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Abstract

The prominence of weakly labeled data gives rise to a growing demand for ob-
ject detection methods that can cope with minimal supervision. We propose an
approach that automatically identifies discriminative configurations of visual pat-
terns that are characteristic of a given object class. We formulate the problem as a
constrained submodular optimization problem and demonstrate the benefits of the
discovered configurations in remedying mislocalizations and finding informative
positive and negative training examples. Together, these lead to state-of-the-art
weakly-supervised detection results on the challenging PASCAL VOC dataset.

1 Introduction
The growing amount of sparsely and noisily labeled image data demands robust detection methods
that can cope with a minimal amount of supervision. A prominent example of this scenario is the
abundant availability of labels at the image level (i.e., whether a certain object is present or absent
in the image); detailed annotations of the exact location of the object are tedious and expensive and,
consequently, scarce. Learning methods that can handle image-level labels circumvent the need
for such detailed annotations and therefore have the potential to effectively use the vast textually
annotated visual data available on the Web. Moreover, if the detailed annotations happen to be noisy
or erroneous, such weakly supervised methods can even be more robust than fully supervised ones.

Motivated by these developments, recent work has explored learning methods that decreasingly
rely on strong supervision. Early ideas for weakly supervised detection [11, 32] paved the way
by successfully learning part-based object models, albeit on simple object-centric datasets (e.g.,
Caltech-101). Since then, a number of approaches [21, 26, 29] have aimed at learning models from
more realistic and challenging data sets that feature large intra-category appearance variations and
background clutter. These approaches typically generate multiple candidate regions and retain the
ones that occur most frequently in the positively-labeled images. However, due to intra-category
variations and deformations, the identified (single) patches often correspond to only a part of the
object, such as a human face instead of the entire body. Such mislocalizations are a frequent problem
for weakly supervised detection methods.

Mislocalization and too large or too small bounding boxes are problematic in two respects. First,
detection is commonly phrased as multiple instance learning (MIL) and solved by non-convex op-
timization methods that alternatingly guess the location of the objects as positive examples (since
the true location is unknown) and train a detector based on those guesses. This procedure is heavily
affected by the initial localizations. Second, the detector is often trained in stages; in each stage one
adds informative “hard” negative examples to the training data. If we are not given accurate true
object localizations in the training data, these hard examples must be derived from the detections
inferred in earlier rounds. The higher the accuracy of the initial localizations, the more informative
is the augmented training data – and this is key to the accuracy of the final learned model.

In this work, we address the issue of mislocalizations by identifying characteristic, discriminative
configurations of multiple patches (rather than a single one). This part-based approach is motivated
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by the observation that automatically discovered single “discriminative” patches often correspond
to object parts. In addition, while background patches (e.g., of water or sky) can also occur through-
out the positive images, they will re-occur in arbitrary rather than “typical” configurations. We
develop an effective method that takes as input a set of images with labels of the form “the object is
present/absent”, and automatically identifies characteristic part configurations of the given object.

To identify such configurations, we use two main criteria. First, useful patches are discriminative,
i.e., they occur in many positively-labeled images, and rarely in the negatively labeled ones. To iden-
tify such patches, we use a discriminative covering formulation similar to [29]. Second, the patches
should represent different parts, i.e., they may be close but should not overlap too much. In covering
formulations, one may rule out overlaps by saying that for two overlapping regions, one “covers”
the other, i.e., they are treated as identical and picking one is as good as picking both. But identity is
a transitive relation, and the density of possible regions in detection would imply that all regions are
identical, strongly discouraging the selection of more than one part per image. Partial covers face
the problem of scale invariance. Hence, we instead formulate an independence constraint. This sec-
ond criterion ensures that we select regions that may be close but are non-redundant and sufficiently
non-overlapping. We show that this constrained selection problem corresponds to maximizing a
submodular function subject to a matroid intersection constraint, which leads to approximation al-
gorithms with theoretical worst-case bounds. Given candidate parts identified by these two criteria,
we effectively find frequently co-occurring configurations that take into account relative position,
scale, and viewpoint.

We demonstrate multiple benefits of the discovered configurations. First, we observe that configu-
rations of patches can produce more accurate spatial coverage of the full object, especially when the
most discriminative pattern corresponds to an object part. Second, any overlapping region between
co-occurring visual patterns is likely to cover a part (but not the full) of the object of interest. Thus,
they can be used to generate mis-localized positives as informative hard negatives for training (see
white boxes in Figure 3), which can further reduce localization errors at test time.

In short, our main contribution is a weakly-supervised object detection method that automatically
discovers frequent configurations of discriminative visual patterns to train robust object detectors.
In our experiments on the challenging PASCAL VOC dataset, we find the inclusion of our discrim-
inative, automatically detected configurations to outperform all existing state-of-the-art methods.

2 Related work

Weakly-supervised object detection. Object detectors have commonly been trained in a fully-
supervised manner, using tight bounding box annotations that cover the object of interest (e.g., [10]).
To reduce laborious bounding box annotation costs, recent weakly-supervised approaches [3, 4, 11,
21, 26, 29, 32] use image-level object-presence labels with no information on object location.

Early efforts [11, 32] focused on simple datasets that have a single prominent object in each image
(e.g., Caltech-101). More recent approaches [21, 26, 29] work with the more challenging PASCAL
dataset that contains multiple objects in each image and large intra-category appearance variations.
Of these, Song et al. [29] achieve state-of-the-art results by finding discriminative image patches
that occur frequently in the positive images but rarely in the negative images, using deep Convolu-
tional Neural Network (CNN) features [17] and a submodular cover formulation. We build on their
approach to identify discriminative patches. But, contrary to [29] which assumes patches to contain
entire objects, we assume patches to contain either full objects or merely object parts, and automat-
ically piece together those patches to produce better full-object estimates. To this end, we change
the covering formulation and identify patches that are both representative and explicitly mutually
different. This leads to more robust object estimates and further allows our system to intelligently
select “hard negatives” (mislocalized objects), both of which improve detection performance.

Visual data mining. Existing approaches discover high-level object categories [14, 7, 28], mid-level
patches [5, 16, 24], or low-level foreground features [18] by grouping similar visual patterns (i.e.,
images, patches, or contours) according to their texture, color, shape, etc. Recent methods [5, 16]
use weakly-supervised labels to discover discriminative visual patterns. We use related ideas, but
formulate the problem as a submodular optimization over matroids, which leads to approximation
algorithms with theoretical worst-case guarantees. Covering formulations have also been used in
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[1, 2], but after running a trained object detector. An alternative discriminative approach is to use
spectral methods [34].

Modeling co-occurring visual patterns. It is known that modeling the spatial and geometric rela-
tionship between co-occurring visual patterns (objects or object-parts) often improves visual recog-
nition performance [8, 18, 10, 11, 19, 23, 27, 24, 32, 33]. Co-occurring patterns are usually rep-
resented as doublets [24], higher-order constellations [11, 32] or star-shaped models [10]. Among
these, our work is most inspired by [11, 32], which learn part-based models with weak supervi-
sion. We use more informative deep CNN features and a different formulation, and show results on
more difficult datasets. Our work is also related to [19], which discovers high-level object composi-
tions (“visual phrases” [8]), but with ground-truth bounding box annotations. In contrast, we aim to
discover part compositions to represent full objects and do so with less supervision.

3 Approach
Our goal is to find a discriminative set of patches that co-occur in the same configuration in many
positively-labeled images. We address this goal in two steps. First, we find a set of patches that are
discriminative; i.e., they occur frequently in positive images and rarely in negative images. Second,
we efficiently find co-occurring configurations of pairs of such patches. Our approach easily extends
beyond pairs; for simplicity and to retain configurations that occur frequently enough, we here
restrict ourselves to pairs.

Discriminative candidate patches. For identifying discriminative patches, we begin with a con-
struction similar to that of Song et al. [29]. Let P be the set of positively-labeled images. Each
image I contains candidate boxes {bI,1, . . . , bI,m} found via selective search [30]. For each bI,i, we
find its closest matching neighbor bI′,j in each other image I ′ (regardless of the image label). The
K closest of those neighbors form the neighborhood N (bI,i); the remaining ones are discarded.

Discriminative patches have neighborhoods mainly within images in P , i.e., if B(P) is the set of all
patches from images in P , then |N (b)∩B(P)| ≈ K. To identify a small, diverse and representative
set of such patches, like [29], we construct a bipartite graph G = (U ,V, E), where both U and V
contain copies of B(P). Each patch b ∈ V is connected to the copy of its nearest neighbors in U (i.e.,
N (b)∩B(P)). These will be K or fewer, depending on whether the K nearest neighbors of b occur
in B(P) or in negatively-labeled images. The most representative patches maximize the covering
function

F (S) = |Γ(S)|, (1)

where Γ(S) = {u ∈ U | (b, u) ∈ E for some b ∈ S} ⊆ U is the neighborhood of S ⊆ V in the
bipartite graph. Figure 1 shows a cartoon illustration. The function F is monotone and submodular,
and the C maximizing elements (for a given C) can be selected greedily [20].

However, if we aim to find part configurations, we must select multiple, jointly informative patches
per image. Patches selected to merely maximize coverage can still be redundant, since the most
frequently occurring ones are often highly overlapping. A straightforward modification would be
to treat highly overlapping patches as identical. This identification would still admit a submodular
cover model as in Equation (1). But, in our case, the candidate patches are very densely packed in
the image, and, by transitivity, we would have to make all of them identical. In consequence, this
would completely rule out the selection of more than one patch in an image and thereby prohibit the
discovery of any co-occurring configurations.
Instead, we directly constrain our selection such that no two patches b, b′ ∈ V can be picked whose
neighborhoods overlap by more than a fraction θ. By overlap, we mean that the patches in the
neighborhoods of b, b′ overlap significantly (they need not be identical). This notion of diversity is
reminiscent of NMS and similar to that in [5], but we here phrase and analyze it as a constrained
submodular optimization problem. Our constraint can be expressed in terms of a different graph
GC = (V, EC) with nodes V . In GC , there is an edge between b and b′ if their neighborhoods overlap
prohibitively, as illustrated in Figure 1. Our family of feasible solutions is

M = {S ⊆ V | ∀ b, b′ ∈ S there is no edge (b, b′) ∈ EC}. (2)

In other words,M is the family of all independent sets in GC . We aim to maximize

maxS⊆V F (S) s.t. S ∈M. (3)
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Figure 1: Left: bipartite graph G that defines the utility function F and identifies discriminative
patches; right: graph GC that defines the diversifying independence constraintsM. We may pick
C1 (yellow) and C3 (green) together, but not C2 (red) with any of those.

This problem is NP-hard. We solve it approximately via the following greedy algorithm. Begin with
S0 = ∅, and, in iteration t, add b ∈ argmaxb∈V\S |Γ(b) \ Γ(St−1)|. As we add b, we delete all of
b’s neighbors in GC from V . We continue until V = ∅. If the neighborhoods of any b, b′ are disjoint
but contain overlapping elements (Γ(b) ∩ Γ(b′) = ∅ but there exist u ∈ Γ(b) and u′ ∈ Γ(b′) that
overlap), then this algorithm amounts to the following simplified scheme: we first sort all b ∈ V in
non-increasing order by their degree Γ(b), i.e., their number of neighbors in B(P), and visit them in
this order. We always add the currently highest b in the list to S, then delete it from the list, and with
it all its immediate (overlapping) neighbors in GC . The following lemma states an approximation
factor for the greedy algorithm, where ∆ is the maximum degree of any node in GC .
Lemma 1. The solution Sg returned by the greedy algorithm is a 1/(∆ + 2) approximation for
Problem (2): F (Sg) ≥ 1

∆+2F (S∗). If Γ(b) ∩ Γ(b′) = ∅ for all b, b′ ∈ V , then the worst-case
approximation factor is 1/(∆ + 1).

The proof relies on phrasingM as an intersection of matroids.
Definition 1 (Matroid). A matroid (V, Ik) consists of a ground set V and a family Ik ⊆ 2V of
“independent sets” that satisfy three axioms: (1) ∅ ∈ Ik; (2) downward closedness: if S ∈ Ik then
T ∈ Ik for all T ⊆ S; and (3) the exchange property: if S, T ∈ Ik and |S| < |T |, then there is an
element v ∈ T \ S such that S ∪ {v} ∈ Ik.

Proof. (Lemma 1) We will argue that Problem (2) is the problem of maximizing a monotone sub-
modular function subject to the constraint that the solution lies in the intersection of ∆+1 matroids.
With this insight, the approximation factor of the greedy algorithm for submodular F follows from
[12] and that for non-intersecting Γ(b) from [15], since in the latter case the problem is that of
finding a maximum weight vector in the intersection of ∆ + 1 matroids.

It remains to argue thatM is an intersection of matroids. Our matroids will be partition matroids
(over the ground set V) whose independent sets are of the form Ik = {S | |S ∩ e| ≤ 1, for all e ∈
Ek}. To define those, we partition the edges in GC into disjoint sets Ek, i.e., no two edges in Ek

share a common node. The Ek can be found by an edge coloring – one Ek and Ik for each color k.
By Vizing’s theorem [31], we need at most ∆+1 colors. The matroid Ik demands that for each edge
e ∈ Ek, we may only select one of its adjacent nodes. All matroids together say that for any edge
e ∈ E , we may only select one of the adjacent nodes, and that is the constraint in Equation (2), i.e.
M =

⋂∆+1
k=1 Ik. We do not ever need to explicitly compute Ek and Ik; all we need to do is check

membership in the intersection, and this is equivalent to checking whether a set S is an independent
set in GC , which is achieved implicitly via the deletions in the algorithm.

From the constrained greedy algorithm, we obtain a set S ⊂ V of discriminative patches. Together
with its neighborhood Γ(b), each patch b ∈ V forms a representative cluster. Figure 2 shows some
example patches derived from the labels “aeroplane” and “motorbike”. The discovered patches
intuitively look like “parts” of the objects, and are frequent but sufficiently different.

Finding frequent configurations. The next step is to find frequent configurations of co-occurring
clusters, e.g., the head patch of a person on top of the torso patch, or a bicycle with visible wheels.
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Figure 2: Examples of discovered patch “clusters” for aeroplane, motorbike, and cat. The discovered
patches intuitively look like object parts, and are frequent but sufficiently different.

A “configuration” consists of patches from two clusters Ci, Cj , their relative location, and their
viewpoint and scale. In practice, we give preference to pairs that by themselves are very relevant
and maximize a weighted combination of co-occurrence count and coverage max{Γ(Ci),Γ(Cj)}.
All possible configurations of all pairs of patches amount to too many to explicitly write down and
count. Instead, we follow an efficient procedure for finding frequent configurations. Our approach
is inspired by [19], but does not require any supervision. We first find configurations that occur in at
least two images. To do so, we consider each pair of images I1, I2 that have at least two co-occurring
clusters. For each correspondence of cluster patches across the images, we find a corresponding
transform operation (translation, scale, viewpoint change). This results in a point in a 4D transform
space, for each cluster correspondence. We quantize this space into B bins. Our candidate configu-
rations will be pairs of cluster correspondences ((bI1,1, bI2,1), (bI1,2, bI2,2)) ∈ (Ci×Ci)×(Cj×Cj)
that fall in the same bin, i.e., share the same transform and have the same relative location. Between
a given pair of images, there can be multiple such pairs of correspondences. We keep track of those
via a multi-graph GP = (P, EP ) that has a node for each image I ∈ P . For each correspondence
((bI1,1, bI2,1), (bI1,2, bI2,2)), we draw an edge (I1, I2) and label it by the clusters Ci, Cj and the
common relative position. As a result, there can be multiple edges (I1, Ij) in GP with different edge
labels.

The most frequently occurring configuration can now be read out by finding the largest connected
component in GP induced by retaining only edges with the same label. We use the largest compo-
nent(s) as the characteristic configurations for a given image label (object class). If the component
is very small, then there is not enough information to determine co-occurrences, and we simply use
the most frequent single cluster. The final single “correct” localization will be the smallest bounding
box that contains the full configuration.

Discovering mislocalized hard negatives. Discovering frequent configurations can not only lead
to better localization estimates of the full object, but they can also be used to generate mislocalized
estimates as “hard negatives” when training the object detector. We exploit this idea as follows.
Let b1, b2 be a discovered configuration within a given image. These patches typically constitute
co-occurring parts or a part and the full object. Our foreground estimate is the smallest box that
includes both b1 and b2. Hence, any region within the foreground estimate that does not overlap
simultaneously with both b1 and b2 will capture only a fragment of the foreground object. We extract
the four largest such rectangular regions (see white boxes in Figure 3) as hard negative examples.

Specifically, we parameterize any rectangular region with [xl, xr, yt, yb], i.e., its x-left, x-right,
y-top, and y-bottom coordinate values. Let the bounding box of bi (i = 1, 2) be [xli, x

r
i , y

t
i , y

b
i ],

the foreground estimate be [xlf , x
r
f , y

t
f , y

b
f ], and let xl = max(xl1, x

l
2), xr = min(xr1, x

r
2), yt =

max(yt1, y
t
2), yb = min(yb1, y

b
2). We generate four hard negatives: [xlf , x

l, ybf , y
t
f ], [xr, xrf , y

b
f , y

t
f ],

[xlf , x
r
f , y

t
f , y

t], [xlf , x
r
f , y

b, ybf ]. If either b1 or b2 is very small in size relative to the foreground, the
resulting hard negatives can have high overlap with the foreground, which will introduce undesirable
noise (false negatives) when training the detector. Thus, we shrink any hard negative that overlaps
with the foreground estimate by more than 50%, until its overlap is 50% (we adjust the boundary
that does not coincide with any of the foreground estimation boundaries).
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Figure 3: Automatically discovered foreground estimation box (magenta), hard negative (white),
and the patch (yellow) that induced the hard negative. Note that we are only showing the largest one
out of (up to) four hard negatives per image.

Note that simply taking arbitrary rectangular regions that overlap with the foreground estimation box
by some threshold will not always generate useful hard negatives (as we show in the experiments).
If the overlap threshold is too low, the selected regions will be uninformative, and if the overlap
threshold is too high, the selected regions will cover too much of the foreground. Our approach
selects informative hard negatives more robustly by ruling out the overlapping region between the
configuration patches, which is very likely be part of the foreground object but not the full object.

Mining positives and training the detector. While the discovered configurations typically lead
to better foreground localization, their absolute count can be relatively low compared to the total
number of positive images. This is due to inaccuracies in the initial patch discovery stage: for a
frequent configuration to be discovered, both of its patches must be found accurately. Thus, we also
mine additional positives from the set of remaining positive images P ′ that did not produce any of
the discovered configurations.

To do so, we train an initial object detector, using the foreground estimates derived from our discov-
ered configurations as positive examples, and the corresponding discovered hard negative regions as
negatives. In addition, we mine negative examples in negative images as in [10]. We run the detector
on all selective search regions in P ′ and retain the region in each image with the highest detection
score as an additional positive training example. Our final detector is trained on this augmented
training data, and iteratively improved by latent SVM (LSVM) updates (see [10, 29] for details).

4 Experiments
In this section, we analyze: (1) detection performance of the models trained with the discovered
configurations, and (2) impact of the discovered hard negatives on detection performance.

Implementation details. We employ a recent region based detection framework [13, 29] and use the
same fc7 features from the CNN model [6] on region proposals [30] throughout the experiments. For
discriminative patch discovery, we use K = |P|/2, θ = K/20. For correspondence detection, we
discretize the 4D transform space of {x: relative horizontal shift, y: relative vertical shift, s: relative
scale, p: relative aspect ratio} with ∆x = 30 px,∆y = 30 px,∆s = 1 px/px,∆p = 1 px/px.
We chose this binning scheme by examining a few qualitative examples so that scale and aspect
ratio agreement between the two paired instances are more strict, while their translation agreement
is more loose, in order to handle deformable objects. More details regarding the transform space
binning can be found in [22].

Discovered configurations. Figure 5 shows the discovered configurations (solid green and yellow
boxes) and foreground estimates (dashed magenta boxes) that have high degree in graph GP for all
20 classes in the PASCAL dataset. Our method consistently finds meaningful combinations such
as a wheel and body of bicycles, face and torso of people, locomotive basement and upper body
parts of trains/buses, and window and body frame of cars. Some failures include cases where the
algorithm latches onto different objects co-occurring in consistent configurations such as the lamp
and sofa combination (right column, second row from the bottom in Figure 5).

Weakly-supervised object detection. Following the evaluation protocol of the PASCAL VOC
dataset, we report detection results on the PASCAL test set using detection average precision. For a
direct comparison with the state-of-the-art weakly-supervised object detection method [29], we do
not use the extra instance level annotations such as pose, difficult, truncated and restrict the supervi-
sion to the image-level object presence annotations. Table 1 compares our detection results against
two baseline methods [25, 29] on the full dataset. Our method improves detection performance on
15 of the 20 classes. It is worth noting that our method yields significant improvement on the person
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aero bike bird boat btl bus car cat chr cow tble dog horse mbk pson plnt shp sofa train tv mAP

[25] 13.4 44.0 3.1 3.1 0.0 31.2 43.9 7.1 0.1 9.3 9.9 1.5 29.4 38.3 4.6 0.1 0.4 3.8 34.2 0.0 13.9

[29] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7

ours1 31.9 47.0 21.9 8.7 4.9 34.4 41.8 25.6 0.3 19.5 14.2 23.0 27.8 38.7 21.2 17.6 26.9 12.8 40.1 9.2 23.4

ours2 36.3 47.6 23.3 12.3 11.1 36.0 46.6 25.4 0.7 23.5 12.5 23.5 27.9 40.9 14.8 19.2 24.2 17.1 37.7 11.6 24.6

Table 1: Detection average precision (%) on full PASCAL VOC 2007 test set. ours1: before latent
updates. ours2: after latent updates

w/o hard negatives neighboring hard negatives discovered hard negatives

ours + SVM 22.5 22.2 23.4

ours + LSVM 23.7 23.9 24.6

Table 2: Effect of our hard negative examples on full PASCAL VOC 2007 test set.

class, which is arguably the most important category in the PASCAL dataset. Figure 4 shows some
example high scoring detections on the test set. Our method produces more complete detections
since it is trained on better localized instances of the object-of-interest.

Figure 4: Example detections on test set. Green: our method, red: [29]

Impact of discovered hard negatives. To analyze the effect of our discovered hard negatives, we
compare to two baselines: (1) not adding any negative examples from positives images, and (2)
adding image regions around the foreground estimate, as conventionally implemented in fully su-
pervised object detection algorithms [9, 13]. For the latter, we use the criterion from [13], where
all image regions in positive images with overlap score (intersection over union with respect to any
foreground region) less than 0.3 are used as “neighboring” negative image regions on positive im-
ages. Table 2 shows the effect of our hard negative examples on detection mean average precision for
all classes (mAP). We also added neighboring negative examples to [29], but this decreases its mAP
from 20.3% to 20.2% (before latent updates) and from 22.7% to 21.8% (after latent updates). These
experiments show that adding neighboring negative regions does not lead to noticeable improve-
ment over not adding any negative regions from positive images, while adding our automatically
discovered hard negative regions improves detection performance more substantially.

Conclusion. We developed a weakly-supervised object detection method that discovers frequent
configurations of discriminative visual patterns. We showed that the discovered configurations pro-
vide more accurate spatial coverage of the full object and provide a way to generate useful hard
negatives. Together, these lead to state-of-the-art weakly-supervised detection results on the chal-
lenging PASCAL VOC dataset.
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