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Abstract

Polysemy is a problem for methods that exploit image seangmes to build ob-
ject category models. Existing unsupervised approachemtitake word sense
into consideration. We propose a new method that uses amlati to learn mod-
els of visual word sense from a large collection of unlabeleth data. The use
of LDA to discover a latent sense space makes the model rdieggite the very
limited nature of dictionary definitions. The definitiongarsed to learn a distri-
bution in the latent space that best represents a senseldinittan then uses the
text surrounding image links to retrieve images with higbgability of a particu-
lar dictionary sense. An object classifier is trained on gseilting sense-specific
images. We evaluate our method on a dataset obtained byhgeathe web for
polysemous words. Category classification experiments shat our dictionary-
based approach outperforms baseline methods.

1 Introduction

We address the problem of unsupervised learning of objassiflers for visually polysemous words.
Visual polysemy means that a word has several dictionargesethat are visually distinct. Web
images are a rich and free resource compared to traditiomah-labeled object datasets. Potential
training data for arbitrary objects can be easily obtaimethfimage search engines like Yahoo or
Google. The drawback is that multiple word meanings oftexd 0 mixed results, especially for
polysemous words. For example, the query “mouse” returngipteisenses on the first page of
results: “computer” mouse, “animal” mouse, and “Mickey Mel (see Figure 1.) The dataset thus
obtained suffers from low precision of any particular vissense.

Some existing approaches attempt to filter out unrelatediésabut do not directly address poly-
semy. One approach involves bootstrapping object classiiiem labeled image data [9], others
cluster the unlabeled images into coherent componenf{g]6However, most rely on a labeled seed
set of inlier-sense images to initialize bootstrappingooselect the right cluster. The unsupervised
approach of [12] bootstraps an SVM from the top-ranked irmag&urned by a search engine, with
the assumption that they have higher precision for the oayedHowever, for polysemous words,
the top-ranked results are likely to include several senses

We propose a fully unsupervised method that specificallggakord sense into account. The only
input to our algorithm is a list of words (such as all Engligtuns, for example) and their dictionary
entries. Our method is multimodal, using both web searclge@sand the text surrounding them
in the document in which they are embedded. The key idea isaimla text model of the word
sense, using an electronic dictionary such as Wordnethegetith a large amount of unlabeled
text. The model is then used to retrieve images of a specifisesekom the mixed-sense search
results. One application is an image search filter that aaticadly groups results by word sense for
easier navigation for the user. However, our main focusigghper is on using the re-ranked images



Figure 1:Which sense of “mouse”?Mixed-sense images returned from an image keyword search.

as training data for an object classifier. The resultingsifiees can predict not only the English word
that best describes an input image, but also the correct sénisat word.

A human operator can often refine the search by using more-spexific queries, for example,
“computer mouse” instead of “mouse”. We explore a simplehoétthat does this automatically
by generating sense-specific search terms from entries o (see Section 2.3). However,
this method must rely on one- to three-word combinations iartierefore brittle. Many of the
generated search terms are too unnatural to retrieve anjsies.g., “percoid bass”. Some retrieve
many unrelated images, such as the term “ticker” used agemalive to “watch”. We regard this
method as a baseline to our main approach, which overcorese thsues by learning a model of
each sense from a large amount of text obtained by seardmngiéb. Web text is more natural
and is a closer match to the text surronding web images ttaionlary entries, which allows us to
learn more robust models. Each dictionary sense is repebamthe latent space of hidden “topics”
learned empirically for the polysemous word.

To evaluate our algorithm, we collect a dataset by seardhi@aahoo Search engine for five poly-
semous words: “bass”, “face”, “mouse”, “speaker” and “wWétdEach of these words has anywhere
from three to thirteen noun senses. Experimental evaluatiothis dataset includes both retrieval

and classification of unseen images into specific visualesens
2 Model

The inspiration for our method comes from the fact that textainding web images indexed by a
polysemous keyword can be a rich source of information atf@isense of that word. The main
idea is to learn a probabilistic model of each sense, as diffipentries in a dictionary (in our case,
Wordnet), from a large amount of unlabeled text. The use d€t@odary is key because it frees us
from needing a labeled set of images to learn the visual sansel.

Since this paper is concerned with objects rather than regtiove restrict ourselves to entries
for nouns. Like standard word sense disambiguation (WSDhaotkst, we make a one-sense-per-
document assumption [14], and rely on words co-occurrirtg tie image in the HTML document
to indicate that sense. Our method consists of three stgmlisdovering latent dimensions in text
associated with a keyword, 2) learning probabilistic mea¢éldictionary senses in that latent space,
and 3) using the text-based sense models to construct spasiic image classifiers. We will now
describe each step in detail.

2.1 Latent Text Space

Unlike words in text commonly used in WSD, image links are nodrgnteed to be surrounded by
grammatical prose. This makes it difficult to extract stowet features such as part-of-speech tags.
We therefore take a bag-of-words approach, using all adail&ords near the image link to evaluate
the probability of the sense. The first idea is to use a larfjeatmn of such bags-of-words to learn
coherent dimensions which align with different senses esud the word.



We could use one of several existing techniques to discatenti dimensions in documents consist-
ing of bags-of-words. We choose to use Latent Dirichlet édliion, or LDA, as introduced by Blei
et. al.[4]. LDA discovers hidden topics, i.e. distributioover discrete observations (such as words),
in the data. Each document is modeled as a mixture of topies{1, ..., K'}. A given collection

of M documents, each containing a bag/af words, is assumed to be generated by the follow-
ing process: First, we sample the parametgref a multinomial distribution over words from a
Dirichlet prior with parametes for each topi¢j = 1, ..., K. Then, for each documett we sample
the parameters8,; of a multinomial distribution over topics from a Dirichletipr with parameter

«. Finally, for each word token, we choose a topie; from the multinomial,;, and then choose a
word w; from the multinomialky*i. The probability of generating a document is defined as

Ng K

P(wla"'awl\/d‘djaed HZP U)Z|Z ‘0(1) (1)

i=1z=1

Our initial approach was to learn hidden topics using LDAedily on the words surrounding the
images. However, while the resulting topics were oftenraijalong sense boundaries, the approach
suffered from over-fitting, due to the irregular quality dod/ quantity of the data. Often, the only
clue to the image’s sense is a short text fragment, such &iigisvith friends” for an image returned
for the query “bass”. To allieviate the overfitting probleme instead create an additional dataset of
text-only web pages returned from regular web search. Weldan an LDA model on this dataset
and use the resulting distributions to train a model of tleti@hary senses, described next.

2.2 Dictionary Sense Model

We use the limited text available in the Wordnet entries tateedictionary sense to topics formed
above. For example, sense 1 of “bass” contains the defirfiti@lowest part of the musical range.”
To these words we also add the synonyms (e.g., “pitch”), ymohyms, if they exist, and the
first-level hypernyms (e.g., “sound property”). We dendte bag-of-words extracted from such a
dictionary entry for sensease; = wy,ws, ..., wg,, WhereE; is the number of words in the bag.
The model is trained as follows: Given a query word with sense {1,2,...5} we define the
likelihood of a particular sense given the topias
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or the average likelihood of words in the definition. For a viraage with an associated text docu-
mentd = wy, ws, ..., wp, the model computes the probability of a particular sense as

K
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The above requires the distribution of LDA topics in the teomtext,P(z|d), which we compute by
marginalizing across words and using Bayes' rule:
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and also normalizing for the length of the text context. Hynave define the probability of a
particular dictionary sense given the image to be equ&l(tdd). Thus, our model is able to assign
sense probabilities to images returned from the searcimenghich in turn allows us to group the
images according to sense.

2.3 Visual Sense Model

The last step of our algorithm uses the sense model learrtbd first two steps to generate training
data for an image-based classifier. The choice of classifieoti a crucial part of the algorithm. We
choose to use a discriminative classifier, in particulaygpsrt vector machine (SVM), because of
its ability to generalize well in high-dimentional spacethout requiring a lot of training data.



Table 1: Dataset Description: sizes of the three datasets, and distribution of groundh sahse
labels in the keyword dataset.

category size of datasets distribution of labels in the keyword dataset
text-only [ sense term keyword || positive (good)| negative (partial, unrelated)
Bass 984 357 678 146 532
Face 961 798 756 130 626
Mouse 987 726 768 198 570
Speaker 984 2270 660 235 425
Watch 936 2373 777 512 265

For each particular sensgthe model re-ranks the images according to the probabilitizat sense,
and selects th&/ highest-ranked examples as positive training data for Y. he negative train-
ing data is drawn from a “background” class, which in our daghe union of all other objects that
we are asked to classify. We represent images as histogfariszial words, which are obtained by
detecting local interest points and vector-quantizingy thescriptors using a fixed visual vocabulary.

We compare our model with a simple baseline method that atteto refine the search by automat-
ically generating search terms from the dictionary entrypdtimentally, it was found that queries
consisting of more than about three terms returned very feages. Consequently, the terms are
generated by appending the polysemous word to its synongithBrat-level hypernyms. For exam-
ple, sense 4 of “mouse” has synonym “computer mouse” andrhype“electronic device”, which
produces the terms “computer mouse” and “mouse electranize’. An SVM classifier is then
trained on the returned images.

3 Datasets

To train and evaluate the outlined algorithms, we use thegaseéts: image search results using the
given keyword, image search results using sense-spediictséerms, and text search results using
the given keyword.

The first dataset was collected automatically by issuingiga¢o the Yahoo Image Seaft¢hwebsite
and downloading the returned images and HTML web pages. €&hadrds used were: “bass”,
“face”, “mouse”, “speaker” and “watch”. In the results, 4s can refer to a fish or a musical
term, as in “bass guitar”; “face” has a multitude of meanjrasin “human face”, “animal face”,
“mountain face”, etc.; “speaker” can refer to audio speskerhuman speakers; “watch” can mean
a timepiece, the act of watching, as in “hurricane watch'theraction, as in “watch out!” Samples

that had dead page links and/or corrupted images were rehfioa the dataset.

The images were labeled by a human annotator with one sen&eyweord. The annotator labeled
the presense of the following senses: “bass” as in fish, *fasein a human face, “mouse” as
in computer mouse, “speaker” as in an audio output device,“@atch” as in a timepiece. The
annotator saw only the images, and not the text or the datjodefinitions. The labels used were

0 : unrelated, 1 : partial, or 2 : good. Images where the object was too small or occluded were
labeledpartial. For evaluation, we used onhpod labels as positive, and groupedrtial and
unrelated images into the negative class. The labels were only usebiimg, and not in training.

The second image search dataset was collected in a simitamanaut using the generated sense-
specific search terms. The third, text-only dataset waec@t via regular web search for the
original keywords. Neither of these two datasets were &helable 1 shows the size of the datasets
and distribution of labels.

4 Features

When extracting words from web pages, all HTML tags are remp@ad the remaining text is
tokenized. A standard stop-word list of common English vepmlus a few domain-specific words
like “jpg”, is applied, followed by a Porter stemmer [11]. Vs that appear only once and the actual
word used as the query are pruned. To extract text contexdsmMor an image, the image link is



located automatically in the corresponding HTML page. Adirdtokens in a 100-token window
surrounding the location of the image link are extractece fxt vocabulary size used for the sense
model ranges between 12K-20K words for different keywords.

To extract image features, all images are resized to 300spixevidth and converted to grayscale.
Two types of local feature points are detected in the imaglgre deatures [6] and scale-invariant
salient points. In our experiments, we found that using ltgples of points boosts classficiation
performance relative to using just one type. To detect edyatq we first perform Canny edge
detection, and then sample a fixed number of points alongdessfrom a distribution proportional
to edge strength. The scales of the local regions aroundgaia sampled uniformly from the range
of 10-50 pixels. To detect scale-invariant salient poimts, use the Harris-Laplace [10] detector
with the lowest strength threshold set to 10. Altogethef) éfige points and approximately the
same number of Harris-Laplace points are detected per infa@@8-dimensional SIFT descriptor
is used to describe the patch surrounding each interest gdier extracting a bag of interest point
descriptors for each image, vector quantization is peréotnf codebook of size 800 is constructed
by k-means clustering a randomly chosen subset of the daa(380 images per keyword), and
all images are converted to histograms over the resultisgatiwords. To be precise, the “visual
words” are the cluster centers (codewords) of the codebblakspatial information is included in
the image representation, but rather it is treated as a bagrmuls.

5 Experiments

5.1 Re-ranking Image Search Results

In the first set of experiments, we evaluate how well our teaded sense model can distinguish
between images depicting the correct visual sense anceadther senses. We train a separate LDA
model for each keyword on the text-only dataset, settingitimaber of topicsK to 8 in each case.
Although this number is roughly equal to the average numbsewses for the given keywords, we
do not expect nor require each topic to align with one padicsense. In fact, multiple topics can
represent the same sense. Rather, we Keas the dimensionality of the latent space that the model
uses to represent senses. While our intuition is that it shoeibn the order of the number of senses,
it can also be set automatically by cross-validation. Inipitial experiments, different values &f

did not significantly alter the results.

To perform inference in LDA, a number of approximate infaremlgorithms can be applied. We
use a Gibbs sampling approach of [7], implemented in the &daflopic Modeling Toolbox [13].
We used symmetric Dirichlet priors with scalar hyperparersey = 50/K andg = 0.01, which
have the effect of smoothing the empirical topic distribatiand 1000 iterations of Gibbs sampling.

The LDA model provides us with topic distributiod¥(w|z) and P(z). We complete training the
model by computind®(s|z) for each sensein Wordnet, as in Equation 2. We train a separate model
for each keyword. We then compuf®(s|d) for all text contextsd associated with images in the
keyword dataset, using Equation 3, and rank the correspgridiages according to the probability
of each sense. Since we only have ground truth labels forghessense per keyword (see Section
3), we evaluate the retrieval performance for that paricground truth sense. Figure 2 shows
the resulting ROCs for each keyword, computed by threshgld(s|d). For example, the first
plot shows ROCs obtained by the eight models correspondiegdh of the senses of the keyword
“bass”. The thick blue curve is the ROC obtained by the odbahoo retrieval order. The other
thick curves show the dictionary sense models that corresfmthe ground truth sense (a fish). The
results demonstrate that we are able to learn a useful sendel that retrieves far more positive-
class images than the original search engine order. Thiapsrtant in order for the first step of
our method to be able to improve the precision of trainingdested in the second step. Note that,
for some keywords, there are multiple dictionary definigidimat are difficult to distinguish visually,
for example, “human face” and “facial expression”. In oualenation, we did not make such fine-
grained distinctions, but simply chose the sense thateghptiost generally.

In interactive applications, the human user can specifyrttended sense of the word by providing
an extra keyword, such as by saying or typing “bass fish”. Tdreect dictionary sense can then be
selected by evaluating the probability of the extra keywamder each sense model, and choosing
the highest-scoring one.
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Figure 2:Retrieval of the ground truth sense from keyword search results. Tiliek lines are the
ROC:s for the original Yahoo search ranks. Other thick limedlae ROCs obtained by our dictionary
model for the true senses, and thin lines are the ROCs oltéon¢he other senses.

5.2 Classifying Unseen Images

The goal of the second set of experiments is to evaluate thi®wiary-based object classifier. We
train a classifier for the object corresponding to the greunth sense of each polysemous keyword
in our data. The clasifiers are binary, assigning a positibellto the correct sense and a negative
label to incorrect senses and all other objects. The top Abatéd images ranked by the sense model
are selected as positive training images. The unlabelebdysed in our model consists of both the
keyword and the sense-term datasets. N negative images@sercat random from positive data
for all other keywords. A binary SVM with an RBF kernel is tiad on the image features, with the
C and~ parameters chosen by four-fold cross-validation. Thellmessearch-terms algorithm that
we compare against is trained on a random sample of N imagestfre sense-term dataset. Recall
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Figure 3: Classification accuracyfor the search-terms baseline (terms) and our dictionargeho
(dict).

that this dataset was collected by simply searching wittdweombinations extracted from the target
sense definition. Training on the first N images returned byodedid not qualitatively change the
results.

We evaluate the method on two test cases. In the first casegtfadive class consists of only the
ground-truth senses of the other objects. We refer to thib@d-SENSE test set. In the second
case, the negative class also includes other senses ofvine kgyword. For example, we test
detection of “computer mouse” among other keyword objestweall as “animal mouse”, “Mickey
Mouse” and other senses returned by the search, includirgiated images. We refer to this as the
MIX-SENSE test set. Figure 3 compares the classificationraoy of our classifier to the baseline
search-terms classifier. Average accuracy across tegwitll different random splits into train and
test sets is shown for each object. Figure 3(a) shows resultsSENSE and 3(b) on MIX-SENSE,
with N equal to 250. Figure 3(c) shows 1-SENSE results awatayer the categories, at different
numbers of training imaged’. In both test cases, our dictionary method significantlyrioaps
on the baseline algorithm. As the per-object results shasvdarmuch better for three of the five
objects, and comparably for the other two. One explanatioywe do not see a large improvement
in the latter cases is that the automatically generatecesgpecific search terms happened to return
relatively high-precision images. However, in the otheeéhcases, the term generation fails while
our model is still able to capture the dictionary sense.

6 Related Work

A complete review of WSD work is beyond the scope of the pregapér. Yarowsky [14] proposed
an unsupervised WSD method, and suggested the use of digtideinitions as an initial seed.

Several approaches to building object models using imageslseesults have been proposed, al-
though none have specifically addressed polysemous woreiskdr et. al. [9] bootstrap object
classifiers from existing labeled image data. Fergus et.[&lcluster in the image domain and
use a small validation set to select a single positive corapbnSchroff et. al. [12] incorporate
text features (such as whether the keyword appears in the) dRi use them re-rank the images
before training the image model. However, the text rankemaisgory-independent and does not
learn which words are predictive of a specific sense. Berglef2] discover topics using LDA in
thetext domain, and then use them to cluster the images. Howevér,ntle¢hod requires manual
intervention by the user to sort the topics into positive aedative for each category. The combina-
tion of image and text features is used in some web retrieegthads (e.g. [5]), however, our work
is focused not on instance-based image retrieval, bettagory-level modeling.

A related problem is modeling images annotated with wordshss the caption “sky, airplane”,
which are assigned by a human labeler. Barnard et. al. [l)visml features to help disam-
biguate word senses in such loosely labeled data. Modelsraftated images assume that there
is a correspondence between each image region and a word gafition (e.g. Corr-LDA, [3]).
Such models predict words, which serve as category labatgedon image content. In contrast,
our model predicts a category label based on all of the wardke web image’s text context. In
general, a text context word does not necessarily have aspnding visual region, and vice versa.



In work closely related to Corr-LDA, a People-LDA [8] modslused to guide topic formation in
news photos and captions, using a specialized face re@giike caption data is less constrained
than annotations, including non-category words, butfsiilimore constrained than text contexts.

7 Conclusion

We introduced a model that uses a dictionary and text cantéxtveb images to disambiguate image
senses. To the best of our knowledge, it is the first use ofteodary in either web-based image
retrieval or classifier learning. Our approach harnessefatige amount of unlabeled text available
through keyword search on the web in conjunction with théiamary entries to learn a generative
model of sense. Our sense model is purely unsuperviseds apgiopriate for web images. The use
of LDA to discover a latent sense space makes the model rdessgite the very limited nature of
dictionary definitions. The definition text is used to leadigtribution over the empirical text topics
that best represents the sense. As a final step, a discriveicdassifier is trained on the re-ranked
mixed-sense images that can predict the correct sensevel intages.

We evaluated our model on a large dataset of over 10,000 snamesisting of search results for
five polysemous words. Experiments included retrieval ef ghound truth sense and classifica-
tion of unseen images. On the retrieval task, our dictiomangel improved on the baseline search
engine precision by re-ranking the images according toes@ngbability. On the classification
task, our method outperformed a baseline method that attetmpefine the search by generating
sense-specific search terms from Wordnet entries. Clesificalso improved when the test objects
included the other senses of the keyword, making distinstsuch as “loudspeaker” vs. “invited
speaker”. Of course, we would not expect the dictionary ezite always produce accurate vi-
sual models, as many senses do not refer to objects (e.gs Vbaz"). Future work will include
annotating the data with more senses to further exploreuiseédliness” of some of them.
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