.5, or a duplicate);
Sim—confusion with a similar category; Oth—confusion with a dissimilar
object category; BG—a FP that fired on background. Compared with
DPM (see [64]), significantly more of our errors result from poor localiza-
tion, rather than confusion with background or other object classes, indi-
cating that the CNN features are much more discriminative than HOG.
Loose localization likely results from our use of bottom-up region pro-
posals and the positional invariance learned from pre-training the CNN
for whole-image classification. Column three shows how our simple
bounding-box regression method fixes many localization errors.3. https://github.com/BVLC/caffe/wiki/Model-Zoo
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given the pool5 features for a selective search region pro-
posal. Full details are given in Section 7.3. Results in
Tables 1, 2, and Fig. 5 show that this simple approach fixes a
large number of mislocalized detections, boosting mAP by
three to four points.

4.6 Qualitative Results

Qualitative detection results on ILSVRC2013 are presented
in Fig. 8. Each image was sampled randomly from the val2
set and all detections from all detectors with a precision
greater than 0.5 are shown. Note that these are not curated
and give a realistic impression of the detectors in action.

5 THE ILSVRC2013 DETECTION DATASET

In Section 3 we presented results on the ILSVRC2013 detec-
tion dataset. This dataset is less homogeneous than PAS-
CAL VOC, requiring choices about how to use it. Since
these decisions are non-trivial, we cover them in this sec-
tion. The methodology and “val1” and “val2” data splits
introduced in this section were used widely by participants
in the ILSVRC2014 detection challenge.

5.1 Dataset Overview

The ILSVRC2013 detection dataset is split into three sets:
train (395,918), val (20,121), and test (40,152), where the
number of images in each set is in parentheses. The val and
test splits are drawn from the same image distribution.
These images are scene-like and similar in complexity
(number of objects, amount of clutter, pose variability, etc.)
to PASCAL VOC images. The val and test splits are exhaus-
tively annotated, meaning that in each image all instances
from all 200 classes are labeled with bounding boxes. The
train set, in contrast, is drawn from the ILSVRC2013 classifi-
cation image distribution. These images have more variable
complexity with a skew towards images of a single centered
object. Unlike val and test, the train images (due to their
large number) are not exhaustively annotated. In any given
train image, instances from the 200 classes may or may not
be labeled. In addition to these image sets, each class has an
extra set of negative images. Negative images are manually
checked to validate that they do not contain any instances
of their associated class. The negative image sets were not
used in this work. More information on how ILSVRC was
collected and annotated can be found in [65], [66].

The nature of these splits presents a number of choices
for training an R-CNN. The train images cannot be used for
hard negative mining, because annotations are not exhaus-
tive. Where should negative examples come from? Also, the
train images have different statistics than val and test.
Should the train images be used at all, and if so, to what
extent? While we have not thoroughly evaluated a large
number of choices, we present what seemed like the most
obvious path based on previous experience.

Our general strategy is to rely heavily on the val set and
use some of the train images as an auxiliary source of posi-
tive examples. To use val for both training and validation,
we split it into roughly equally sized “val1” and “val2” sets.
Since some classes have very few examples in val (the small-
est has only 31 and half have fewer than 110), it is important
to produce an approximately class-balanced partition. To
do this, a large number of candidate splits were generated
and the one with the smallest maximum relative class
imbalance was selected.4 Each candidate split was gener-
ated by clustering val images using their class counts as fea-
tures, followed by a randomized local search that may
improve the split balance. The particular split used here has
a maximum relative imbalance of about 11 percent and a
median relative imbalance of 4 percent. The val1/val2 split
and code used to produce them are publicly available in the
R-CNN code repository, allowing other researchers to com-
pare their methods on the val splits used in this report.

5.2 Region Proposals

We followed the same region proposal approach that was
used for detection on PASCAL. Selective search [21] was
run in “fast mode” on each image in val1, val2, and test (but
not on images in train). One minor modification was
required to deal with the fact that selective search is not
scale invariant and so the number of regions produced
depends on the image resolution. ILSVRC image sizes range
from very small to a few that are several mega-pixels, and
so we resized each image to a fixed width (500 pixels)
before running selective search. On val, selective search
resulted in an average of 2,403 region proposals per image
with a 91.6 percent recall of all ground-truth bounding
boxes (at 0.5 IoU threshold). This recall is notably lower

Fig. 6. Sensitivity to object characteristics. Each plot shows the mean (over classes) normalized AP (see [64]) for the highest and lowest performing
subsets within six different object characteristics (occlusion, truncation, bounding-box area, aspect ratio, viewpoint, part visibility). For example,
bounding-box area comprises the subsets extra-small, small ,. . ., extra-large. We show plots for our method (R-CNN) with and without fine-tuning
and bounding-box regression as well as for DPM voc-release5. Overall, fine-tuning does not reduce sensitivity (the difference between max and
min), but does substantially improve both the highest and lowest performing subsets for nearly all characteristics. This indicates that fine-tuning does
more than simply improve the lowest performing subsets for aspect ratio and bounding-box area, as one might conjecture based on how we warp net-
work inputs. Instead, fine-tuning improves robustness for all characteristics including occlusion, truncation, viewpoint, and part visibility.

4. Relative imbalance is measured as ja� bj=ðaþ bÞ where a and b
are class counts in each half of the split.
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than in PASCAL, where it is approximately 98 percent, indi-
cating significant room for improvement in the region
proposal stage.

5.3 Training Data

For training data, we formed a set of images and boxes that
includes all selective search and ground-truth boxes from
val1 together with up to N ground-truth boxes per class
from train (if a class has fewer than N ground-truth boxes
in train, then we take all of them). We’ll call this dataset of
images and boxes val1 þ trainN . In an ablation study, we
show mAP on val2 forN 2 f0; 500; 1000g (Section 5.5).

Training data are required for three procedures in R-
CNN: (1) CNN fine-tuning, (2) detector SVM training,
and (3) bounding-box regressor training. CNN fine-tuning
was run for 50k SGD iteration on val1 þ trainN using the
exact same settings as were used for PASCAL. Fine-tun-
ing on a single NVIDIA Tesla K20 took 13 hours using
Caffe. For SVM training, all ground-truth boxes from
val1 þ trainN were used as positive examples for their
respective classes. Hard negative mining was performed
on a randomly selected subset of 5,000 images from val1.
An initial experiment indicated that mining negatives
from all of val1, versus a 5,000 image subset (roughly half
of it), resulted in only a 0.5 percentage point drop in
mAP, while cutting SVM training time in half. No nega-
tive examples were taken from train because the annota-
tions are not exhaustive. The extra sets of verified
negative images were not used. The bounding-box regres-
sors were trained on val1.

5.4 Validation and Evaluation

Before submitting results to the evaluation server, we vali-
dated data usage choices and the effect of fine-tuning and
bounding-box regression on the val2 set using the training
data described above. All system hyperparameters (e.g.,
SVM C hyperparameters, padding used in region warping,
NMS thresholds, bounding-box regression hyperpara-
meters) were fixed at the same values used for PASCAL.
Undoubtedly some of these hyperparameter choices are
slightly suboptimal for ILSVRC, however the goal of this
work was to produce a preliminary R-CNN result on
ILSVRC without extensive dataset tuning. After selecting
the best choices on val2, we submitted exactly two result
files to the ILSVRC2013 evaluation server. The first sub-
mission was without bounding-box regression and the sec-
ond submission was with bounding-box regression. For
these submissions, we expanded the SVM and bounding-

box regressor training sets to use valþtrain1k and val,

respectively. We used the CNN that was fine-tuned on
val1 þ train1k to avoid re-running fine-tuning and feature

computation.

5.5 Ablation Study

Table 4 shows an ablation study of the effects of different
amounts of training data, fine-tuning, and bounding-box
regression. A first observation is that mAP on val2 matches
mAP on test very closely. This gives us confidence that
mAP on val2 is a good indicator of test set performance. The
first result, 20.9 percent, is what R-CNN achieves using a
CNN pre-trained on the ILSVRC2012 classification dataset
(no fine-tuning) and given access to the small amount of
training data in val1 (recall that half of the classes in val1
have between 15 and 55 examples). Expanding the training
set to val1 þ trainN improves performance to 24.1 percent,
with essentially no difference between N ¼ 500 and
N ¼ 1000. Fine-tuning the CNN using examples from just
val1 gives a modest improvement to 26.5 percent, however
there is likely significant overfitting due to the small num-
ber of positive training examples. Expanding the fine-tun-
ing set to val1 þ train1k, which adds up to 1000 positive

examples per class from the train set, helps significantly,
boosting mAP to 29.7 percent. Bounding-box regression
improves results to 31.0 percent, which is a smaller relative
gain that what was observed in PASCAL.

5.6 Relationship to OverFeat

There is an interesting relationship between R-CNN and
OverFeat: OverFeat can be seen (roughly) as a special
case of an R-CNN. If one were to replace selective search
region proposals with a multi-scale pyramid of regular
square regions and change the per-class bounding-box
regressors to a single bounding-box regressor, then the
systems would be very similar (modulo some potentially
significant differences in how they are trained: CNN
detection fine-tuning, using SVMs, etc.). It is worth noting
that OverFeat has a significant speed advantage over R-
CNN: it is about 9� faster, based on a figure of 2 seconds
per image quoted from [19]. This speed comes from the
fact that OverFeat’s sliding windows (i.e., region pro-
posals) are not warped at the image level and therefore
computation can be easily shared between overlapping
windows. Sharing is implemented by running the entire
network in a convolutional fashion over arbitrary-sized
inputs. OverFeat is slower than the pyramid-based ver-
sion of R-CNN from He et al. [27].

TABLE 4
ILSVRC2013 Ablation Study of Data Usage Choices, Fine-Tuning, and Bounding-Box Regression

test set val2 val2 val2 val2 val2 val2 test test
SVM training set val1 val1 þ train:5k val1 þ train1k val1 þ train1k val1 þ train1k val1 þ train1k val þ train1k val þ train1k
CNN fine-tuning set n/a n/a n/a val1 val1 þ train1k val1 þ train1k val1 þ train1k val1 þ train1k
bbox reg set n/a n/a n/a n/a n/a val1 n/a val
CNN feature layer fc6 fc6 fc6 fc7 fc7 fc7 fc7 fc7

mAP 20.9 24.1 24.1 26.5 29.7 31.0 30.2 31.4
median AP 17.7 21.0 21.4 24.8 29.2 29.6 29.0 30.3

All experiments use TorontoNet.
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6 SEMANTIC SEGMENTATION

Region classification is a standard technique for semantic
segmentation, allowing us to easily apply R-CNNs to the
PASCAL VOC segmentation challenge. To facilitate a direct
comparison with the current leading semantic segmentation
system (called O2P for “second-order pooling”) [59], we
work within their open source framework. O2P uses CPMC
to generate 150 region proposals per image and then pre-
dicts the quality of each region, for each class, using support
vector regression (SVR). The high performance of their
approach is due to the quality of the CPMC regions and the
powerful second-order pooling of multiple feature types
(enriched variants of SIFT and LBP). We also note that
Farabet et al. [67] recently demonstrated good results on
several dense scene labeling datasets (not including PAS-
CAL) using a CNN as a multi-scale per-pixel classifier.

We follow [59], [68] and extend the PASCAL segmen-
tation training set to include the extra annotations made
available by Hariharan et al. [69]. Design decisions and
hyperparameters were cross-validated on the VOC 2011
validation set. Final test results were evaluated only once.

6.1 CNN Features for Segmentation

We evaluate three strategies for computing features on
CPMC regions, all of which begin by warping the rectan-
gular window around the region to 227� 227 (we use
TorontoNet for these experiments). The first strategy (full)
ignores the region’s shape and computes CNN features
directly on the warped window, exactly as we did for
detection. However, these features ignore the non-rectan-
gular shape of the region. Two regions might have very
similar bounding boxes while having very little overlap.
Therefore, the second strategy (fg) computes CNN fea-
tures only on a region’s foreground mask. We replace the
background with the mean input so that background
regions are zero after mean subtraction. The third strategy

(full+fg) simply concatenates the full and fg features; our
experiments validate their complementarity.

6.2 Results on VOC 2011

Table 5 shows a summary of our results on the VOC 2011
validation set compared with O2P. Within each feature
computation strategy, layer fc6 always outperforms fc7
and the following discussion refers to the fc6 features.
The fg strategy slightly outperforms full, indicating that
the masked region shape provides a stronger signal,
matching our intuition. However, full+fg achieves an
average accuracy of 47.9 percent, our best result by a mar-
gin of 4.2 percent (also modestly outperforming O2P),
indicating that the context provided by the full features is
highly informative even given the fg features. Notably,
training the 20 SVRs on our full+fg features takes an hour
on a single core, compared to 10+ hours for training on
O2P features.

Table 6 shows the per-category segmentation accuracy
on VOC 2011 val for each of our six segmentation methods
in addition to the O2P method [59]. These results show
which methods are strongest across each of the 20 PASCAL
classes, plus the background class.

In Table 7 we present results on the VOC 2011 test set,
comparing our best-performing method, fc6 (full+fg),
against two strong baselines. Our method achieves the high-
est segmentation accuracy for 11 out of 21 categories, and
the highest overall segmentation accuracy of 47.9 percent,
averaged across categories (but likely ties with the O2P
result under any reasonable margin of error). Still better
performance could likely be achieved by fine-tuning.

More recently, a number of semantic segmentation
approaches based on deep CNNs have lead to dramatic
improvements, pushing segmentation mean accuracy over
70 percent [70], [71], [72], [73]. The highest performing of
these methods combine fully-convolution networks (fine-
tuned for segmentation) with efficient fully-connected
Gaussian CRFs [74].

7 IMPLEMENTATION AND DESIGN DETAILS

7.1 Object Proposal Transformations

The convolutional networks used in this work require a
fixed-size input (e.g., 227� 227 pixels) in order to produce a
fixed-size output. For detection, we consider object pro-
posals that are arbitrary image rectangles. We evaluated
two approaches for transforming object proposals into valid
CNN inputs.

TABLE 5
Segmentation Mean Accuracy (Percent) on VOC 2011

Validation

full
R-CNN

fg
R-CNN

full + fg
R-CNN

O2P [59] fc6 fc7 fc6 fc7 fc6 fc7

46.4 43.0 42.5 43.7 42.1 47.9 45.8

Column 1 presents O2P; 2-7 use our CNN pre-trained on ILSVRC 2012.

TABLE 6
Per-Category Segmentation Accuracy (Percent) on the VOC 2011 Validation Set

VOC 2011 val bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

O2P [59] 84.0 69.0 21.7 47.7 42.2 42.4 64.7 65.8 57.4 12.9 37.4 20.5 43.7 35.7 52.7 51.0 35.8 51.0 28.4 59.8 49.7 46.4
full R-CNN fc6 81.3 56.2 23.9 42.9 40.7 38.8 59.2 56.5 53.2 11.4 34.6 16.7 48.1 37.0 51.4 46.0 31.5 44.0 24.3 53.7 51.1 43.0
full R-CNN fc7 81.0 52.8 25.1 43.8 40.5 42.7 55.4 57.7 51.3 8.7 32.5 11.5 48.1 37.0 50.5 46.4 30.2 42.1 21.2 57.7 56.0 42.5

fg R-CNN fc6 81.4 54.1 21.1 40.6 38.7 53.6 59.9 57.2 52.5 9.1 36.5 23.6 46.4 38.1 53.2 51.3 32.2 38.7 29.0 53.0 47.5 43.7
fg R-CNN fc7 80.9 50.1 20.0 40.2 34.1 40.9 59.7 59.8 52.7 7.3 32.1 14.3 48.8 42.9 54.0 48.6 28.9 42.6 24.9 52.2 48.8 42.1

full+fg R-CNN fc6 83.1 60.4 23.2 48.4 47.3 52.6 61.6 60.6 59.1 10.8 45.8 20.9 57.7 43.3 57.4 52.9 34.7 48.7 28.1 60.0 48.6 47.9
full+fg R-CNN fc7 82.3 56.7 20.6 49.9 44.2 43.6 59.3 61.3 57.8 7.7 38.4 15.1 53.4 43.7 50.8 52.0 34.1 47.8 24.7 60.1 55.2 45.7

These experiments use TorontoNet without fine-tuning.
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The first method (“tightest square with context”) enclo-
ses each object proposal inside the tightest square and then
scales (isotropically) the image contained in that square to
the CNN input size. Fig. 7 column (B) shows this transfor-
mation. A variant on this method (“tightest square without
context”) excludes the image content that surrounds the
original object proposal. Fig. 7 column (C) shows this trans-
formation. The second method (“warp”) anisotropically
scales each object proposal to the CNN input size. Fig. 7 col-
umn (D) shows the warp transformation.

For each of these transformations, we also consider
including additional image context around the original
object proposal. The amount of context padding (p) is
defined as a border size around the original object proposal
in the transformed input coordinate frame. Fig. 7 shows
p ¼ 0 pixels in the top row of each example and p ¼ 16 pixels
in the bottom row. In all methods, if the source rectangle
extends beyond the image, the missing data are replaced
with the image mean (which is then subtracted before input-
ing the image into the CNN). A pilot set of experiments
showed that warping with context padding (p ¼ 16 pixels)
outperformed the alternatives by a large margin (3-5 mAP
points). Obviously more alternatives are possible, including
using replication instead of mean padding. Exhaustive eval-
uation of these alternatives is left as future work.

7.2 Positive Versus Negative Examples and Softmax

Two design choices warrant further discussion. The first is:
Why are positive and negative examples defined differ-
ently for fine-tuning the CNN versus training the object

detection SVMs? To review the definitions briefly, for fine-
tuning we map each object proposal to the ground-truth
instance with which it has maximum IoU overlap (if any)
and label it as a positive for the matched ground-truth
class if the IoU is at least 0.5. All other proposals are
labeled “background” (i.e., negative examples for all clas-
ses). For training SVMs, in contrast, we take only the
ground-truth boxes as positive examples for their respec-
tive classes and label proposals with less than 0.3 IoU
overlap with all instances of a class as a negative for that
class. Proposals that fall into the grey zone (more than 0.3
IoU overlap, but are not ground truth) are ignored.

Historically speaking, we arrived at these definitions
because we started by training SVMs on features computed
by the ImageNet pre-trained CNN, and so fine-tuning was
not a consideration at that point in time. In that setup, we
found that our particular label definition for training SVMs
was optimal within the set of options we evaluated (which
included the setting we now use for fine-tuning). When we
started using fine-tuning, we initially used the same posi-
tive and negative example definition as we were using for
SVM training. However, we found that results were much
worse than those obtained using our current definition of
positives and negatives.

Our hypothesis is that this difference in how positives
and negatives are defined is not fundamentally important
and arises from the fact that fine-tuning data are limited.
Our current scheme introduces many “jittered” examples
(those proposals with overlap between 0.5 and 1, but not
ground truth), which expands the number of positive exam-
ples by approximately 30x. We conjecture that this large set
is needed when fine-tuning the entire network to avoid over-
fitting. However, we also note that using these jittered
examples is likely suboptimal because the network is not
being fine-tuned for precise localization.

This leads to the second issue: Why, after fine-tuning,
train SVMs at all? It would be cleaner to simply apply the
last layer of the fine-tuned network, which is a 21-way soft-
max regression classifier, as the object detector. We tried
this and found that performance on VOC 2007 dropped
from 54.2 to 50.9 percent mAP. This performance drop
likely arises from a combination of several factors including
that the definition of positive examples used in fine-tuning
does not emphasize precise localization and the softmax
classifier was trained on randomly sampled negative exam-
ples rather than on the subset of “hard negatives” used for
SVM training.

This result shows that it’s possible to obtain close to the
same level of performance without training SVMs after

TABLE 7
Segmentation Accuracy (Percent) on VOC 2011 Test

VOC
2011 test

bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

R&P [68] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8
O2P [59] 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6

ours (full+fg
R-CNN fc6)

84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

We compare against two strong baselines: the “Regions and Parts” (R&P) method of [68] and the second-order pooling (O2P) method of [59]. Without any
fine-tuning, our CNN achieves top segmentation performance, outperforming R&P and roughly matching O2P. These experiments use TorontoNet without
fine-tuning.

Fig. 7. Different object proposal transformations. (A) the original object
proposal at its actual scale relative to the transformed CNN inputs; (B)
tightest square with context; (C) tightest square without context; (D)
warp. Within each column and example proposal, the top row corre-
sponds to p ¼ 0 pixels of context padding while the bottom row has
p ¼ 16 pixels of context padding.
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Fig. 8. Example detections on the val2 set from the configuration that achieved 31.0 percent mAP on val2. Each image was sampled randomly (these
are not curated). All detections at precision greater than 0.5 are shown. Each detection is labeled with the predicted class and the precision value of
that detection from the detector’s precision-recall curve. Viewing digitally with zoom is recommended.

154 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 1, JANUARY 2016



fine-tuning. We conjecture that with some additional tweaks
to fine-tuning the remaining performance gap may be
closed. If true, this would simplify and speed up R-CNN
training with no loss in detection performance.

7.3 Bounding-Box Regression

We use a simple bounding-box regression stage to improve
localization performance. After scoring each selective search
proposal with a class-specific detection SVM, we predict a
new bounding box for the detection using a class-specific
bounding-box regressor. This is similar in spirit to the
bounding-box regression used in deformable part models
[18]. The primary difference between the two approaches is
that here we regress from features computed by the CNN,
rather than from geometric features computed on the
inferred DPM part locations.

The input to our training algorithm is a set of N training

pairs fðPi;GiÞgi¼1;...;N , where Pi ¼ ðPi
x; P

i
y; P

i
w; P

i
hÞ specifies

the pixel coordinates of the center of proposal Pi’s bound-

ing box together with Pi’s width and height in pixels. Hence
forth, we drop the superscript i unless it is needed. Each
ground-truth bounding box G is specified in the same way:
G ¼ ðGx;Gy;Gw;GhÞ. Our goal is to learn a transformation
that maps a proposed box P to a ground-truth box G.

We parameterize the transformation in terms of four
functions dxðP Þ, dyðP Þ, dwðP Þ, and dhðP Þ. The first two
specify a scale-invariant translation of the center of P ’s
bounding box, while the second two specify log-space
translations of the width and height of P ’s bounding box.
After learning these functions, we can transform an input

proposal P into a predicted ground-truth box Ĝ by apply-
ing the transformation

Ĝx ¼ PwdxðP Þ þ Px (1)

Ĝy ¼ PhdyðP Þ þ Py (2)

Ĝw ¼ PwexpðdwðP ÞÞ (3)

Ĝh ¼ PhexpðdhðP ÞÞ: (4)

Each function d$ ðP Þ (where $ is one of x; y; h; w) is
modeled as a linear function of the pool5 features of pro-
posal P , denoted by f5ðP Þ. (The dependence of f5ðP Þ on
the image data is implicitly assumed.) Thus we have

d$ ðP Þ ¼ wT
$f5ðP Þ, where w$ is a vector of learnable

model parameters. We learn w$ by optimizing the regu-
larized least squares objective (ridge regression):

w$ ¼ argmin
ŵ$

XN

i

ðti$ � ŵT
$f5ðPiÞÞ2 þ �jjŵ$ jj2: (5)

The regression targets t$ for the training pair ðP;GÞ are
defined as

tx ¼ ðGx � PxÞ=Pw (6)

ty ¼ ðGy � PyÞ=Ph (7)

tw ¼ log ðGw=PwÞ (8)

th ¼ log ðGh=PhÞ: (9)

As a standard regularized least squares problem, this can be
solved efficiently in closed form.

We found two subtle issues while implementing
bounding-box regression. The first is that regularization
is important: we set � ¼ 1000 based on a validation set.
The second issue is that care must be taken when select-
ing which training pairs ðP;GÞ to use. Intuitively, if P is
far from all ground-truth boxes, then the task of trans-
forming P to a ground-truth box G does not make sense.
Using examples like P would lead to a hopeless learning
problem. Therefore, we only learn from a proposal P if it
is nearby at least one ground-truth box. We implement
“nearness” by assigning P to the ground-truth box G
with which it has maximum IoU overlap (in case it over-
laps more than one) if and only if the overlap is greater
than a threshold (which we set to 0.6 using a validation
set). All unassigned proposals are discarded. We do this
once for each object class in order to learn a set of class-
specific bounding-box regressors.

At test time, we score each proposal and predict its new
detection window only once. In principle, we could iterate
this procedure (i.e., re-score the newly predicted bounding
box, and then predict a new bounding box from it, and so
on). However, we found that iterating does not improve
results.

7.4 Analysis of Cross-Dataset Redundancy

One concern when training on an auxiliary dataset is that
there might be redundancy between it and the test set. Even
though the tasks of object detection and whole-image classi-
fication are substantially different, making such cross-set
redundancy much less worrisome, we still conducted a
thorough investigation that quantifies the extent to which
PASCAL test images are contained within the ILSVRC 2012
training and validation sets. Our findings may be useful to
researchers who are interested in using ILSVRC 2012 as
training data for the PASCAL image classification task.

We performed two checks for duplicate (and near-
duplicate) images. The first test is based on exact matches of
flickr image IDs, which are included in the VOC 2007 test
annotations (these IDs are intentionally kept secret for sub-
sequent PASCAL test sets). All PASCAL images, and about
half of ILSVRC, were collected from flickr.com. This check
turned up 31 matches out of 4,952 (0.63 percent).

The second check uses GIST [75] descriptor matching,
which was shown in [76] to have excellent performance at
near-duplicate image detection in large (> 1 million) image
collections. Following [76], we computed GIST descriptors
on warped 32� 32 pixel versions of all ILSVRC 2012 train-
val and PASCAL 2007 test images.

Euclidean distance nearest-neighbor matching of GIST
descriptors revealed 38 near-duplicate images (including all
31 found by flickr ID matching). The matches tend to vary
slightly in JPEG compression level and resolution, and to a
lesser extent cropping. These findings show that the overlap
is small, less than 1 percent. For VOC 2012, because flickr
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IDs are not available, we used the GIST matching method
only. Based on GIST matches, 1.5 percent of VOC 2012 test
images are in ILSVRC 2012 trainval. The slightly higher rate
for VOC 2012 is likely due to the fact that the two datasets
were collected closer together in time than VOC 2007 and
ILSVRC 2012 were.

8 CONCLUSION

In recent years, object detection performance had stagnated.
The best performing systems were complex ensembles com-
bining multiple low-level image features with high-level
context from object detectors and scene classifiers. This
paper presents a simple and scalable object detection algo-
rithm that gives more than a 50 percent relative improve-
ment over the best previous results on PASCAL VOC 2012.

We achieved this performance through two insights. The
first is to apply high-capacity convolutional networks to
bottom-up region proposals in order to localize and seg-
ment objects. The second is a paradigm for training large
CNNs when labeled training data are scarce. We show
that it is highly effective to pre-train the network—with
supervision—for a auxiliary task with abundant data (image
classification) and then to fine-tune the network for the tar-
get task where data is scarce (detection). We conjecture that
the “supervised pre-training/domain-specific fine-tuning”
paradigm will be highly effective for a variety of data-scarce
vision problems.

We conclude by noting that it is significant that we
achieved these results by using a combination of classical
tools from computer vision and deep learning (bottom-up
region proposals and convolutional networks). Rather than
opposing lines of scientific inquiry, the two are natural and
inevitable partners.

ACKNOWLEDGMENTS

This research was supported in part by DARPA Mind’s Eye
and MSEE programs, by US National Science Foundation
Awards IIS-0905647, IIS-1134072, and IIS-1212798, MURI
N000014-10-1-0933, and by support from Toyota. The GPUs
used in this research were generously donated by the NVI-
DIA Corporation. R. Girshick is withMicrosoft Research and
waswith the Department of Electrical Engineering andCom-
puter Science, UC Berkeley during themajority of this work.

REFERENCES

[1] D. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2005, pp. 886–893.

[3] M. Everingham, L. van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The PASCAL visual object classes (VOC) challenge,”
Int. J. Comput. Vis., vol. 80, no. 2, pp. 303–338, 2010.

[4] K. Fukushima, “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning inter-
nal representations by error propagation,” Parallel Distrib. Process.,
vol. 1, pp. 318–362, 1986.

[6] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W.
Hubbard, and L. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551,
1989.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[8] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. Adv. Neu-
ral Inf. Process. Syst., 2012, pp. 1106–1114.

[9] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei.
Imagenet large scale visual recognition competition 2012
(ILSVRC2012) [Online]. Available: http://www.image-net.org/
challenges/LSVRC/2012/, 2012.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2009, pp. 248–255.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2014, pp. 580–587.

[12] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for
object detection,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2553–2561.

[13] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable
object detection using deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2014, pp. 2155–2162.

[14] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 1, pp. 23–28, Jan. 1998.

[15] R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the
localisation of objects in images,” IEE Proc. Vis., Image, Signal Pro-
cess., vol. 141, no. 4, pp. 245–250, Aug. 1994.

[16] J. Platt and S. Nowlan, “A convolutional neural network hand
tracker,” in Proc. Adv. Neural Inf. Process. Syst., 1995, pp. 901–908.

[17] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun,
“Pedestrian detection with unsupervised multi-stage feature
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2013,
pp. 3626–3633.

[18] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based mod-
els,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–
1645, Sep. 2010.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
LeCun, “OverFeat: Integrated recognition, localization and detec-
tion using convolutional networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2014, p. 16.

[20] C. Gu, J. J. Lim, P. Arbel�aez, and J. Malik, “Recognition using
regions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009,
pp. 1030–1037.

[21] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders,
“Selective search for object recognition,” Int. J. Comput. Vis.,
vol. 104, no. 3, pp. 154–171, 2013.

[22] J. Carreira and C. Sminchisescu, “CPMC: Automatic object seg-
mentation using constrained parametric min-cuts,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1312–1328, Jul. 2012.

[23] R. Girshick, P. Felzenszwalb, and D. McAllester. Discriminatively
trained deformable part models, release 5 [Online]. Available:
http://www.cs.berkeley.edu/~rbg/latent-v5/, 2012.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

[25] P. Agrawal, R. Girshick, and J. Malik, “Analyzing the performance
of multilayer neural networks for object recognition,” in Proc. 13th
Eur. Conf. Comput. Vis., 2014, pp. 329–344.

[26] T. Dean, J. Yagnik, M. Ruzon, M. Segal, J. Shlens, and S.
Vijayanarasimhan, “Fast, accurate detection of 100,000 object
classes on a single machine,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2013, pp. 1814–1821.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” in Proc. 13th
Eur. Conf. Comput. Vis., 2014, pp. 346–361.

[28] R. Girshick, “Fast R-CNN,” arXiv e-prints, vol. arXiv:1504.08083v1
[cs.CV], 2015.

[29] D. Hoiem, A. Efros, and M. Hebert, “Geometric context from a
single image,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2005, pp. 654–661.

[30] B. C. Russell,W. T. Freeman, A. A. Efros, J. Sivic, andA. Zisserman,
“Using multiple segmentations to discover objects and their extent
in image collections,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2006, pp. 1605–1614.

156 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 1, JANUARY 2016



[31] C. L. Zitnick and P. Doll�ar, “Edge boxes: Locating object proposals
from edges,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 391–405.

[32] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr, “BING:
Binarized normed gradients for objectness estimation at 300fps,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 3286–3293.

[33] J. Hosang, R. Benenson, P. Doll�ar, and B. Schiele, “What
makes for effective detection proposals?” arXiv e-prints,
vol. arXiv:1502.05082v1 [cs.CV], 2015.

[34] A. Humayun, F. Li, and J. M. Rehg, “RIGOR: Reusing inference in
graph cuts for generating object regions,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recog., 2014, pp. 336–343.

[35] P. Arbel�aez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2014, pp. 328–335.

[36] P. Kr€ahenb€uhl, and V. Koltun, “Geodesic object proposals,” in
Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 725–739.

[37] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[38] R. Caruana, “Multitask learning: A knowledge-based source of
inductive bias,” in Proc. 10th Int. Conf. Mach. Learn., 1993, pp. 41–48.

[39] S. Thrun, “Is learning the n-th thing any easier than learning the
first?” in Proc. Adv. Neural Inf. Process. Syst., 1996, pp. 640–646.

[40] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[41] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,
and T. Darrell, “DeCAF: A deep convolutional activation fea-
ture for generic visual recognition,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 647–655.

[42] J. Hoffman, S. Guadarrama, E. Tzeng, J. Donahue, R. Girshick, T.
Darrell, and K. Saenko, “From large-scale object classifiers to
large-scale object detectors: An adaptation approach,” in Proc.
Adv. Neural Inf. Process. Syst., 2014, pp. 3536–3544.

[43] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment embed-
dings for bidirectional image sentence mapping,” in Proc. Adv.
Neural Inf. Process. Syst., 2014, pp. 1889–1897.

[44] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik, “R-CNNs for
pose estimation and action detection,” arXiv e-prints,
vol. arXiv:1406.5212v1 [cs.CV], 2014.

[45] B. Hariharan, P. Arbel�aez, R. Girshick, and J. Malik, “Simultaneous
detection and segmentation,” in Proc. 13th Eur. Conf. Comput. Vis.,
2014, pp. 297–312.

[46] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning rich fea-
tures from RGB-D images for object detection and segmentation,”
in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 345–360.

[47] H. O. Song, R. Girshick, S. Jegelka, J. Mairal, Z. Harchaoui, and T.
Darrell, “On learning to localize objects with minimal super-
vision,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1611–1619.

[48] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L.
Fei-Fei, “ImageNet large scale visual recognition challenge,” arXiv
e-prints, vol. arXiv:1409.0575v1 [cs.CV], 2014.

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” arXiv e-prints, vol. arXiv:1409.4842v1 [cs.CV], 2014.

[50] C. Szegedy, S. Reed, D. Erhan, and D. Anguelov, “Scalable, high-
quality object detection,” arXiv e-prints, vol. arXiv:1412.1441v2
[cs.CV], 2015.

[51] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness
of image windows,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 11, pp. 2189–2202, Nov. 2012.

[52] I. Endres and D. Hoiem, “Category independent object
proposals,” in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 575–588.
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