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Learning to Detect Visual Grasp Affordance
Hyun Oh Song, Mario Fritz, Daniel Goehring, and Trevor Darrell

Abstract—Appearance-based estimation of grasp affordances is
desirable when 3-D scans become unreliable due to clutter or ma-
terial properties. We develop a general framework for estimating
grasp affordances from 2-D sources, including local texture-like
measures as well as object-category measures that capture pre-
viously learned grasp strategies. Local approaches to estimating
grasp positions have been shown to be effective in real-world sce-
narios, but are unable to impart object-level biases and can be
prone to false positives. We describe how global cues can be used to
compute continuous pose estimates and corresponding grasp point
locations, using a max-margin optimization for category-level con-
tinuous pose regression. We provide a novel dataset to evaluate vi-
sual grasp affordance estimation; on this dataset we show that a
fused method outperforms either local or global methods alone,
and that continuous pose estimation improves over discrete output
models. Finally, we demonstrate our autonomous object detection
and grasping system on the Willow Garage PR2 robot.

Note to Practitioners—Learning grasp affordances for au-
tonomous agents such as personal robots is a challenging task. We
propose an unified framework which first detects target objects,
infers grasp affordance of the target object, and executes robotic
grasp. Our method is mainly based on 2-D imagery data which can
be more robust when 3-D scans are unavailable due to background
clutter and material properties such as surface reflectance. One of
the future extensions would be to automate the training phase so
that robots can actively learn object models by interacting with
objects as opposed to having a human in the loop collecting and
annotating training images.
Index Terms—Affordance, autonomous agent, grasping, ma-

chine learning, object detection, pose estimation.

I. INTRODUCTION

A FFORDANCES are believed to be one of the key con-
cepts that enables an autonomous agent to decompose an

infinite space of possible actions into a few tractable and reason-
able ones. Given sensor input, resemblance to previous stimuli –
both at an instance and category level – allows us to generalize
previous actions to new situations. Gibson [10] defined affor-
dances as “action possibilities” that structure our environment
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by functions of objects that we can choose to explore. In partic-
ular, grasp affordance captures the set of feasible grasp strate-
gies which might be available to the agent when presented with
previously unseen objects.
In the context of robotics, this concept has attained new

relevance, as agents should be able to manipulate novel objects.
Early models proposing a computational approach for pre-
dicting affordance functions started from a geometric paradigm
[32]. A number of different implementations [24], [28], [29] of
this idea have been attempted, but often suffer from the fact that
matching primitives in real-wold settings can be challenging. In
this paper, we explore the direct inference of grasp affordances
using monocular cues.
Research in the robotics field has for some time developed

grasp strategies for known objects based on 3-D knowledge on
an instance basis [11], [13]. In cases where clutter or material
properties preclude extraction of a reliable point cloud for a
target objects, appearance-based cues are desirable. Recently,
methods for generalizing grasps using 2-D or 2.5-D observa-
tions have been proposed [2], [15], [16], [18], [19], [23], [26],
[27]. This new class of methods reflects the traditional goal of
inference of grasp affordance.
But typically, these “graspiness” measures have been com-

puted strictly locally [15], [18], [26], without identifying the
object to be grasped and thus doesn't leverage any larger
image context. Models which find grasp points based only
on local texture classifier models cannot capture category
or instance-level bias, and therefore may break an object
(fragile wine glass grasped from the top), trigger an unintended
side-effect (grasping spray bottle at the trigger), damage the
gripper (not grasping potentially hot pot at handle), simply
acquire an unstable grasp [9], or be incapable of recognizing
and fetching specified objects of interest. We propose a method
for combining such local information with information from
object-level pose estimates; we employ category-level contin-
uous pose regression to infer object pose (and from that, grasp
affordances). Also, we develop a grasp inference method using
pose estimates from a max-margin regression technique, and
show this strategy can significantly improve performance over
discrete matching methods.
Previous methods have not, to our knowledge, addressed

pose regression for inferring grasp affordances. This is mainly
a result of the difficult interaction of intra-object category
variation interleaved with changing pose, which makes it hard
to learn and generalize across instances and view-points in a
robust manner. Only recently, pose estimation under category
variation has been attempted for discrete view-point classes
[12], [20], [22], [25]. In order to leverage larger contexts for
improved grasp affordance, stronger models for pose estima-
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tion are needed; we employ continuous, category-level pose
regression.
Our work provides the following contributions: 1) we pro-

pose a fully autonomous robotic object grasping system by com-
bining texture-based and object-level appearance cues for grasp
affordance estimation; 2) we evaluate max-margin pose regres-
sion on the task of category-level, continuous pose estimation;
and 3) we collect and make available a new dataset for image-
based grasp affordance prediction research.

II. RELATED WORK

Learning visual affordances for object grasping has been an
active area of robotics research. This area of research has been
approached from several fronts, including: 3-D model based
methods [3], [5], [21], and learning local graspable 2-D or 2.5-D
patches [2], [14], [15], [18], [26], [27], [30]. However, there has
been less attention towards learning to grasp objects by first rec-
ognizing a semantic object category, estimating object pose and
applying category specific grasp strategies learned from super-
vised training.
Reference [30] took a step towards this approach of learning

category specific grasp affordances and proposed a method
using a code book-based detection [17] model to estimate
object grasp affordances from 2-D images. However, the ex-
periments were limited to only one object class and the object
pose was not estimated by the algorithm requiring hard coded
grasp poses.
Recently, [12], [22] proposed max-margin pose estimation

methods based on the state-of-the-art object detection system
[7], [8] enabling simultaneous detection and pose estimation.
However, the detection and pose estimation performance have
not been evaluated when the object is not centered in the image
and object category is unknown.
Overall, in contrast to the previous approaches, our system

performs combined end to end inference of recognition, pose es-
timation, affordance estimation, and grasping. We demonstrate
fully autonomous object detection and grasping on PR2 robot.

III. METHODS

We develop a method for grasp affordance estimation that
uses two paths: a local pipeline inspired by the framework of
[26], which models grasp affordance using a local texture cue,
and a global pipeline, that utilizes object-level regression to es-
timate object pose, and then regresses from object pose to grasp
regions. For the global path, we extend the framework proposed
in [12] to the task of category-level continuous outputs, as those
are what is needed in our task. Fig. 2 illustrates how the two
pipelines interact in our framework.
The local and global grasp estimates are fused in a prob-

abilistic framework. In the experimental section, we will
show that this integrated model outperforms its individual
components. Informally, we consider the global detector to be
exploiting object-level information to get the estimate “in the
ballpark,” where the local detector could bring the final estimate
to be aligned to a good edge based on the local “graspiness.”
In the following sections, we address components of the

system in detail. Section III-A discusses the key ingredients

Fig. 1. PR2 robot grasping a previously unseen cooking pot placed on a clut-
tered scene fully autonomously.

Fig. 2. The block diagram of the complete system. Local and global informa-
tion is fused to a joint grasp estimate. In addition, the local pipeline is improved
by bounding box and category label predictions from the global pipeline.

in the local pipeline. Then, Section III-B explains the global
pipeline. Finally, Section III-C describes the probabilistic
fusion process of the two pipelines.

A. Local Grasp Region Detection
Saxena et al. [26] train a local grasp patch detector that

looks at local patches and classifies them either as valid grasp
patches or not. They propose a binary classification model
trained on local patches extracted from synthetic supervised
data; the model identified grasp points from a local descriptor
that is similar to a multiscale texture filter bank, but with some
differences (see [26]). Our analysis shows that the model learns
a set of local edge structures that compose a good grasp patch
such as the handle of a mug reasonably well.
Since local grasp measures operate based on local appear-

ance, they lack specificity when run on entire images. In their
operational system this is mitigated by restricting response to
the known (or detected) bounding box of the target object in the
image. They also employ a triangulation step for verification
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Fig. 3. Randomly sampled examples of our dataset with grasp annotations. Grasp region attribute is defined by two end points (magenta patches in the figures).
We take convex hull of the two points as valid grasp region except for the bowl category.

Fig. 4. Local grasp region detection. (left) SIFT descriptor on a key point. Descriptor scales are color coded with yellow, green, and blue. (middle) Red patches
indicate thresholded classifier output. (right) Visualization after Gaussian smoothing.

with stereo sensors, which we do not apply here as our data set
is monocular.1 The pure local method cannot capture category
or instance-level bias such as a human demonstration of a grasp
strategy for a category of interests.
Fig. 3 shows example images annotated with “grasp region”

attributes (handle of cooking pot, mid part of markers, etc.).
We define grasp regions as where humans or robotic agents
would stably and safely grasp objects. Along with the grasp re-
gion attributes, we also annotated “grasp scale” attributes for all
the training instances that are used in feature extraction stages.
More explanations on the annotation attributes are given in the
following sections.
We address some important technical details of the local

method in [26] and propose modifications employed in our local
grasp measure classifier which lead to more reliable responses.
Section III-A1 provides the algorithm and visualizations from
feature extraction steps to inference and post processing steps
of the local method and Sections III-A2 and III-A3 introduces
improvements to the algorithm.

1We are interested both in detecting grasp affordances with robotic sensors,
and also doing so from general image and video sources, so as to improve scene
understanding in general and/or to improve estimation of other objects or agents
in theworld. E.g., we can constrain our estimate of the pose ormotion of a person
if we can infer how he or she is holding an object, or how they will grasp it if
they are approach the object (c.f., [33]).

1) Feature Extraction and Inference: Fig. 4 (left) shows
a visualization of a scale-invariant feature transform (SIFT)
descriptor at [31] three different scales on an example key-
point. Each bin shows local statistics of gradient orientations.
For training, we train a patch level binary classifier with
positive and negative training data, as shown in Fig. 6. For
inference, we first compute a SIFT representation of the test
image and convolve it with the learned classifier to get a
local grasp affordance map followed by Gaussian smoothing
as shown in (1).

(1)

where is a truncated zero-mean Gaussian blur kernel.
Fig. 4 (middle) shows the classifier response for all uniformly
sampled test keypoints. Regions with classification confidence
greater than 0.5 are overlaid in the red channel of the image.
Fig. 4 (right) visualizes the result where Gaussian smoothing is
applied on the classifier output. We set the standard deviation
of the Gaussian kernel equal to the keypoint grid sample size
throughout the experiment. We tried both support vector ma-
chine (SVM) and logistic regression classifiers and they showed
negligible difference in performance.
Extracting good (easy to learn and unambiguous) training

patches from real camera images requires more precautions than
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Fig. 5. Issues of keypoint even-sampling strategy. (Top) Visualization of
evenly sampled keypoints for a cooking pot. Yellow circles denote each
keypoints. Green band represents ground truth grasp region annotation in the
center of the handle. (Bottom) Close up view near the annotated region. Due to
binning effect, it becomes ambiguous which keypoints should get assigned with
positive/negative grasp regions labels. Arbitrary assignment causes outliers in
the training process.

extracting the data from synthetic graphics data [26]. Some of
the issues that arise from working with real sensor imagery in-
volve: alignment difficulties in experiments, incorrect annota-
tions, wide varieties across object instances, presence of tex-
ture on object surfaces, and realistic lighting conditions, etc.
Sections III-A2 and III-A3 addresses some of these issues in
more depth.
2) Supervised Key Point Sampling: One of themost common

techniques for sampling key points for feature extraction is
sampling evenly in a grid structure as implemented in [26].
However, this method is very susceptible to binning effects and
ambiguities in training data. The binning effect is when small
object displacement can cause very different data samples and
is an inherent problem when data is sampled in grid structures.
Fig. 5 shows difficulties of this approach. We avoided this
problem by uniformly sampling positive patches along the
ground truth grasp bands, as shown as green circles in Fig. 6.
The label ambiguities can occur if key points that are very

close together get sampled and assigned to different labels. In
the binary classification sense, these ambiguous data can be in-

Fig. 6. Example of supervised key point sampling. Positive key points(green
markers) are sampled along “grasp region” annotation, while negative key
points (red markers) are randomly sampled strictly outside the convex hull
defined by “grasp scale” annotation.

terpreted as inseparable data points in feature dimensions that
adversely effect the separating hyperplane. Our approach is to
utilize an additional annotation which we call the “grasp scale”
attribute of the grasp annotations to define a convex hull around
the ground truth grasp region and randomly sample negative key
points outside the convex hull. Fig. 6 illustrates the convex hull
as red polygon and randomly chosen negative key points as red
circles.
3) Category Dependent Descriptor Scale: While the method

above determines key point sampling locations, the scale of the
descriptor turns out to be an important factor in order to ob-
tain reliable local grasp measures. This relates to the aperture
problem as encountered in the scale of local features. Having
a small local scale results in features that encode edge type re-
sponses and tend to be reproducible. For larger scales, we add
more context which makes the feature more unique and there-
fore also more discriminative. The best scale will, therefore,
naturally vary from object class to object class. E.g. with a set
of fixed size descriptors (aperture), it is impossible to capture
both the parallel edges from narrow handle of mugs and wide
handle of cooking pots. This holds true for the largest context
descriptors also. We again utilize the “grasp scale” attribute of
the grasp annotations and set descriptor scales dependent on
the attribute. Note that at test time, the grasp scale is derived
from the bounding box and object class provided by the global
pipeline, as shown in Fig. 2.

B. Global Grasp Region Regression
Our global path is based on a method for category-level con-

tinuous pose regression. We start with the model in [12], which
reports results on continuous pose regression over trained in-
stances and on discrete pose estimation from category level data.
We extend it here to the case of category-level continuous pose
estimation, which to our knowledge has not been previously re-
ported by this or any other method for general object classes.2

2But see the extensive literature on face pose estimation.
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In Section III-B1, we review the pose estimation model and in
Section III-B2, the conversion process from pose to grasp affor-
dance estimate is discussed.
1) Pose Estimation: A multiscale window scanning is ap-

plied to localize objects in the image, searching across category
and pose. First, we define discretized canonical viewpoints in
the viewing hemisphere, as illustrated in Fig. 7. Then, following
[7], [8], and [12], we define a score function, of a
image window evaluated under the set of viewpoints
as follows:

(2)

where correspond to viewpoint indices sam-
pled from the viewing hemisphere at different locations,

are learned viewpoint templates. is the
SIFT feature vector computed on window of the input image.

is the supervised Euler angle annotation at view-
point index . represents small deviation angle from the su-
pervised annotation angle . The final pose estimate is the de-
viation corrected angle .

is the Jacobian matrix of the viewpoint template
over the angle . The motivation of the Jacobian term is

that we want to slightly deform the learned canonical view tem-
plates by . Explicitly, the Jacobian linearization of vector
about the canonical view angle with respect to the three Euler
angles can be written as

...
...

...
...

...
...

(3)

The input to the pose estimation algorithm is the test view
and the output is the pose estimate , where

denotes the best matching discrete viewpoint and the
denotes the slight deformation from the viewpoint to the actual
test view. is a quadratic loss function that confines to
be close to . Denote by their elements ,
then

(4)

In (2), and are obtained when the score function
reaches its maximum. The variables , , and ,

are learned from training data. Given positive examples
with annotated pose labels

we can express the above criteria compactly as a dot product
between reparameterized weight vector and feature vector as
follows:

(5)

where and are structured as follows:

(6)

where operator forms a vector from the input matrix by
stacking columns of the input matrix on top of each other. We
discuss the training and inference procedures for pose estima-
tion below.

Training Procedure: We solve the following optimization
problem in (7) to jointly train all the viewpoint templates

in max-margin framework:

(7)

where and denote positive and negative training data, and
denotes the supervised viewpoint label for a positive data

. and are regularization parameters which controls the
tradeoff between the classification performance on the training
data and the norm of the model parameters . The intu-
ition behind the optimization problem in (7) is that we want all
the viewpoint templates to score low for all the negative data,
while the supervised template scores high for the corre-
sponding positive data.

Inference Procedure: Having learned the viewpoint tem-
plates , we can perform sliding window style object
detection which assigns score at every image locations
. After thresholding the score, we can infer the viewpoint es-

timate of the object hypothesis

(8)

The intuition behind (8) is that we want to infer the most
likely pose of an object hypothesis location by maximizing
over possible discrete viewpoint labels and angle deformation

.
2) Pose to Grasp Affordance Regression: Given pose esti-

mates, we can directly infer grasp regions. The global af-
fordance prediction step works by regressing upon the pose of
an object to a 2-D affordance in the image plane. (The local de-
tector simply identifies points in the image that have the local
appearance of graspable region; this is complementary infor-
mation.) Regressing from pose and category information, the
global pipeline infers the grasp affordance annotations in Fig. 3.
This can be formulated as learning multidimensional regression
functions that maps a 3-D pose estimate to a grasp
label in pixel coordinates given a category label and assigns
probability estimate on the likelihood . Explicitly,

, where , are individual end points
in grasp region labels in pixel coordinates illustrated as magenta
patches in Fig. 3.We use locally weighted regression to learn the
regression functions from the training data for each categories.
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Fig. 8 illustrates a sample trajectory of as is varied. Then,
we marginalize over the candidate pose estimate in order to ob-
tain a robust grasp point prediction

(9)

where is the predicted most likely grasp region, angle
is the Euler angle pose estimate and is

the category label. Then, the global grasp affordance map is
determined by the following procedure:

(10)

where we take the convex hull of the predicted grasp estimates
and convolve with the truncated zero-mean Gaussian kernel

with standard deviation set equal to the one used in
the local pipeline.

C. Fused Grasp Region Estimates
The position of the final estimate is based on fusion of local

and global paths. Position and orientation estimates are repre-
sented as a probability density function over location and angle,
respectively, and multiple hypotheses can be returned as appro-
priate. The local and global paths each provide a probabilitymap
over estimated grasp location in the image. We return the fused
estimates, taking the entrywise product of the two probability
map and taking argmax to be the fused estimate

(11)

where denotes matrix Hadamard product, is the fused grasp
region with maximal confidence, is the global grasp affor-
dance, is the grasp likelihood map from the local pipeline.
Fig. 9 shows some examples where our fusion scheme suc-

cessfully recovers from failures in either the local or the global
pipeline. Fig. 9(a) and (d) show the output of the global pipeline
and Fig. 9(b) and (e) show the top scoring patches from the
local measure. The first row shows erroneous global grasp esti-
mate due to incorrect pose estimate getting corrected by fusion
step owing to correct local estimate. The second row shows the
global pipeline not begin affected by poor local estimate during
the fusion step.

D. Generating 3-D Grasp Points
Grasping an object requires knowledge of the 3-D coordi-

nates of a grasping point, and the 3 orientation an-
gles to specify the gripper orientation. The

coordinates of the grasping point are obtained by pro-
jecting the coordinates of a pixel to a calibrated range
sensor. For our experiments, we used an Asus Xtion camera
mounted on the head of a PR2 robot.
Finding the gripper angles requires constraining the

orientation angles. The first two angles
is calculated by the pose estimation algorithm, as

illustrated in Fig. 7. In this work, we assume that an object has
0 roll angle and, therefore, can be grasped either from the top

Fig. 7. Illustration of the discretized viewing hemisphere and the pose estima-
tion algorithm. Input to the algorithm is the test view and the output is the
pose estimate .

Fig. 8. Overlaid samples of training data for one object instance of mug cate-
gory as yaw angle is varied at 0 , 180 , and 270 . Pitch and roll angles are fixed
at 45 and 0 , respectively. We use nonparametric locally weighted regression
to learn the mapping between object pose to grasp labels (illustrated with ma-
genta patches).

or from the side. This is true for most of household objects that
have to stand upright on a tabletop surface. The information
about what approach to use is provided during training.
Choosing an overhead or a side grasp simultaneously con-

strains both and , thus specifying all the needed pa-
rameters to determine the desired gripper position. Executing
the grasp then requires planning a collision free motion to a pre-
grasping position, and closing the gripper around the specified
target. We exploited the redundancy of the PR2 arm (7 DOF),
to find grasping postures that do not collide with the tabletop
surface.

IV. EXPERIMENTS

We performed two sets of experiments. Experiments
in Section IV-B compares the detection performance be-
tween approach and 3-D baseline. The set of experiments in
Section IV-C are designed to extensively evaluate various as-
pects of our approach in terms of detection, categorization, pose
estimation, grasp affordance prediction, and robotic grasping.
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Fig. 9. Individual failures corrected by the probabilistic fusion. Best viewed when zoomed in. (a) Incorrect global estimate. (b) Correct local estimate. (c) Fused
estimate. (d) Correct global estimate. (e) Incorrect local estimate. (f) Fused estimate.

Fig. 10. Example failure cases of 3-D [1] versus 2-D detection. (Left column) Red, green, and yellow bounding boxes indicate ground truth, 2-D detection, and 3-D
detection bounding boxes, respectively. (Right column) Visualization of the 3-D detection. (a) Overlayed detections. (b) 3-D detection. (c) Overlayed detections.
(d) 3-D detection.

A. Dataset for Evaluating Visual Grasp Affordance Prediction
Under Categorial Variation

Datasets for learning 2-D and 2.5-D grasp locations exist
[18], [26]. However, the number of images and pose varieties
in the dataset are quite limited (total of 1035 images for 9 ob-
ject categories) in order for one to learn object detector models
from. Furthermore, pose annotations for the images are not pro-
vided in the dataset.
Existing datasets with pose annotated visual categories only

address discrete viewpoint classes [25]. We are only aware of a
single exception [20], which only has a single category (car) and
also doesn't lend itself to the investigation of grasp affordances.
Therefore, we propose a new dataset consisting of 8 object

categories (markers, erasers, spray bottles, bowls, mugs, pots,
scissors, and remote controllers) common to office and domestic
domain for each of which we imaged 5 instances at 1280 960
resolution. The training set shows the instances under 259 view-
point variations (pitch angle: 0 ~ 90 sampled at 15 each, yaw
angle: 0 ~ 350 sampled at 10 each) yielding a training set of
total size of 10360 images. All the images in the dataset also

have the grasp affordance annotations with grasp region and
scale attributes mentioned before. Fig. 3 shows subset of our
dataset.
As for test sets, we collected two sets of data. On the first

set, we collected eight instances per category of previously un-
seen objects both in an uncluttered desk and a cluttered desk.
On this dataset, we evaluate our detection performance against
an established baseline system using 3-D modalities [1]. The
other testset contains 18 viewpoint variations per categories as
well as significant scale changes of previously unseen instances
in cluttered background. We show experimental results on de-
tection, categorization, pose estimationn and grasp affordance
estimation.

B. Detection Performance Comparison Against 3-D Baseline
We chose the highest scoring detections in the image across

all the categories and followed the standard object detection
criteria where a predicted bounding box is considered a true
positive detection if the ratio between the intersection and the
union of the predicted and ground truth bounding box is more
than 50% [6]. Table I shows the detection accuracies on both
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TABLE I
DETECTION ACCURACY COMPARISON ON BOTH SCENES. “3-D”

INDICATES [1] AND “OURS” IS THE PROPOSED METHOD

the clean and cluttered desk scenes compared against the 3-D
baseline [1].
Fig. 10 shows some failure cases of the baseline 3-D detec-

tion system [1]. Fig. 10(b) and (d) show failed 3-D detection
bounding cubes and Fig. 10(a) and (c) show overlayed detec-
tions. The red bounding boxes are the ground truth, the green
bounding boxes are output of our system and the yellow boxes
are the 3-D detection overlayed onto the image plane.
Generally, when textured light is shed on dark colored or

weakly reflective objects, the color contrast from the textured
light is very small causing a very sparse point cloud. The
sparsity then segregates points cloud into multiple groups
causing multiple 3-D detections. This scenario could be detri-
mental when a precise object size has to be known to place
the picked-up object to another location. Also, when there
is a background clutter, a point cloud of the clutter objects
gets easily aggregated with the foreground object causing an
erroneous oversized 3-D detection. However, a 2-D scanning
window-based framework can handle this more robustly, as
shown in Table I. Finally, 3-D point cloud-based detection fails
when objects have not enough protrusion from the table, e.g.,
scissors.

C. Detection, Categorization, Pose Estimation, and Grasp
Affordance Estimation Results on Cluttered Scene

We now report experimental results on the second test data
set with substantially more viewpoint and scale variations and
clutter as mentioned above. Section IV-C1 shows results on
object detection and categorization. Section IV-C2 reports
root mean squared error (RMSE) on pose estimation, while
jointly inferring object locations and category labels. Finally,
Section IV-C3 shows our joint visual grasp affordance estima-
tion results.
1) Detection and Categorization: We applied the same de-

tection evaluation scheme in the previous experiment where
the highest scoring detection among all locations of a given
image among all the categories were considered a true posi-
tive if the bounding box overlap criterion is more than 50% [6].
For comparison, we also experimented with a baseline method
where a closest matching (via distance metric in SIFT feature
space) training instance among the database of 10360 annotated
training images are found and the labels of the nearest neighbor
instance are then returned as predictions.
Mean detection accuracy was 72.22%. Fig. 11 shows the

confusion table for the categorization performance on correct
detections (predicted bounding box overlaps more than 50%
with the ground truth box). Fig. 11 (Top) shows that our method
confuses the eraser category as the remote control category in

Fig. 11. Categorization confusionmatrices for correctly detected objects. (Top)
Our detection method. (Bottom) Nearest neighbor baseline.

some cases, but generally chooses right object category labels
compared to the nearest neighbor baseline (shown in Fig. 11,
Bottom).
2) Multicategory Pose Prediction: We evaluate current

approaches to 3-D pose estimation and investigate how they
translate to our desired setting of angle accurate predictions,
while performing generalization to previously unseen test
objects. As a baseline method we looked at a nearest neighbor
approach where we compute HOG (histogram of gradients)
[4] features of given test images and compare among all the
1295 images per categories (stored as HOG [4] templates)
with L2 distance metric. Additionally we evaluate [12] as it
is to our knowledge the state-of-the-art on the popular 3-D
(discrete) pose database proposed in [25] both in discrete
viewpoint classification mode and in continuous viewpoint
regression mode.3
Fig. 12 shows the performance in RMSE of the roll and

pitch angle estimations we obtain using the proposed dataset
when the object location and category labels are unknown and
jointly inferred as well as the object pose. As expected, we
observe a moderate drop when comparing the angle accurate
results from [12] to our setting where we evaluate both on

3Code was provided by the authors.
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Fig. 12. Accuracy of pose prediction without object locations and category labels. The top and the bottom plots show RMSE for yaw and pitch angles, respectively.
The last three bars show the class averaged results. Note that the yaw angle for the bowl category is omitted due to yaw angle symmetry. (a) RMSE for yaw angle.
(b) RMSE for pitch angle.

TABLE II
AFFORDANCE PREDICTION GIVEN GROUNDTRUTH BOUNDING BOX

cross-instance and cross-category generalization. However, we
can see that continuous viewpoint regression method improves
the pose estimation performance over other methods on most
object categories.
3) Visual Grasp Affordance Prediction: We now evaluate the

accuracy of our joint method for grasp affordance prediction.
Again, we use the proposed dataset where we have annotated
graph affordances.
We investigate two scenarios as in the pose estimation exper-

iment. The first assumes that a bounding box was provided by
a bottom up segmentation scheme – as it could be available in
a robotic setting by 3-D sensing or a form of background sub-
traction. The second scenario will run our full detection pipeline
and all further processing is based on this output.

TABLE III
AFFORDANCE PREDICTION WITHOUT BOUNDING BOX AND CATEGORY LABEL

As a first baseline we compare to the results from purely local
measures [tagged“Local(px)”].The approach“Global(px)”only
uses the global path by predicting grasp affordances regressing
from the predicted the poses conditioned on the corresponding
predicted category labels. Then, we present the fused approach
[tagged “Fused(px)”]. Finally, we converted the mean pixel de-
viation from the fused estimate into real-world metric distances
by working out the perspective projection using the previously
recorded depth measurements [tagged “Fused(cm)”].
Table II shows the average distance in pixels between

the predicted grasp affordance and the ground truth annota-
tion when the bounding box is assumed to be known, while
Table III shows results employing the full processing pipeline.
We observe consistent improvements on the average results
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Fig. 13. Examples predictions of our framework. (a) Bowl. (b) Mug. (c) Remote. (d) Marker. (e) Eraser. (f) Spray bottle. (g) Scissors. (h) Pot.

going from the purely local cue, switching to the global pipeline
and finally fusing local and global in our combined approach.
Overall, we reduced the average distance obtained by local
model by about a factor of four. For comparison, [26] reports
1.80 cm metric distance error when the object locations were

known. We report 0.59 and 0.77 cm metric distance error when
the object locations were known and not known.
Fig. 13 presents example predictions of our framework on

randomly chosen test objects. The magenta patches represent
the points among the fused probability maps where the likeli-
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TABLE IV
GRASP SUCCESS RATE

hoods are the highest (patches were blown up to help the visu-
alization). The red boxes and thick axes represent ground truth
bounding boxes and axes. Respectively, the green boxes and the
thin axes represent the predicted object locations and pose.
4) Robot Grasping Experiments: For the robot grasping ex-

periment, we placed previously unseen test objects on a clut-
tered table in front of PR2 robot. We designed the experiment
to test how well the robot can grasp test objects in a fully au-
tonomous setting where the robot has to first localize a test ob-
ject, classify which object category it belongs to, infer the ob-
ject pose, estimate the grasp affordance, and execute the grasp
in collision free path. Fig. 1 shows an example successful grasp
from the test scene.
Whenever the robot picked up the correct object at the correct

position which matches the supervised grasp annotation shown
in Fig. 3, the experiment was counted as a success. The results
of the experiments are shown in Table IV.
The visual inference (detection, categorization, pose estima-

tion) were mostly correct for mugs but small affordance error in
localizing the mug handle caused the robot to unstably grasping
the handle causing grasp failures. For small and flat objects
(markers, scissors) both mislocalization due to the background
clutter and affordance estimate error contributed equally to
grasp failures.
We made a video demonstration of the PR2 robot grasping

the mentioned test objects at: http://www.youtube.com/
watch?v=C3HU1Tb5hF4

V. CONCLUSION
Appearance-based estimation of grasp affordances is desir-

able when other (e.g., 2.5-D or 3-D) sensing means cannot ac-
curately scan an object. We developed a general framework for
estimating grasp affordances from 2-D sources, including local
texture-like measures as well as object-category measures that
capture previously learned grasp strategies.
Our work is the first to localize the target object and infer

grasp affordance by combining texture-based and object-level
monocular appearance cues. Further, we provided a novel eval-
uation of max-margin pose regression on the task of category-
level continuous pose estimation and a method for inferring
grasp affordance from the pose estimate.
Our analysis is made possible by a novel dataset for visual

grasp affordance and angle accurate pose prediction for indoor
object classes. We will make our code and the dataset public
to the research community to further stimulate research in this
direction.
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