
Total Latency in Singleton Congestion Games?

Martin Gairing1 and Florian Schoppmann1,2

1 Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany.

2 International Graduate School of Dynamic Intelligent Systems
{gairing,fschopp}@uni-paderborn.de

Abstract. In this work, we consider singleton congestion games as a special class of (weighted) con-
gestion games where each players' strategy consists only of a single resource.
For singleton congestion games, we provide a collection of upper and lower bounds on the price of
anarchy for multiple interesting cases. In our study, we distinguish between restricted and unrestricted
strategy sets, between weighted and unweighted player weights, and between linear and polynomial
latency functions.

1 Introduction

Motivation and Framework. The price of anarchy, also known as coordination ratio, has been
de�ned in the seminal work by Koutsoupias and Papadimitriou [18] as a measure of the extent to
which competition approximates cooperation. In general, the price of anarchy is the worst-case ratio
between the value of a social objective function, usually coined as social cost, in some equilibrium
state of a system, and that of some social optimum. Usually, the equilibrium state has been taken
to be that of a Nash equilibrium [23] � a state in which no user or player wishes to unilaterally
leave its own strategy in order to improve the value of its private objective function, also known as
private cost. A Nash equilibrium is called pure if all players choose a pure strategy, and mixed if
players choose probability distributions over strategies. The price of anarchy represents a rendezvous
of Nash equilibrium, a concept fundamental to Game Theory, with approximation, an omnipresent
concept in Theoretical Computer Science today (see, e.g., [28]).

Rosenthal [25] introduced a special class of non-cooperative games, now widely known as con-
gestion games. Here, the strategy set of each player is a subset of the power set of given resources.
The latency on each resource is described by a latency function in the number of players sharing
this resource, and the private cost of a player is the sum of the latencies over its chosen resources.
Milchtaich [20] considered weighted congestion games as an extension to congestion games in which
the players have weights and thus di�erent in�uence on the latency of the resources. Weighted
congestion games provide us with a general framework for modeling any kind of non-cooperative
resource sharing problem. One such classical resource sharing problem is that of load balancing.

In this paper, we study sel�sh load balancing games that we call (weighted or unweighted)
singleton congestion games. Singleton congestion games are congestion games where each player's
strategy consists only of a single resource. The strategy set of a player is unrestricted if it contains
all resources, and restricted otherwise. For singleton congestion games, we further examine the price
of anarchy and use the total latency (see e.g. [26]) as our social objective function. In our study, we
distinguish between polynomial, a�ne and linear latency functions. All our latency functions have
non-negative coe�cients.
Related Work. The class of congestion games was introduced by Rosenthal [25] and extensively
studied afterwards (see, e.g., [11,20,21]). In Rosenthal's model the strategy of each player is a subset
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of resources. Resource latency functions can be arbitrary but they only depend on the number of
players sharing the same resource. Later, Milchtaich [20] considered weighted congestion games as
an extension to congestion games, where players have weights and thus di�erent in�uence in the
latency of a resource.

The price of anarchy [24], also known as coordination ratio, was �rst introduced and studied
by Koutsoupias and Papadimitriou [18]. As a starting point of their investigation they considered a
weighted singleton congestion game with m resources, unrestricted strategy sets and linear latency
functions. They de�ned social cost as the expected maximum latency on a resource. This model
is now known as KP-model. In this setting, there exist tight bounds on the price of anarchy of
Θ( log m

log log m
) for identical linear latency functions [9,17] and Θ( log m

log log log m
) for linear latency functions

[9]. The price of anarchy has also been studied for variations of the KP-model, namely for non-linear
latency functions [8], for the case of restricted strategy sets [3,12,13], for the case of incomplete
information [15] and for player-speci�c latency functions [16].

Singleton congestion games with social cost de�ned as the total latency have been studied in
[5,14,19,27]; see Table 1 for a comparison of their bounds on the price of anarchy. Such games
always possess a pure Nash equilibrium when latency functions are non-decreasing [10]. Hence, also
the pure price of anarchy is of interest, where Nash equilibria are restricted to be pure. Speci�cally,
Lücking et al. [19] considered the case of linear latency functions and unrestricted strategy sets. Note
that the upper bound for identical linear latency functions and arbitrary player weights follows by
employing an additional argument from [15]. The case of polynomial latency functions, unrestricted
strategy sets, and unweighted players was studied by Gairing et al. [14]. Finally, Suri et al. [27] and
Caragiannis et al. [5] studied the case of restricted strategy sets with a focus on the pure price of
anarchy. In particular, for weighted players and linear latency functions, Caragiannis et al. [5] give
a lower bound that (for m →∞) matches a corresponding upper bound from [2].

For general (weighted) congestion games and social cost de�ned as the total latency, exact
values for the price of anarchy have been given in [1,2,7]. In case of linear latency functions, the
price of anarchy is exactly 5

2 for unweighted congestion games [7] and 1+Φ for weighted congestion

games [2], where Φ = 1+
√

5
2 is the golden ratio. For polynomial latency functions (of maximum

degree d and with non-negative coe�cients), Aland et al. [1] proved exact values on the price
of anarchy. In particular, they showed that for identical players the price of anarchy is exactly

Υ (d) := (λ+1)2d+1−λd+1(λ+2)d

(λ+1)d+1−(λ+2)d+(λ+1)d−λd+1 , where λ = bΦdc and Φd is a natural generalization of the

golden ratio to larger dimensions such that Φd is the (only) positive real solution to (x+1)d = xd+1.
For arbitrary players the price of anarchy increases slightly to Φd+1

d [1]. Note that all upper bounds
on the price of anarchy for congestion games are also upper bounds for singleton congestion games.

Contribution and Comparison. In this work, we prove a collection of upper and lower bounds on
the price of anarchy for multiple interesting classes of singleton congestion games. The new bounds
are highlighted (by a gray background) in Table 1.

We �rst consider the case of unrestricted strategy sets. In particular, we show:

� For unweighted singleton congestion games with linear latency functions the price of anarchy is
exactly 2 − 1

m (Theorem 1 (b)). For a�ne latency functions, we prove a slightly weaker upper
bound of 2 (Theorem 1 (a)).

To get these results, we prove an upper bound on the total latency of any Nash equilibrium
(Proposition 1) and a lower bound on the optimum total latency (Proposition 2). Both bounds
also hold for weighted singleton congestion games with a�ne latency functions and may be of
independent interest.
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� For weighted singleton congestion games with polynomial latency functions of maximum degree
d, we prove a lower bound on the pure price of anarchy which approaches the (d + 1)-th Bell
number Bd+1 for m → ∞ (Theorem 2). It is an interesting open problem to close the gap
between this lower bound and the best known upper bound of Φd+1

d from [1], which was shown
for general weighted congestion games. As a corollary, we obtain a lower bound for linear latency
functions that approaches 2 as m goes to in�nity (Corollary 1).

� For weighted singleton congestion games with linear latency functions, we give a lower bound of
2.036 on the price of anarchy (Theorem 3). Closing the gap between this lower bound and the
upper bound of 1 + Φ ≈ 2.618 from [2] remains tantalizingly open.

Next, we consider the case of restricted strategy sets. For polynomial latency functions of maximum
degree d, we show:

� The exact value of Υ (d) := (λ+1)2d+1−λd+1(λ+2)d

(λ+1)d+1−(λ+2)d+(λ+1)d−λd+1 on the price of anarchy for unweighted

congestion games from [1] also holds for unweighted singleton congestion games. To show this,
we provide a lower bound that approaches the upper bound if m goes to in�nity (Theorem 5).
Speci�cally, we construct singleton congestion games having a recursive structure, thereby lead-
ing to Nash equilibria in which players' private costs may di�er by orders of magnitude from
their costs in an optimum state. A careful analysis then gives the desired result.

� The exact value of Φd+1
d on the price of anarchy for weighted congestion games from [1] also

holds for weighted singleton congestion games. To show this, we again provide a lower bound
that approaches the upper bound if m goes to in�nity (Theorem 4).

Theorems 4 and 5 generalize the corresponding results from [5] to polynomial latency functions.

PoApure PoA

strategies fe(x) = player LB UP LB UP

x ident. 1 2− 1
m [19]

x arb. 9
8 [19] 2− 1

m [19,15]
un-

aex ident. 4
3 [19] 2− 1

m (T.1)
restricted

aex arb. 2− o(1) (C.1) 1 + Φ [2] 2.036 (T.3) 1 + Φ [2]

xd ident. 1 Bd+1 − o(1) [14] Bd+1 [14]Pd
j=0 ae,jxj arb. Bd+1 − o(1) (T.2) Φd+1

d [1]

x ident. 2.012 [27] 2.012 [5]

aex ident. 5
2 − o(1) [5] 5

2 [27] 5
2 − o(1) [5] 5

2 [6]

restricted
Pd

j=0 ae,jxj ident. Υ (d)− o(1) (T.5) Υ (d) [1] Υ (d)− o(1) (T.5) Υ (d) [1]

aex arb. 1 + Φ− o(1) [5] 1 + Φ [2] 1 + Φ− o(1) [5] 1 + Φ [2]Pd
j=0 ae,jxj arb. Φd+1

d − o(1) (T.4) Φd+1
d [1] Φd+1

d − o(1) (T.4) Φd+1
d [1]

Table 1. Lower bounds (LB) and upper bounds (UB) on the price of anarchy for singleton congestion games. The
terms o(1) are in m. Bd+1 denotes the Bell number of order d + 1.

Roadmap. The rest of this paper is organized as follows. In Section 2 we we give an exact de�nition
of weighted singleton congestion games. We present our results for unrestricted strategy sets in
Section 3 and for restricted strategy sets in Section 4. We conclude in Section 5.
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2 Singleton Congestion Games

General. For all k ∈ N denote [k] = {1, . . . , k} and [k]0 = {0, . . . , k}. For a vector v = (v1, . . . , vn),
let v−i = (v1, . . . , vi−1, vi+1, . . . , vn) and let (v−i, v

′
i) = (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn).

The number of ways a set of k elements can be partitioned into nonempty subsets is called
the k-th Bell Number [29], denoted by Bk. It is known (see e.g. [29, Identity (1.6.10)]) that for all
k ∈ N0,

Bk =
1
e

∞∑
j=0

jk

j!
. (1)

Throughout, we denote by Φd a natural generalization of the golden ratio to larger dimensions
such that Φd is the (only) positive real solution to (x + 1)d = xd+1.
Instance. A weighted singleton congestion game Γ is a tuple

Γ =
(
n, m, (wi)i∈[n], (Si)i∈[n], (fe)e∈[m]

)
.

Here, n is the number of players and m is the number of resources. For every player i ∈ [n], wi ∈ R>0

is the weight and Si ⊆ [m] is the strategy set of player i. Denote by W =
∑

i∈[n] wi the total weight
of the players. Strategy sets are unrestricted if Si = [m] for all i ∈ [n]; otherwise they are restricted.
Denote S = S1 × . . .× Sn. For every resource e ∈ [m], the latency function fe : R≥0 → R≥0 de�nes
the latency on resource e. We consider polynomial latency functions with maximum degree d and
non-negative coe�cients, that is, for each resource e ∈ [m], the latency function is of the form
fe(x) =

∑d
j=0 ae,j · xj with ae,j ≥ 0 for all j ∈ [d]0. For the special case of a�ne latency functions,

we let ae := ae,1 and be := ae,0, i.e., the latency function of resource e ∈ [m] is fe(x) = ae · x + be.
Latency functions are linear if be = 0 for all resources e ∈ [m].

In an unweighted singleton congestion game, the weights of all players are equal to 1. Thus, the
latency on a resource only depends on the number of players choosing this resource.
Strategies and Strategy Pro�les. A pure strategy for player i ∈ [n] is some speci�c resource
si ∈ Si whereas a mixed strategy Pi = (p(i, si))si∈Si is a probability distribution over Si, where
p(i, si) denotes the probability that player i chooses the pure strategy si.

A pure strategy pro�le is an n-tuple s = (s1, . . . , sn) ∈ S whereas a mixed strategy pro�le

P = (P1, . . . , Pn) is represented by an n-tuple of mixed strategies. For a mixed strategy pro�le P
denote by p(s) =

∏
i∈[n] p(i, si) the probability that the players choose the pure strategy pro�le

s = (s1, . . . , sn).
Load and Private Cost. Fix a mixed strategy pro�le P. Denote by δe(P) =

∑
i∈[n] p(i, e) ·wi the

expected load on resource e ∈ [m]. In the same way, denote by δ−k
e (P) =

∑
i∈[n],i6=k p(i, e) · wi the

expected load of all players i ∈ [n], i 6= k, on resource e ∈ [m]. Observe that for a pure strategy
pro�le s, the (expected) load on resource e ∈ E is δe(s) =

∑
i∈[n]:si=e wi.

The private cost of player i ∈ [n] in a pure strategy pro�le s is de�ned by the latency of the
chosen resource. Thus,

PCi(s) = fsi (δsi(s)) .

For a mixed strategy pro�le P, the private cost of player i ∈ [n] is

PCi(P) =
∑
s∈S

p(s) · PCi(s) .

Nash Equilibria. We are interested in a special class of (mixed) strategy pro�les called Nash
equilibria [22,23] that we describe here. Given a weighted singleton congestion game and an asso-
ciated mixed strategy pro�le P, player i ∈ [n] is satis�ed if it can not improve its private cost by



Total Latency in Singleton Congestion Games 5

unilaterally changing its strategy. Otherwise, player i is unsatis�ed. The mixed strategy pro�le P is
a Nash equilibrium if and only if all players i ∈ [n] are satis�ed, that is, PCi(P) ≤ PCi(P−i, si) for
all i ∈ [n] and si ∈ Si.

Note that if this inequality holds for all pure strategies si ∈ Si of player i, then it also holds
for all mixed strategies over Si. Also, note that in a Nash equilibrium P, for all players i ∈ [n],
PCi(P) = PCi(P−i, si) for all si ∈ Si where p(i, si) > 0. Depending on the type of strategy pro�le,
we di�er between pure and mixed Nash equilibria.

For a weighted singleton congestion game Γ , denote by NE(Γ ) the set of all (mixed) Nash
equilibria and by NEpure(Γ ) the set of all pure Nash equilibria for Γ .
Social Cost. Associated with a weighted singleton congestion game Γ and a mixed strategy pro�le
P is the social cost SC(Γ,P) as a measure of social welfare. In particular we use the expected total
latency [26], that is,

SC(Γ,P) =
∑
s∈S

p(s)
∑

e∈[m]

δe(s) · fe(δe(s))

=
∑
s∈S

p(s)
∑
i∈[n]

wi · fsi(δsi(s))

=
∑
i∈[n]

wi · PCi(P).

The optimum total latency associated with a weighted singleton congestion game Γ is the least
possible social cost, over all pure strategy pro�les s ∈ S. Thus,

OPT(Γ ) = min
s∈S

SC(Γ, s) .

Price of Anarchy. Let G be a class of weighted singleton congestion games. The price of anarchy,
also called coordination ratio and denoted by PoA, is the supremum, over all instances Γ ∈ G and
Nash equilibria P ∈ NE(Γ ), of the ratio SC(Γ,P)

OPT(Γ ) . Thus,

PoA(G) = sup
Γ∈G,P∈NE(Γ )

SC(Γ,P)
OPT(Γ )

De�ne PoApure(G) accordingly.

3 Unrestricted Strategy Sets

In this section, we consider the case of unrestricted strategy sets. We start with a small technical
lemma which has an easy proof. Afterwards, we show an upper bound on the social cost of any
Nash equilibrium (Proposition 1) and a lower bound on the optimum total latency (Proposition 2).
Both bounds hold for weighted singleton congestion games with a�ne latency functions.

Lemma 1. If xj , yj > 0 for all j ∈ [k] then

min
j∈[k]

xj

yj
≤
∑

j∈[k] xj∑
j∈[k] yj

.

Proposition 1. Let Γ be a weighted singleton congestion game with unrestricted strategy sets, a�ne

latency functions and associated Nash equilibrium P. Then, for all subsets of resources M⊆ [m],

SC(Γ,P) ≤
∑
i∈[n]

wi ·
W + (|M| − 1)wi +

∑
j∈M

bj

aj∑
j∈M

1
aj

.
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Proof. Since P is a Nash equilibrium, we have PCi(P) ≤ PCi(P−i, j) for all players i ∈ [n] and
resources j ∈ [m]. So,

PCi(P) = min
j∈[m]

{fj(δ−i
j (P) + wi)} ≤ min

j∈M
{fj(δ−i

j (P) + wi)},

where the inequality follows from the fact that M⊆ [m]. It follows that

SC(Γ,P) =
∑
i∈[n]

wi · PCi(P) ≤
∑
i∈[n]

wi · min
j∈M

{fj(δ−i
j (P) + wi)}

=
∑
i∈[n]

wi · min
j∈M

{aj(δ−i
j (P) + wi) + bj} =

∑
i∈[n]

wi · min
j∈M

δ−i
j (P) + wi + bj

aj

1
aj

 .

Applying Lemma 1 yields

SC(Γ,P) ≤
∑
i∈[n]

wi ·

∑
j∈M

(
δ−i
j (P) + wi + bj

aj

)
∑

j∈M
1
aj

≤
∑
i∈[n]

wi ·
W + (|M| − 1)wi +

∑
j∈M

bj

aj∑
j∈M

1
aj

.

To see the last inequality, note that
∑

j∈M δ−i
j (P) ≤

∑
j∈[m] δ

−i
j (P) = W − wi. This completes the

proof of the proposition. ut

We proceed with a technical lemma that holds already for a more general model (see e.g. [4,26]).

Lemma 2 ([4,26]). Let f1, . . . , fm be semi-convex latency functions. For all j ∈ [m], de�ne f∗j =
d
dx(x · fj(x)). De�ne X = {x ∈ Rm

≥0 :
∑

j∈[m] xj = W}. Then x∗ ∈ arg minx∈X{
∑

j∈[m] xj · fj(xj)}
if and only if f∗j1(x

∗
j1

) ≤ f∗j2(x
∗
j2

) for all j1, j2 ∈ [m] with x∗j1 > 0.

We are now ready to prove:

Proposition 2. Let Γ be a weighted singleton congestion game with unrestricted strategy sets and

a�ne latency functions Let s be an associated pure strategy pro�le with optimum total latency and let

M = {e : δe(s) > 0}. De�ne X = {x ∈ RM≥0 :
∑

j∈M xj = W} and let x∗ ∈ arg minx∈X{
∑

j∈M xj ·
fj(xj)}. Denote M∗ = {j ∈M : x∗j > 0}. Then,

OPT(Γ ) = SC(Γ, s) ≥
W 2 + W

2 ·
∑

j∈M∗
bj

aj∑
j∈M∗

1
aj

.

Proof. We have

SC(Γ, s) =
∑

j∈[m]

fj(δj(s)) · δj(s) =
∑
j∈M

fj(δj(s)) · δj(s) ≥
∑
j∈M

fj(x∗j ) · x∗j

=
∑

j∈M∗

fj(x∗j ) · x∗j =
∑

j∈M∗

(
aj · x∗j + bj

)
· x∗j =

∑
j∈M∗

x∗j + bj

aj

1
aj

· x∗j

where the inequality follows by the de�nition of x∗. Lemma 2 implies that for all resources j1, j2 ∈
M∗, we have 2aj1x

∗
j1

+ bj1 = 2aj2x
∗
j2

+ bj2 , or equivalently

x∗j1 + 1
2 ·

bj1
aj1

1
aj1

=
x∗j2 + 1

2 ·
bj2
aj2

1
aj2

.
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This implies that for all resources j ∈M∗,

x∗j + 1
2 ·

bj

aj

1
aj

=

∑
k∈M∗(x∗k + 1

2 ·
bk
ak

)∑
k∈M∗

1
ak

=
W + 1

2 ·
∑

k∈M∗
bk
ak∑

k∈M∗
1
ak

.

We get

SC(Γ, s) ≥
∑

j∈M∗

x∗j + bj

aj

1
aj

· x∗j ≥
∑

j∈M∗

x∗j + 1
2 ·

bj

aj

1
aj

· x∗j

=
W + 1

2 ·
∑

k∈M∗
bk
ak∑

k∈M∗
1
ak

·
∑

j∈M∗

x∗j =
W 2 + W

2 ·
∑

k∈M∗
bk
ak∑

k∈M∗
1
ak

.

This completes the proof of the proposition. ut

We are now equipped with all tools to prove the following upper bounds on the price of anarchy:

Theorem 1. Let Ga be the class of unweighted singleton congestion games with at most m resources,

unrestricted strategy sets and a�ne latency functions and Gb be the subset of Ga with linear latency

functions. Then,

(a) PoA(Ga) < 2
(b) PoA(Gb) ≤ 2− 1

m

Proof. Consider an arbitrary Γ ∈ Ga with associated Nash equilibrium P. De�ne M∗ as in Propo-
sition 2. Then, by Proposition 2,

OPT(Γ ) ≥
n2 + n

2 ·
∑

j∈M∗
bj

aj∑
j∈M∗

1
aj

.

Furthermore, by Proposition 1,

SC(Γ,P) ≤
n2 + n · (|M∗| − 1) + n ·

∑
j∈M∗

bj

aj∑
j∈M∗

1
aj

.

Since |M∗| ≤ n, we get

SC(Γ,P)
OPT(Γ )

≤
n2 + n · (|M∗| − 1) + n ·

∑
j∈M∗

bj

aj

n2 + n
2 ·
∑

j∈M∗
bj

aj

≤ 1 +
n2 · |M

∗|−1
|M∗| + n

2 ·
∑

j∈M∗
bj

aj

n2 + n
2 ·
∑

j∈M∗
bj

aj

(2)

< 2 ,

proving (a). To prove (b), recall that if Γ ∈ Gb then bj = 0 for all j ∈ [m]. Thus (2) reduces to

SC(Γ,P)
OPT(Γ )

≤ 1 +
n2 · |M

∗|−1
|M∗|

n2
= 2− 1

|M∗|
.

The claim follows since |M∗| ≤ m. ut

We proceed with a lower bound on the pure price of anarchy.
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Theorem 2. Let G be the class of weighted singleton congestion games with unrestricted strategy

sets and polynomial latency functions of maximum degree d. Then

PoApure(G) ≥ Bd+1 .

Proof. For some parameter k ∈ N de�ne the following weighted singleton congestion game Γ (k)
with unrestricted strategy sets and polynomial latency functions:

� There are k+1 disjoint setsM0, . . . ,Mk of resources. SetMj , j ∈ [k]0, consists of |Mj | = 2k−j ·k!
j!

resources sharing the polynomial latency function fe(x) = 2−jd · xd for all resources e ∈Mj .
� There are k disjoint sets of players N1, . . . ,Nk. Set Nj , j ∈ [k] consists of |Nj | = |Mj−1| =

2k−(j−1) · k!
(j−1)! players with weight wi = 2j−1 for all players i ∈ Nj .

Observe that |Mj | = 2k−j · k!
j! = 2k−(j+1) · k!

(j+1)! · 2(j + 1) = |Mj+1| · 2(j + 1).
On the one hand, let s be a pure strategy pro�le that assigns exactly 2j players from Nj to each

resource inMj for j ∈ [k]0. Then, for all resources e ∈Mj , j ∈ [k] we have δe(s) = 2j · 2j−1 = j · 2j

and fe(δe(s)) = 2−jd · (j · 2j)d = jd. It is now easy to check that s is a Nash equilibrium for Γ (k)
with

SC(Γ (k), s) =
∑

e∈[m]

δe(s) · fe(δe(s)) =
∑

j∈[k]0

∑
e∈Mj

δe(s) · fe(δe(s))

=
∑

j∈[k]0

|Mj | · 2j · jd+1 =
∑

j∈[k]0

2k−j · k!
j!
· 2j · jd+1 = 2k · k!

∑
j∈[k]0

jd+1

j!

On the other hand, let s∗ be a strategy pro�le that assigns each player Nj to a separate resource in
Mj−1. Then, for all resources e ∈Mj , j ∈ [k−1]0 we have δe(s∗) = 2j and fe(δe(s∗)) = 2−jd ·(2j)d =
1. So

SC(Γ (k), s∗) =
∑

e∈[m]

δe(s∗) · fe(δe(s∗)) =
∑

e∈[m]

2j =
∑

j∈[k−1]0

|Mj | · 2j = 2k · k!
∑

j∈[k−1]0

1
j!

It follows that

PoApure(G) ≥ sup
k∈N

SC(Γ (k), s)
SC(Γ (k), s∗)

≥ lim
k→∞

SC(Γ (k), s)
SC(Γ (k), s∗)

=

∑∞
j=1

jd+1

j!∑∞
j=0

1
j!

=
1
e

∞∑
j=1

jd+1

j!
= Bd+1 ,

by Equation (1), since d + 1 > 0. ut

As an immediate consequence, we obtain:

Corollary 1. Let G be the class of weighted singleton congestion games with unrestricted strategy

sets and a�ne latency functions. Then

PoApure(G) ≥ 2 .

We close this section with a lower bound on the pure price of anarchy for weighted congestion games
with linear latency functions.

Theorem 3. Let G be the class of weighted singleton congestion games with unrestricted strategy

sets and linear latency functions. Then

PoA(G) > 2.036 .
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Proof. For some parameter w ∈ R>0 (to be determined later), de�ne the weighted singleton con-
gestion game Γ (w) with 5 players, 5 resources and unrestricted strategy sets as follows:

� w1 = w and wi = 1 for i ∈ {2, . . . , 5}
� f1(x) = w

w+4 · x and fj(x) = x for j ∈ {2, . . . , 5}

De�ne the pure strategy pro�le s where si = i for all players i ∈ [n]. Then,

SC(Γ (w), s) =
w3

w + 4
+ 4 .

Let P be the mixed strategy pro�le where:

� p(1, 1) = p and p(1, j) = 1−p
4 for j ∈ {2, . . . , 5}

� p(i, 1) = 1 for i ∈ {2, . . . , 5}

It is easy to check that P is a Nash equilibrium for p ≤ w2−8w+16
5w2+4w

. Now

SC(Γ (w),P) = p · w · (4 + w) + (1− p) ·
(

16w

w + 4
+ w2

)
= p

4w2

w + 4
+

16w

w + 4
+ w2 ,

which is monotone increasing in p. So choose p = w2−8w+16
5w2+4w

. Observe that for all w > 0,

PoA(G) ≥ SC(Γ (w),P)
SC(Γ (w), s)

.

Choosing w = 3.258 yields the claimed lower bound. ut

4 Restricted Strategy Sets

It is known [1] that the price of anarchy for general weighted congestion games with polynomial
latency functions of maximum degree d is exactly Φd+1

d . The next theorem shows that asymptotically
the lower bound is already achieved with singleton congestion games.

Theorem 4. Let G be the class of weighted singleton congestion games with restricted strategy sets

and polynomial latency functions of maximum degree d. Then

PoA(G) = PoApure(G) = Φd+1
d .

Proof. The upper bound PoA(G) ≤ Φd+1
d follows from [1], hence we only need to show the lower

bound. For some parameter n ∈ N, de�ne the following weighted singleton congestion game Γ (n)
with n players and n+1 resources. The weight of player i ∈ [n] is wi = Φi

d and the latency function
of resource j ∈ [n + 1] is

fj(x) =

{
Φ
−(d+1)·(n−1)
d · xd if j = n

Φ
−(d+1)·j
d · xd otherwise .

Each player i ∈ [n] only has two available resources in its strategy set: Si = {i, i + 1}.
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Let s := (i)n
i=1 ∈ S. Then s is a Nash Equilibrium: Clearly, player n experiences the same utility

for both strategies n and n + 1; moreover, for any player i ∈ [n− 1] we have

PCi(s−i, i + 1) = fi+1(wi + wi+1) = fi+1(Φi
d + Φi+1

d ) =
(Φi

d + Φi+1
d )d

Φ
(d+1)·(i+1)
d

=
(Φi

d(Φd + 1))d

Φ
(d+1)·(i+1)
d

=
Φid

d

Φ
(d+1)·i
d

= fi(Φi
d) = fi(wi) = PCi(s) .

Consequently,

SC(Γ (n), s) =
n∑

i=1

wi · fi(wi) =
n∑

i=1

Φi
d ·

Φid
d

Φ
(d+1)·i
d

= n .

Now let s∗ := (i + 1)n
i=1 ∈ S. Then,

SC(Γ (n), s∗) =
n∑

i=1

wi · fi+1(wi) =
n−1∑
i=1

Φi
d ·

Φid
d

Φ
(d+1)·(i+1)
d

+ Φn
d ·

Φnd
d

Φ
(d+1)·n
d

= (n− 1) · 1
Φd+1

d

+ 1 .

We get PoA(G) ≥ supn∈N

{
SC(Γ (n),s)
SC(Γ (n),s∗)

}
= Φd+1

d . ut

Before we can show a corresponding result for the case of unweighted singleton congestion games,
we state a simple technical lemma which has an easy proof.

Lemma 3. For all n ∈ N \ {1} it holds that nn > (n + 1)n−1.

Theorem 5. Let G be the class of unweighted singleton congestion games with restricted strategy

sets and polynomial latency functions of maximum degree d. Moreover, let λ = bΦdc. Then

PoA(G) = PoApure(G) = Υ (d) =
(λ + 1)2d+1 − λd+1(λ + 2)d

(λ + 1)d+1 − (λ + 2)d + (λ + 1)d − λd+1
.

Proof. For some parameter k ∈ N, de�ne an unweighted singleton congestion game Γ (k). For
simplicity of description, we borrow the representation introduced by [5] which makes use of a
�game graph� G = (N,A): Resources correspond to nodes and players correspond to arcs. Every
player has exactly two strategies, namely choosing one or the other of its adjacent nodes.

The game graph is a tree which is constructed as follows: At the root there is a complete (d+1)-
ary tree with k + 1 levels. Each leaf of this tree is then the root of a complete d-ary tree the leafs of
which are again the root of a complete (d − 1)-ary tree; and so on. This recursive de�nition stops
with the unary trees. For an example of this construction, see Figure 1.

Altogether, the game graph consists of (d + 1) · k + 1 levels. We let level 0 denote the root level.
Thus, clearly, the nodes on level i · k, where i ∈ [d]0, are the root of a complete (d + 1 − i)-ary
subtree (as indicated by the hatched shapes).

For any resource on level (d + 1 − i) · k + j, where i ∈ [d + 1] and j ∈ [k − 1]0, let the latency
function be fi,j : R≥0 → R≥0,

fi,j(x) :=

[
d+1∏

l=i+1

l

l + 1

]d·(k−1)

·
(

i

i + 1

)dj

· xd .
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…

…

…

complete
ternary tree

with k + 1 levels

complete
binary trees

with k + 1 levels

complete
unary trees

with k + 1 levels

Fig. 1. The game graph for d = 2 and k = 2

Note that by construction there are exactly
[∏d+1

l=i+1 l
]k
· ij resources on level (d + 1 − i) · k + j.

The resources on level (d + 1) · k have the same latency function f0,0 := f1,k−1 as those on level
(d + 1) · k − 1.

Let s denote the strategy pro�le in Γ (k) where each player uses the resource which is closer
to the root. Since fi+1,k−1 = fi,0 for i ∈ [d + 1]0 and fi,j(i) = fi,j+1(i + 1) for all i ∈ [d + 1] and
j ∈ [k − 2]0, it is easy to verify that in s no player has an incentive to switch to its other strategy
farther away from the root. Hence, s is a Nash equilibrium. We get

SC(s) =
d+1∑
i=1

k−1∑
j=0

[
d+1∏

l=i+1

lk

]
· ij · i · fi,j(i) =

d+1∑
i=1

k−1∑
j=0

[
d+1∏

l=i+1

lk ·
(

l

l + 1

)d·(k−1)
]
·
(

i

i + 1

)dj

· ij+d+1

=
d+1∑
i=1

id+1 ·

[
d+1∏

l=i+1

l

]
·

[
d+1∏

l=i+1

ld+1

(l + 1)d

]k−1

·
k−1∑
j=0

(
id+1

(i + 1)d

)j

.

Since

k−1∑
j=0

(
id+1

(i + 1)d

)j

= (i + 1)d ·

(
id+1

(i+1)d

)k
− 1

id+1 − (i + 1)d
=

id+1

id+1 − (i + 1)d
·
(

id+1

(i + 1)d

)k−1

+
(i + 1)d

(i + 1)d − id+1
,

SC(s) can be written as a weighted sum of terms raised to the power of (k − 1),

SC(s)

=
d+1∑
i=2

(
id+1 ·

[
d+1∏

l=i+1

l

]
· id+1

id+1 − (i + 1)d
+ (i− 1)d+1 ·

[
d+1∏
l=i

l

]
· id

id − (i− 1)d+1

)
·

[
d+1∏
l=i

ld+1

(l + 1)d

]k−1

+

[
d+1∏
l=2

l

]
· 1
1− 2d

·

[
d+1∏
l=1

ld+1

(l + 1)d

]k−1

+ (d + 1)d+1 · (d + 2)d

(d + 2)d − (d + 1)d+1
.

Let s∗ be the pro�le where each player uses the resource farther away from the root. Similarly to
before, we get

SC(s∗) =
d+1∑
i=1

k−1∑
j=0

[
d+1∏

l=i+1

lk

]
· ij · fi,j(1) +

[
d+1∏
l=1

lk

]
· f0,0(1)− 1
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=
d+1∑
i=1

[
d+1∏

l=i+1

l

]
·

[
d+1∏

l=i+1

ld+1

(l + 1)d

]k−1

·
k−1∑
j=0

(
id+1

(i + 1)d

)j

+

[
d+1∏
l=1

l

]
·

[
d+1∏
l=1

ld+1

(l + 1)d

]k−1

− 1

=
d+1∑
i=2

([
d+1∏

l=i+1

l

]
· id+1

id+1 − (i + 1)d
+

[
d+1∏
l=i

l

]
· id

id − (i− 1)d+1

)
·

[
d+1∏
l=i

ld+1

(l + 1)d

]k−1

+

[
d+1∏
l=2

l

]
· 2− 2d

1− 2d
·

[
d+1∏
l=1

ld+1

(l + 1)d

]k−1

+
(d + 2)d

(d + 2)d − (d + 1)d+1
− 1 .

Consequently, the quotient SC(s)
SC(s∗) is of the form∑d+1

i=0 βi · αk−1
i∑d+1

i=0 γi · αk−1
i

where βi, γi ∈ Q, α0 = 1, and αi =
∏d+1

l=i
ld+1

(l+1)d = id+1

(d+2)d ·
∏d+1

l=i+1 l for all i ∈ [d + 1]. In order to

�nd the largest αi for i ∈ [d + 1]0, consider the following equivalencies: For all i ∈ [d], we have

αi+1 > αi ⇐⇒ (i + 1)d+1 ·
d+1∏

l=i+2

l > id+1 ·
d+1∏

l=i+1

l = id+1 · (i + 1) ·
d+1∏

l=i+2

l

⇐⇒ (i + 1)d > id+1 .

Moreover, α1 = (d+1)!
(d+2)d < 1 and αd+1 = (d+1)d+1

(d+2)d > 1, where the last inequality is due to Lemma 3.

Let λ := bΦdc. Then, (λ+1)d > λd+1 but (λ+2)d < (λ+1)d+1, so λ ∈ [d]. Hence, αλ+1 is maximal,
i.e., αλ+1 > αi for all i ∈ [d + 1]0, i 6= λ + 1. Using standard calculus we get

lim
k→∞

∑d+1
i=0 βi · αk−1

i∑d+1
i=0 γi · αk−1

i

=
βλ+1

γλ+1
.

Inserting for βλ+1 and γλ+1 as well as subsequent canceling of common terms in numerator and
denominator then yields

lim
k→∞

SC(Γ (k), s)
SC(Γ (k), s∗)

=
(λ+1)2d+2

(λ+1)d+1−(λ+2)d + λd+1·(λ+1)d+1

(λ+1)d−λd+1

(λ+1)d+1

(λ+1)d+1−(λ+2)d + (λ+1)d+1

(λ+1)d−λd+1

=
(λ + 1)2d+1 − λd+1 · (λ + 2)d

(λ + 1)d+1 − (λ + 2)d + (λ + 1)d − λd+1
.

Note that the denominator is non-zero. The theorem follows. ut

5 Conclusion

In this paper, we presented a collection of upper and lower bounds on the price of anarchy for
singleton congestion games. In some cases we determined the exact value, while for other cases
there is still a (small) gap between the upper and lower bounds. Closing these gaps � in particular
those for weighted singleton congestion games with unrestricted strategy sets and linear latency
functions � remains a challenging open problem that deserves further investigation.

We found it very surprising that both upper bounds on the price of anarchy from [1] � proved
for general congestion games with polynomial latency functions � are already exact for the case of
singleton strategy sets and pure Nash equilibria.
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