IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001, PP 875-889 1

Learning to Trade via Direct Reinforcement
John Moody, Matthew Saffell

Abstract— We present methods for optimizing portfolios,
asset allocations and trading systems based on Direct Rein-
forcement. In this approach, investment decision making is
viewed as a stochastic control problem, and strategies are
discovered directly. We present an adaptive algorithm called
Recurrent Reinforcement Learning (RRL) for discovering
investment policies. The need to build forecasting models is
eliminated, and better trading performance is obtained.

The Direct Reinforcement approach differs from dynamic
programming and reinforcement algorithms such as TD-
learning and Q-learning, which attempt to estimate a value
function for the control problem. We find that the RRL
Direct Reinforcement framework enables a simpler problem
representation, avoids Bellman’s curse of dimensionality and
offers compelling advantages in efficiency.

‘We demonstrate how Direct Reinforcement can be used
to optimize risk-adjusted investment returns (including the
differential Sharpe ratio), while accounting for the effects of
transaction costs. In extensive simulation work using real
financial data, we find that our approach based on RRL
produces better trading strategies than systems utilizing Q-
Learning (a value function method). Real world applications
include an intra-daily currency trader and a monthly asset
allocation system for the S&P 500 Stock Index and T-Bills.

Keywords— Recurrent Reinforcement Learning, Direct Re-
inforcement, policy gradient, value function, trading, Differ-
ential Sharpe Ratio, Downside Deviation, risk, Q-Learning,
TD-Learning.

I. INTRODUCTION

The investor’s or trader’s ultimate goal is to optimize
some relevant measure of trading system performance, such
as profit, economic utility or risk-adjusted return. In this
paper, we describe Direct Reinforcement (DR) methods to
optimize investment performance criteria. Investment de-
cision making is viewed as a stochastic control problem,
and strategies are discovered directly. We present an adap-
tive algorithm called Recurrent Reinforcement Learning
(RRL). The need to build forecasting models is eliminated,
and better trading performance is obtained. This method-
ology can be applied to optimizing systems designed to
trade a single security, allocate assets or manage a portfo-
lio.

Investment performance depends upon sequences of in-
terdependent decisions, and is thus path-dependent. Opti-
mal trading or portfolio rebalancing decisions require tak-
ing into account the current system state, which includes
both market conditions and the currently held positions.
Market frictions, the real-world costs of trading,! make ar-
bitrarily frequent trades or large changes in portfolio com-
position become prohibitively expensive. Thus, optimal
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IMarket frictions include taxes and a variety of transaction costs,
such as commissions, bid / ask spreads, price slippage and market
impact.

decisions about establishing new positions must consider
current, positions held.

In Moody et al [1], [2], we proposed the RRL algorithm
for Direct Reinforcement. RRL is an adaptive policy search
algorithm that can learn an investment strategy on-line.
We demonstrated in those papers that Direct Reinforce-
ment provides a more elegant and effective means for train-
ing trading systems and portfolio managers when market
frictions are considered than do more standard supervised
approaches.

In this paper, we contrast our Direct Reinforcement (or
“policy search”) approach with commonly used value func-
tion based approaches. We use the term “Direct Reinforce-
ment” to refer to algorithms that do not have to learn a
value function in order to derive a policy. Direct Reinforce-
ment methods date back to the pioneering work by Farley
and Clark [3], [4], but have received little attention from
the reinforcement learning community during the past two
decades. Notable exceptions are Williams’ REINFORCE
algorithm [5], [6] and Baxter & Bartlett’s recent work [7].2

Methods such as dynamic programming[8], TD-
Learning[9] or Q-Learning[10], [11] have been the focus of
most of the modern research. These methods attempt to
learn a value function or the closely related Q-function.
Such value function methods are natural for problems like
checkers or backgammon where immediate feedback on per-
formance is not readily available at each point in time.
Actor-critic methods [12], [13] have also received substan-
tial attention. These algorithms are intermediate between
Direct Reinforcement and Value Function methods, in that
the “critic” learns a value function which is then used to
update the parameters of the “actor”.?

Though much theoretical progress has been made in re-
cent years in the area of value function learning, there have
been relatively few widely-cited, successful applications of
the techniques. Notable examples include TD-gammon
[17], [18], an elevator scheduler [19] and a space-shuttle pay-
load scheduler [20]. Due to the inherently delayed feedback,
these applications all use the TD-Learning or Q-Learning
value function RL methods.

For many financial decision making problems, however,
results accrue gradually over time, and one can immedi-
ately measure short-term performance. This enables use
of a Direct Reinforcement approach to provide immediate
feedback to optimize the strategy. One class of perfor-
mance criteria frequently used in the financial community

2Baxter & Bartlett have independently proposed the term “Direct
Reinforcement” for policy gradient algorithms in a Markov Decision
Process framework. We use the term in the same spirit, but perhaps
more generally, to refer to any reinforcement learning algorithm that
does not require learning a value function.

3For reviews and in-depth presentations of value function and actor-
critic methods, see [14], [15], [16].
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are measures of risk-adjusted investment returns. RRL can
be used to learn trading strategies that balance the accu-
mulation of return with the avoidance of risk. We describe
commonly used measures of risk, and review how differ-
ential forms of the Sharpe Ratio and Downside Deviation
Ratio can be formulated to enable efficient online learning
with RRL.

We present empirical results for discovering tradeable
structure in the US Dollar/British Pound foreign exchange
market via Direct Reinforcement. In addition, we compare
performance for an RRL-Trader and Q-Trader that learn
switching strategies between the S&P 500 Stock Index and
Treasury Bills. For both traders, the results demonstrate
the presence of predictable structure in US stock prices over
a 25-year test period. However, we find that the RRL-
Trader performs substantially better than the Q-Trader.
Relative to Q-Learning, we observe that RRL enables a
simpler problem representation, avoids Bellman’s curse of
dimensionality and offers compelling advantages in effi-
ciency. The S&P 500 and foreign exchange results were
previously presented in [2], [21], [22].

We discuss the relative merits of Direct Reinforcement
and Value Function learning, and provide arguments and
examples for why value function based methods may result
in unnatural problem representations. Our results suggest
that Direct Reinforcement offers a powerful alternative to
reinforcement algorithms that learn a value function, for
problem domains where immediate estimates of incremen-
tal performance can be obtained.

To conclude the introduction, we would like to note that
computational finance offers many interesting and challeng-
ing potential applications of reinforcement learning meth-
ods. While our work emphasizes Direct Reinforcement,
most applications in finance to date have been based upon
dynamic programming type methods. Elton & Gruber [23]
provide an early survey of dynamic programming applica-
tions in finance. The problems of optimum consumption
and portfolio choice in continuous time have been formu-
lated by Merton [24], [25], [26] from the standpoints of
dynamic programming and stochastic control. The exten-
sive body of work on intertemporal (multi-period) port-
folio management and asset pricing is reviewed by Bree-
den [27]. Duffie [28], [29] describes stochastic control and
dynamic programming methods in finance in depth. Dy-
namic programming provides the basis of the Cox, Ross,
Rubinstein [30] and other widely used binomial option pric-
ing methods. See also the strategic asset allocation work
of Brennan et al. [31]. Due to the curse of dimensional-
ity, approximate dynamic programming is often required to
solve practical problems, as in the work by Longstaff and
Schwartz [32] on pricing American options. During the
past six years, there have been several applications that
make use of value function reinforcement learning meth-
ods. Van Roy [33] uses a TD(A) approach for valuing op-
tions and performing portfolio optimization. Neuneier [34]
uses a Q-Learning approach to make asset allocation deci-
sions, and Neuneier & Mihatsch [35] incorporate a notion
of risk sensitivity into the construction of the Q-Function.

Derivatives pricing applications have been studied by Tsit-
siklis and Van Roy [36], [37]. Moody and Saffell compare
Direct Reinforcement to Q-Learning for asset allocation in
[21], and explore the minimization of downside risk using
Direct Reinforcement in [22].

II. TRADING SYSTEMS AND PERFORMANCE CRITERIA
A. Structure of Trading Systems

In this paper, we consider agents that trade fixed posi-
tion sizes in a single security. The methods described here
can be generalized to more sophisticated agents that trade
varying quantities of a security, allocate assets continuously
or manage multiple asset portfolios. See [2] for a discussion
of multiple asset portfolios.

Here, our traders are assumed to take only long, neutral
or short positions, F; € {1,0,—1}, of constant magnitude.
A long position is initiated by purchasing some quantity of
a security, while a short position is established by selling
the security.

The price series being traded is denoted z;. The position
F} is established or maintained at the end of each time in-
terval ¢, and is re-assessed at the end of period t+1. A trade
is thus possible at the end of each time period, although
nonzero trading costs will discourage excessive trading. A
trading system return R; is realized at the end of the time
interval (¢t — 1,t] and includes the profit or loss resulting
from the position F;_; held during that interval and any
transaction cost incurred at time ¢ due to a difference in
the positions F;_; and F;.

In order to properly incorporate the effects of transac-
tions costs, market impact and taxes in a trader’s decision
making, the trader must have internal state information
and must therefore be recurrent. A single asset trading
system that takes into account transactions costs and mar-
ket impact has the following decision function:

F = F(et;Ft—lalt)
It =

with

{Ztazt—lazt—za---;yt,yt—layt—m---}7 (1)

where 6; denotes the (learned) system parameters at time
t and I; denotes the information set at time ¢, which in-
cludes present and past values of the price series z; and
an arbitrary number of other external variables denoted
y+. A simple example is a {long, short} trader with m + 1
autoregressive inputs:

F; = sign(uF;—1 +vorg+viri—1+.. .+ omriemt+w) , (2)

where r; are the price returns of z; (defined below) and the
system parameters 6 are the weights {u, v;, w}. A trader of
this form is used in the simulations described in Section IV-
A.

The above formulation describes a discrete-action, deter-
ministic trader, but can be easily generalized. One simple

4For stocks, a short sale involves borrowing shares and then selling
the borrowed shares to a third party. A profit is made when the
shorted shares are repurchased at a later time at a lower price. Short
sales of many securities, including stocks, bonds, futures, options and
foreign exchange contracts are common place.
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generalization is to use continuously valued F'(), for ex-
ample by replacing sign with tanh. When discrete values
F; = {1,0,—1} are imposed, however, the decision func-
tion is not differentiable. None-the-less, gradient based op-
timization methods for § may be developed by considering
differentiable pre-thresholded outputs or, for example, by
replacing sign with tanh during learning and discretizing
the outputs when trading.

Moreover, the models can be extended to a stochastic
framework by including a noise variable in F'():

Fy=F(0y; Fio1,I;e)  with e ~pe(e) . (3)

The random variable €; induces a joint probability density
for the discrete actions F;, model parameters and model
inputs:

p(Fi; 04 Fp 1, Iy) . (4)

The noise level (measured by o, or more generally the scale
of p.) can be varied to control the “exploration vs. exploita-
tion” behavior of the trader. Also, differentiability of the
probability distribution of actions enables the straightfor-
ward application of gradient based learning methods.

B. Profit and Wealth for Trading Systems

Trading systems can be optimized by maximizing perfor-
mance functions, U(), such as profit, wealth, utility func-
tions of wealth or performance ratios like the Sharpe ratio.
The simplest and most natural performance function for a
risk-insensitive trader is profit.

Additive profits are appropriate to consider if each trade
is for a fixed number of shares or contracts of security z;.
This is often the case, for example, when trading small
stock or futures accounts or when trading standard US$
FX contracts in dollar-denominated foreign currencies. We
define ry = 2; — 21 and r{ = z{ —zg:l as the price returns
of a risky (traded) asset and a risk-free asset (like T-Bills)
respectively, and denote the transactions cost rate as 9.
The additive profit accumulated over T time periods with
trading position size g > 0 is then defined in term of the
trading returns, Ry, as:

T

Pr = ZRt where (5)
t=1

R, = p {’I“,'ff + Ft—l(rt — 7‘{) — (5|Ft - Ft—ll}

with Py = 0 and typically Fr = Fy = 0. When the risk-free
rate of interest is ignored (r{ = 0), a simplified expression
is obtained:

Rt = /J/{Ft—l"'t - 5|Ft - Ft_1|} . (6)

The wealth of the trader is defined as W = Wy + Pr.
Multiplicative profits are appropriate when a fixed frac-
tion of accumulated wealth v > 0 is invested in each long or
short trade. Here, 7y = (2¢/2i_1—1) and r{ = (2{ /2] ,-1).
If no short sales are allowed and the leverage factor is set

fixed at v = 1, the wealth at time T is:

T
Wr = Wo[[{1+R:} where (7)
t=1
{1+Rt} = {1+(1—Ft_1)’l“if+Ft_17‘t} X

{1-6|Fy — Fi—1|} -

When the risk-free rate of interest is ignored (r/ = 0), a
second simplified expression is obtained:

{1+Rt}:{1+Ft—1rt}{]-_5|Ft_Ft—1|} . (8)

Relaxing the constant magnitude assumption is more re-
alistic for asset allocations and portfolios, and enables bet-
ter risk control. Related expressions for portfolios are pre-
sented in [2].

C. Performance Criteria

In general, the performance criteria that we consider are
functions of profit or wealth U (W) after a sequence of T
time steps, or more generally of the whole time sequence
of trades

U(WT""JWtJ“‘)W]JWO) . (9)

The simple form U (W) includes standard economic utility
functions. The second case is the general form for path-
dependent performance functions, which include inter-
temporal utility functions and performance ratios like the
Sharpe ratio and Sterling ratio. In either case, the perfor-
mance criterion at time T can be expressed as a function
of the sequence of trading returns

U(RT,...,Rt,...,RQ,Rl;W()) (10)
For brevity, we denote this general form by Ur.

For optimizing our traders, we will be interested in the
marginal increase in performance due to return R; at each

time step:
(11)

Note that Uy depends upon the current trading return Ry,
but that U;_; does not. Our strategy will be to derive
differential performance criteria D; o< AU, that capture the
marginal “utility” of the trading return R; at each period.®

Dt O(AUt = Ut —Ut,1 .

D. The Differential Sharpe Ratio

Rather than maximizing profits, most modern fund man-
agers attempt to maximize risk-adjusted return, as sug-
gested by modern portfolio theory. The Sharpe ratio is
the most widely-used measure of risk-adjusted return [38].
Denoting as before the trading system returns for period
t (including transactions costs) as Ry, the Sharpe ratio is
defined to be:

Average(Ry)

St = Standard Deviation(R;)

(12)

5Strictly speaking, many of the performance criteria commonly used
in the financial industry are not true utility functions, so we use the
term “utility” in a more colloquial sense.
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where the average and standard deviation are estimated for
periods t = {1,...,T}. Note that for ease of exposition and
analysis, we have suppressed inclusion of portfolio returns
R{ due to the risk free rate on capital r{. Substituting
excess returns Ry = Ry — R,{ for R; in the equation above
produces the standard definition. With this caveat in mind,
we use Equation (12) for discussion purposes without loss
of mathematical generality.®

Proper on-line learning requires that we compute the in-
fluence on the Sharpe ratio (marginal utility D;) of the
trading return R; at time ¢. To accomplish this, we have de-
rived a new objective function called the differential Sharpe
ratio for on-line optimization of trading system perfor-
mance [1], [2]. It is obtained by considering exponential
moving averages of the returns and standard deviation of
returns in (12), and expanding to first order in the adap-
tation rate n:

ds,
St|n=0 + nd—nt|n=0 +0(n?)

dSt 2
= St 1+0—|p=0+0 .
t—1 ndnlno (77)

St|n>0 ~
(13)

Note that a zero adaptation rate corresponds to an infinite
time average. Expanding about 7 = 0 amounts to “turning
on” the adaptation.

Since only the first order term in this expansion depends
upon the return R; at time ¢, we define the differential
Sharpe ratio as:

_ 45

D = — =
t dn

B, 1AA, — 1A, 1AB,
(B—1 — A7_1)3/2

(14)

where the quantities A; and B; are exponential moving
estimates of the first and second moments of Ry:

A = A1 +nAA =4 1 +n(Re — Aiq)
B, = By 1+nAB, =By 1 +n(R; —B;_1) . (15)

Treating A;_1 and B;_; as numerical constants, note that
7 in the update equations controls the magnitude of the
influence of the return R; on the Sharpe ratio S;. Hence,
the differential Sharpe ratio represents the influence of the
trading return R, realized at time ¢ on S;. It is the marginal
utility for the Sharpe ratio criterion.

The influences of risk and return on the differential
Sharpe ratio are readily apparent. The current return
R; enters expression (14) only in the numerator through
AAt = Rt — At—l and ABt = Rt2 — Bt—l- The first term in
the numerator is positive if R; exceeds the moving average
of past returns A; 1 (increased reward), while the second
term is negative if R? exceeds the moving average of past
squared returns By_; (increased risk).

The differential Sharpe ratio D; is used in the RRL
algorithm (see Equation (31) in Section III) as the cur-
rent contribution to the performance function U;. Since

8For systems that trade futures and forwards, R; should be used in

place of R¢, because the risk free rate is already accounted for in the
relation between forwards prices and spot prices.

S¢—1 in Equation (13) does not depend on R;, we have
dU;/dR, = dS;/dR; ~ ndD;/dR;. When optimizing the
trading system using Equation (14), the relevant deriva-
tives have the simple form:

dDy _ B, 1 — A 1R
dR;  (By_1— A2 |)3/?

(16)

The differential Sharpe ratio has several attractive prop-
erties:

« Facilitates recursive updating: The incremental nature
of the calculations of A; and B; make updating the ex-
ponential moving Sharpe ratio straightforward. It is not
necessary to recompute the average and standard devia-
tion of returns for the entire trading history in order to
update the Sharpe ratio for the most recent time period.
o Enables efficient on-line optimization: D; and dD,/dR;
can be cheaply calculated using the previously computed
moving averages A; 1 and By 1 and the current return R;.
This enables efficient stochastic optimization.

o Weights recent returns more: Based on the exponen-
tial moving average Sharpe ratio, recent returns receive
stronger weightings in D; than do older returns.

o Provides interpretability: The differential Sharpe ratio
isolates the contribution of the current return R; to the
exponential moving average Sharpe ratio. The simple form
of D; makes clear how risk and reward affect the Sharpe
ratio.

One difficulty with the Sharpe ratio, however, is that
the use of variance or R? as a risk measure does not distin-
guish between upside and downside “risk”. Assuming that
Az 1 > 0, the largest possible improvement in D; occurs
when

R =By_1/A, . (17)

Thus, the Sharpe ratio actually penalizes gains larger than
7, which is counter-intuitive relative to most investors’
notions of risk and reward.

E. Downside Risk

Symmetric measures of risk such as variance are more
and more being viewed as inadequate measures due to the
asymmetric preferences of most investors to price changes.
Few investors consider large positive returns to be “risky”,
though both large positive as well as negative returns are
penalized using a symmetric measure of risk such as the
variance. To most investors, the term “risk” refers intu-
itively to returns in a portfolio that decrease its profitabil-
ity.

Markowitz, the father of modern portfolio theory, un-
derstood this. Even though most of his work focussed on
the mean-variance framework for portfolio optimization, he
proposed the semi-variance as a means for dealing with
downside returns [39]. After a long hiatus lasting three
decades, there is now a vigorous industry in the financial
community in modeling and minimizing downside risk. Cri-
teria of interest include the Downside Deviation (DD), the
Second Lower Partial Moment (SLPM) and the N** Lower
Partial Moment [40], [41], [42], [43], [44].



MOODY AND SAFFELL: LEARNING TO TRADE VIA DIRECT REINFORCEMENT 5

One measure of risk-adjusted performance widely used in
the professional fund management community (especially
for hedge funds) is the Sterling ratio, commonly defined as:

Sterling Ratio = Annualized Average Return

Maximum Drawn-Down (18)
Here, the maximum draw-down (from peak to trough) in
account equity or net asset value is defined relative to some
standard reference period, for example one to three years.
Minimizing drawdowns is somewhat cumbersome, so we
focus on the Downside Deviation as a measure of downside
risk in this paper.”

The Downside Deviation is defined to be the square root
of the average of the square of the negative returns:

1
2

(19)

T
1 _ )
DDT = (T t:E - mln{Rt, 0} )

Using the Downside Deviation as a measure of risk, we can
now define a utility function similar to the Sharpe ratio,
which we will call the Downside Deviation Ratio (DDR):

Average(Ry)

DDRt = DD

(20)
The Downside Deviation Ratio rewards the presence of
large average positive returns and penalizes risky returns,
where “risky” now refers to downside returns.

In order to facilitate the use of our recurrent reinforce-
ment learning algorithm (Section III), we need to compute
the influence of the return at time ¢ on the DDR. In a sim-
ilar manner to the development of the differential Sharpe
ratio in [2], we define exponential moving averages of re-
turns and of the squared Downside Deviation:

A =
DD?

A1 +n(Re — A1)
DD;_; + n(min{R;,0}> - DD;_;) ,

(21)

and define the Downside Deviation Ratio in terms of these
moving averages. We obtain our performance function by
considering a first order expansion in the adaptation rate
1 of the DDR:

dDDR
DDR; ~ DDRy_; + 7——%|p—0 + O(?) .

T (22)

We define the first order term dDDR;/dn to be the Differ-
ential Downside Deviation Ratio. It has the form

D, = dDDR,
dn
Ry — S A4

- bl ol 2

DD, , , Ry > 0( 3)
DD? , - (R, — 14, ;) — 14, R?

= DDy (R 23“) 27 R, < 0(24)

DD;_,

"White has found that the Downside Deviation tracks the Sterling
ratio effectively [45].

From Equation (24) it is obvious that when R; > 0, the
utility increases as R; increases, with no penalty for large
positive returns such as exists when using variance as the
risk measure. See [22] for detailed experimental results
on the use of the Downside Deviation Ratio to build RRL
trading systems.

III. LEARNING TO TRADE

Reinforcement learning adjusts the parameters of a sys-
tem to maximize the expected payoff or reward that is
generated due to the actions of the system. This is ac-
complished through trial and error exploration of the envi-
ronment and space of strategies. In contrast to supervised
learning, the system is not presented with examples of de-
sired actions. Rather, it receives a reinforcement signal
from its environment (a reward) that provides information
on whether its actions are good or bad.

In [1], [2], we compared supervised learning to our Di-
rect Reinforcement approach. The supervised methods dis-
cussed included trading based upon forecasts of market
prices and training a trader using labelled data. In both
supervised frameworks, difficulties are encountered when
transaction costs are included. While supervised learning
methods can be effective for solving the structural credit
assignment problem, they do not typically address the tem-
poral credit assignment problem.

Structural credit assignment refers to the problem of as-
signing credit to the individual parameters of a system. If
the reward produced also depends on a series of actions of
the system, then the temporal credit assignment problem is
encountered, ie. assigning credit to the individual actions
taken over time [46]. Reinforcement learning algorithms of-
fer advantages over supervised methods by attempting to
solve both problems simultaneously.

Reinforcement learning algorithms can be classified as
either Direct Reinforcement (sometimes called “policy
search”), Value Function or Actor-Critic methods. The
choice of the best method depends upon the nature of the
problem domain. We will discuss this issue in greater detail
in Section V. In this section, we present the Recurrent Re-
inforcement Learning algorithm for Direct Reinforcement
and review value function based methods, specifically Q-
Learning [10] and a refinement of Q-Learning called Ad-
vantage Updating [47]. In Section IV-C, we compare the
RRL and value function methods for systems that learn
to allocate assets between the S&P 500 stock index and
T-Bills.

A. Recurrent Reinforcement Learning

In this section, we describe the Recurrent Reinforcement
Learning algorithm for Direct Reinforcement. This algo-
rithm was originally presented in [1] and [2].

Given a trading system model F(6), the goal is to adjust
the parameters 6 in order to maximize Ur. For traders of
form (1) and trading returns of form (6) or (8), the gradient
of Ur with respect to the parameters 8 of the system after
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a sequence of T periods is

dUr(6) zT: dUr {th dF,

do < dR dF, do

dR, dF,_,
dF,_, do } (25)

The system can be optimized in batch mode by repeat-
edly computing the value of Ur on forward passes through
the data and adjusting the trading system parameters by
using gradient ascent (with learning rate p)
dUr(0)

df
or some other optimization method. Note that due to the
inherent recurrence, the quantities dF;/df are total deriva-
tives that depend upon the entire sequence of previous time
periods. To correctly compute and optimize these total
derivatives in an efficient manner requires an approach sim-
ilar to Back-Propagation Through Time (BPTT) [48], [49].
The temporal dependencies in a sequence of decisions are
accounted for through a recursive update equation for the

parameter gradients:
OF; OF;, dFy;_,

dF;
W 00 TR, d8 (27)

AO=p (26)

The above expressions (25) and (27) assume differentia-
bility of F;. For the long/short traders with thresholds
described in Section II-A, the reinforcement signal can be
backpropagated through the pre-thresholded outputs in a
manner similar to the Adaline learning rule [50]. Equa-
tions (25), (26) and (27) constitute the batch RRL algo-
rithm.

There are two ways in which the batch algorithm de-
scribed above can be extended into a stochastic framework.
First, exploration of the strategy space can be induced by
incorporating a noise variable €, as in the stochastic trader
formulation of Equation (3). The trade-off between explo-
ration of the strategy space and ezploitation of a learned
policy can be controlled by the magnitude of the noise vari-
ance o.. The noise magnitude can be annealed over time
during simulation, in order to arrive at a good strategy.

Secondly, a simple on-line stochastic optimization can be
obtained by considering only the term in (25) that depends
on the most recently realized return R; during a forward
pass through the data:

dU(0) N @ @@ dR; dFy (28)
d6; ~ dR; \ dF; d6; = dF; , df; 4
The parameters are then updated on-line using;:
dU(6)
Al = p———= . 2
be=p a0, (29)

Such an algorithm performs a stochastic optimization,
since the system parameters 6; are varied during each for-
ward pass through the training data. The stochastic, on-
line analog of Equation (27) is:

dFy OF, | OF dFi,
do, = 00,  OF,_; df;_,

(30)

Equations (28), (29) and (30) constitute the stochastic (or
adaptive) RRL algorithm. It is a reinforcement algorithm
closely related to recurrent supervised algorithms such as
Real Time Recurrent Learning (RTRL) [51] and Dynamic
Backpropagation [52]. See also the discussion of backprop-
agating utility in Werbos [53].

For differential performance criteria D; described in
Equation (11) of Section II-C (such as the differential
Sharpe ratio (14) and differential Downside Deviation ra-
tio (24)), the stochastic update equations (28) and (29)
become:

dDy(8,)

A —

i de,
@ @@ dRy dFy . (31)
PR, \ dF, 48, " dF,, d6,_, | °

We use on-line algorithms of this recurrent reinforcement
learning type in the simulations presented in Section IV.
Note that we find that use of a noise variable ¢; provides
little advantage for the real financial applications that we
consider, since the data series contain significant intrinsic
noise. Hence, we find that a simple “greedy” update is
adequate.?

The above description of the RRL algorithm is for
traders that optimize immediate estimates of performance
D; for specific actions taken. This presentation can be
thought of as a special case of a more general Markov
Decision Process (MDP) and policy gradient formulation.
One straightforward extension of our formulation can be
obtained for traders that maximize discounted future re-
wards. We have experimented with this approach, but
found little advantage for the problems we consider. A sec-
ond extension to the formulation is to consider a stochastic
trader (Equation (3)) and an ezpected reward framework,
for which the probability distribution of actions is differen-
tiable. This latter approach makes use of the joint density
of Equation (4). While the expected reward framework is
appealing from a theoretical perspective, Equations (28),
(29) and (30) presented above provide the practical basis
for simulations.

Although we have focussed our discussion on traders of a
single risky asset with scalar Fi, the algorithms described
in this section can be trivially generalized to the vector
case for portfolios. Optimization of portfolios is described
in [1], [2].

B. Value Functions and Q-Learning

Besides explicitly training a trader to take actions, we
can also implicitly learn correct actions through the tech-
nique of value iteration. Value iteration uses a value func-
tion to evaluate and improve policies (see [14] for a tuto-
rial introduction and [16] for a full overview of these al-
gorithms). The value function, V™(z), is an estimate of
discounted future rewards that will be received from start-
ing in state x, and by following the policy 7 thereafter.

8Tesauro finds a similar result for TD-Gammon [17], [18]. A

“greedy” update works well, because the dice rolls in the game pro-
vided enough uncertainty to induce extensive strategy exploration.
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The value function satisfies Bellman’s equation

VT (x) = Z m(z,a szy ){D(z,y,a) + V" (y)}

where 7(z,a) is the probability of taking action a in state
&, Pzy(a) is the probability of transitioning from state x to
state y when taking action a, D(z,y,a) is the immediate
reward (differential utility, as in Equation (11)) from taking
action a and transitioning from state x to state y and +y is
the discount factor that weighs the importance of future
rewards versus immediate rewards.

A policy is an optimal policy if its value function is
greater than or equal to the value functions of all other
policies for a given set of states. The optimal value func-
tion is defined as:

, (32)

V*(z) =maxV"(x) , (33)
and satisfies Bellman’s optimality equation
maXszy ) {D(z,y,a) +7V*(y)} . (34)
The value iteration update:
Vira (a2 maxzpw ){D(z,y,a) + WViw)} ,  (35)

is guaranteed to converge to the optimal value function
under certain general conditions. The optimal policy can
be determined from the optimal value function through:

a){D(z,y,a) +7V*(y)} . (36)

a* = arg max Z Pzy(a

B.1 Q-Learning

The technique named Q-Learning [10] uses a value func-
tion which estimates future rewards based on both the cur-
rent state and the current action taken. We can write the
Q-function version of Bellman’s optimality equation as

a) = pry(a) {D(:c,y,a) +fym§),xQ*(y,b)} .

(37)
Similarly to Equation (35), the Q-function can be learned
using a value iteration approach:

maXZsz {D z,y,a )+’7Qt(y)} .

This iteration has been shown [10] to converge to the op-
timal Q-function, Q*(x,a), given certain constraints. The
advantage of using the Q-function is that there is no need
to know the system model p,,(a) as in Equation (36) in
order to choose the best action. One calculates the best
action as

Qt1(z,a) (38)

a* = argmax(Q"(z, a)) (39)

The update rule for training a function approximator is
then based on the gradient of the error:

S (D(@,,0) +1maxQ(u,b) ~ Qa,a))? . (40)

2

B.2 Advantage Updating

A refinement of the Q-Learning algorithm is provided
by Advantage Updating [47]. Advantage Updating was
developed specifically to deal with continuous-time rein-
forcement learning problems, though it is applicable to the
discrete-time case as well. It is designed to deal with the
situation where the relative advantages of individual ac-
tions within a state are small compared to the relative
advantages of being in different states. Also, Advantage
Updating has been shown to be able to learn at a much
faster rate than Q-Learning in the presence of noise.

Advantage Updating learns two separate functions: the
advantage function A(z,a), and the value function V (z).
The advantage function measures the relative change in
value of choosing action a while in state x versus choosing
the best possible action for that state. The value function
measures the expected discounted future rewards as de-
scribed previously. Advantage Updating has the following
relationship with Q-Learning:

Q*(x,a)

Similarly to Q-Learning, the optimal action to take in state
z is found by a* = argmax,(A*(z, a)). See Baird [47] for
a description of the learning algorithms.

=V*(z) + A*(x,a) (41)

IV. EMPIRICAL RESULTS

This section presents empirical results for three prob-
lems. First, controlled experiments using artificial price
series are done to test the RRL algorithm’s ability to learn
profitable trading strategies, to maximize risk adjusted re-
turn (as measured by the Sharpe ratio), and to respond ap-
propriately to varying transaction costs. The second prob-
lem demonstrates the ability of RRL to discover structure
in a real financial price series, the half-hourly US Dollar /
British Pound exchange rate. For this problem, the RRL
trader attempts to avoid downside risk by maximizing the
Downside Deviation Ratio. Finally, we compare the per-
formance of traders based on RRL and Q-Learning for a
second real-world problem, trading the monthly S&P 500
stock index. Over the 25 year test period, we find that
the RRL-Trader outperforms the Q-Trader, and that both
outperform a buy and hold strategy. Further discussion of
the Q-Trader vs. RRL-Trader performance is presented in
Section V-D.

A. Trader Simulation

In this section we demonstrate the use of the RRL al-
gorithm to optimize trading behavior using the differential
Sharpe Ratio (Equation (14)) in the presence of transaction
costs. More extensive results are presented in [2]. There,
we find that maximizing the differential Sharpe ratio yields
more consistent results than maximizing profits, and that
both methods outperform trading systems based on fore-
casts.

The RRL-Traders studied here take {long, short} posi-
tions and have recurrent state similar to that described
in Section II-A. To enable controlled experiments, the
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data used in this section are artificial price series that are
designed to have tradeable structure. These experiments
demonstrate that (a) RRL is an effective means of learning
trading strategies, and (b) trading frequency is reduced as
expected as transaction costs increase.

A.1 Data

We generate log price series as random walks with au-
toregressive trend processes. The two parameter model is
thus:

p(t— 1)+ B —1)+ ke(t)
afBt—-1)+v(t) ,

p(t) =
Bt) =

where a and k are constants, and e(¢) and v(t) are normal
random deviates with zero mean and unit variance. We
define the artificial price series as

z(t) = exp (%)

where R is a scale defined as the range of p(t): max(p(t)) —
min(p(t)) over a simulation with 10,000 samples.’

For the results we present here, we set the parameters of
the price process to a = 0.9 and k = 3. The artificial price
series are trending on short time scales and have a high
level of noise. A realization of the artificial price series is
shown in the top panel of Figure 2.

(44)

A.2 Simulated Trading Results

Figures 2, 3 and 4 show results for a single simulation for
an artificial market as described above. For these experi-
ments, the RRL-Traders are single threshold units with an
autoregressive input representation. The inputs at time ¢
are constructed using the previous eight returns.

The RRL-Traders are initialized randomly at the begin-
ning, and adapted using real-time recurrent learning to op-
timize the differential Sharpe ratio (14). The transaction
costs are fixed at a half percent during the whole real-time
learning and trading process. Transient effects of the initial
learning while trading process can be seen in the first 2000
time steps of Figure 2 and in the distribution of differential
Sharpe ratios in the lower left panel of Figure 4.

Figure 5 shows box plots summarizing test performances
for ensembles of 100 experiments. In these simulations, the
10,000 data samples are partitioned into an initial training
set consisting of the first 1,000 samples and a subsequent
test data set containing the last 9,000 samples. The RRL-
Traders are first optimized on the training data set for 100
epochs and adapted on-line throughout the whole test data
set. Each trial has different realizations of the artificial
price process and different randomly-chosen initial trader
parameter values. We vary the transaction cost from 0.2%,
0.5% to 1%, and observe the trading frequency, cumulative

9This is slightly more than the number of hours in a year (8760),
so the series could be thought of as representing hourly prices in a
24 hour artificial market. Alternatively, a series of this length could
represent slightly less than five years of hourly data in a market that
trades about 40 hours per week.

profit and Sharpe ratio over the test data set. As shown,
in all 100 experiments, positive Sharpe ratios are obtained.
As expected, trading frequency is reduced as transaction
costs increase.

B. US Dollar/British Pound Foreign Exchange Trading
System

A {long, short, neutral} trading system is trained on
half-hourly US Dollar / British Pound foreign exchange
(FX) rate data. The experiments described in this section
were first reported in [22]. The dataset used here consists
of the first 8 months of quotes from the 24 hour, 5-days
a week foreign exchange market during 1996.1° Both bid
and ask prices are in the dataset, and the trading system is
required to incur the transaction costs of trading through
the bid/ask prices. The trader is trained via the Recur-
rent Reinforcement Learning algorithm to maximize the
Differential Downside Deviation Ratio (24), a measure of
risk-adjusted return.

The top panel in Figure 6 shows the US Dollar/British
Pound price series for the 8 month period. The trading sys-
tem is initially trained on the first 2000 data points, and
then produces trading signals for the next 2 week period
(480 data points). The training window is then shifted
forward to include the just tested on data, is retrained
and its trading signals recorded for the next 2 week out-
of-sample time period. This process for generating out-of-
sample trading signals continues for the rest of the data
set.

The second panel in Figure 6 shows the out-of-sample
trading signal produced by the trading system, and the
third panel displays the equity curve achieved by the
trader. The bottom panel shows a moving average cal-
culation of the Sharpe Ratio over the trading period with
a time constant of 0.01. The trading system achieves an
annualized 15% return with an annualized Sharpe Ratio of
2.3 over the approximately 6 month long test period. On
average, the system makes a trade once every 5 hours.

These FX simulations demonstrate the ability of the
RRL algorithm to discover structure in a real-world finan-
cial price series. However one must be cautious when ex-
trapolating from simulated performance to what can be
achieved in actual real-time trading. One problem is that
the data set consists of indicative quotes which are not
necessarily representative of the price at which the system
would have actually been able to transact. A related possi-
bility is that the system is discovering market microstruc-
ture effects that are not actually tradeable in real-time.
Also, the simulation assumes that the pound is tradeable
24 hours a day during the 5-day trading week. Certainly
a real-time trading system will suffer additional penalties
when trying to trade during off-peak, low liquidity trad-
ing times. An accurate test of the trading system would
require live trading with a foreign exchange broker or di-
rectly through the interbank FX market in order to verify
real time transactable prices and profitability.

10The data is part of the Olsen & Associates HFDF96 dataset,
obtainable by contacting www.olsen.ch.
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C. S&P 500 / T-Bill Asset Allocation

In this section we compare the use of Recurrent Rein-
forcement Learning to the Advantage Updating formula-
tion of the Q-Learning algorithm for building a trading sys-
tem. These comparative results were presented previously
at NIPS*98 [21]. The long/short trading systems trade
the S&P 500 Stock Index, in effect allocating assets be-
tween the S&P 500 and 3-month Treasury Bills. When the
traders are long the S&P 500, no T-Bill interest is earned,
but when the traders are short stocks (using standard 2:1
leverage), they earn twice the T-Bill rate. We use the Ad-
vantage Updating refinement instead of the standard Q-
Learning algorithm, because we found it to yield better
trading results. See Section ITI-B.2 for a description of the
representational advantages of the approach.

The S&P 500 target series is the total return index com-
puted monthly by reinvesting dividends. The S&P 500
indices with and without dividends reinvested are shown
in Figure 7 along with the 3-month Treasury Bill and S&P
500 dividend yields. The 84 monthly input series used in
the trading systems include both financial and macroeco-
nomic data. All data are obtained from Citibase,!! and
the macroeconomic series are lagged by one month to re-
flect reporting delays.

A total of 45 years of monthly data are used, from Jan-
uary 1950 through December 1994. The first 20 years of
data are used only for the initial training of the system.
The test period is the 25 year period from January 1970
through December 1994. The experimental results for the
25 year test period are true ez ante simulated trading re-
sults.

C.1 Simulation Details

For each year during 1970 through 1994, the system is
trained on a moving window of the previous 20 years of
data. For 1970, the system is initialized with random
parameters. For the 24 subsequent years, the previously
learned parameters are used to initialize the training. In
this way, the system is able to adapt to changing mar-
ket and economic conditions. Within the moving training
window, the RRL-Trader systems use the first 10 years for
stochastic optimization of system parameters, and the sub-
sequent 10 years for validating early stopping of training.
The RRL-Trader networks use a single tanh unit, and are
regularized using quadratic weight decay during training
with a regularization parameter of 0.01.

The Q-Trader systems use a bootstrap sample of the 20
year training window for training, and the final 10 years
of the training window are used for validating early stop-
ping of training. For the results reported, the networks are
two-layer feedforward networks with 30 tanh units in the
hidden layer. The networks are trained initially with the v
discounting factor set to 0. Then ~ is set to 0.75. We find
decreasing performance when the value of v is adjusted to
higher values.

11 Citibase historical data is obtainable from www.fame.com.

To investigate the bias / variance tradeoff for the Q-
Traders, we tried networks of size 10, 20, 30 and 40 hid-
den units. The 30 unit traders performed significantly bet-
ter out of sample than traders with smaller or larger net-
works. The 20 unit traders were significantly better than
the 10 unit traders, suggesting that the smaller networks
could not represent the Q function adequately (high model
bias). The degradation in performance observed for the
40 unit nets suggests possible overfitting (increased model
variance).

C.2 S&P Experimental Results

Figure 8 shows box plots summarizing the test perfor-
mance for the full 25 year test period of the trading systems
with various realizations of the initial system parameters
over 30 trials for the RRL-Trader system, and 10 trials for
the Q-Trader system'2. The transaction cost is set at 0.5%.
Profits are reinvested during trading, and multiplicative
profits are used when calculating the wealth. The notches
in the box plots indicate robust estimates of the 95% confi-
dence intervals on the hypothesis that the median is equal
to the performance of the buy and hold strategy. The hor-
izontal lines show the performance of the RRL-Trader vot-
ing, Q-Trader voting and buy and hold strategies for the
same test period. The total profits of the buy and hold
strategy, the Q-Trader voting strategy and the RRL-Trader
voting strategy are 1348%, 3359% and 5860% respectively.
The corresponding annualized monthly Sharpe ratios 0.34,
0.63 and 0.83 respectively.!> Remarkably, the superior re-
sults for the RRL-Trader are based on networks with a
single thresholded tanh unit, while those for the Q-Trader
required networks with 30 hidden tanh units.'*

Figure 9 shows results for following the strategy of tak-
ing positions based on a majority vote of the ensembles of
trading systems compared with the buy and hold strategy.
We can see that the trading systems go short the S&P 500
during critical periods, such as the oil price shock of 1974,
the tight money periods of the early 1980’s, the market
correction of 1984 and the 1987 crash. This ability to take
advantage of high treasury bill rates or to avoid periods
of substantial stock market loss is the major factor in the
long term success of these trading models. One exception
is that the RRL-Trader trading system remains long dur-
ing the 1991 stock market correction associated with the
Persian Gulf war, a political event, though the Q-Trader
system is fortunately short during the correction. On the
whole though, the Q-Trader system trades much more fre-
quently than the RRL-Trader system, and in the end does
not perform as well on this data set.

From these results we find that both trading systems out-
perform the buy and hold strategy, as measured by both ac-
cumulated wealth and Sharpe ratio. These differences are

12Ten trials were done for the Q-Trader system due to the amount
of computation required in training the systems

13The Sharpe ratios calculated here are for the returns in excess of
the 3-month treasury bill rate.

14 A5 discussed in the Section IV-C.1, care was taken to avoid both
underfitting and overfitting in the Q-Trader case, and smaller nets
performed substantially worse.
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statistically significant and support the proposition that
there is predictability in the U.S. stock and treasury bill
markets during the 25 year period 1970 through 1994. A
more detailed presentation of the RRL-Trader results ap-
pears in [2]. Further discussion of the Q-Trader vs. RRL-
Trader performance is presented in Section V-D.

C.3 Model Insight Through Sensitivity Analysis

A sensitivity analysis of the RRL-Trader systems was
performed in an attempt to determine on which economic
factors the traders are basing their decisions. Figure 10
shows the absolute normalized sensitivities for three of the
more salient input series as a function of time, averaged
over the 30 members of the RRL-Trader committee. The
sensitivity of input 4 is defined as:

dF
dz;

Si = ) (45)

dF

max; dz;

where F' is the unthresholded trading output of the policy
function and z; denotes input 3.

The time-varying sensitivities in Figure 10 emphasize the
nonstationarity of economic relationships. For example,
the yield curve slope (which measures inflation expecta-
tions) is found to be a very important factor in the 1970’s,
while trends in long term interest rates (measured by the
6 month difference in the AAA bond yield) becomes more
important in the 1980’s, and trends in short term interest
rates (measured by the 6 month difference in the treasury
bill yield) dominate in the early 1990’s.

V. LEARN THE POLICY OR LEARN THE VALUE?

As mentioned in Section III, reinforcement learning al-
gorithms can be classified as either Direct Reinforcement
(sometimes called “policy search”), Value Function meth-
ods or Actor-Critic methods. The choice of the best
method depends upon the nature of the problem domain.

A. Immediate vs. Future Rewards

Reinforcement signals received from the environment can
be immediate or delayed. In some problems, such as check-
ers [54], [55], backgammon [17], [18], navigating a maze[56],
or maneuvering around obstacles[57], reinforcement from
the environment occurs only at the end of the game or
task. The final rewards received are {success, failure} or
{win, lose}. For such tasks, the temporal credit assignment
problem is extreme. There is usually no a priori assessment
of performance available during the course of each game or
trial. Hence, one is forced to learn a wvalue function of the
system state at each time. This is accomplished by doing
many runs on a trial and error basis, and discounting the
ultimate reward received back in time. This discounting
approach is the basis of Dynamic Programming [8], TD-
Learning [9] and Q-Learning [10], [11].

For these Value Function methods, the action taken
at each time is that which offers the largest increase in
expected value. Thus, the policy is not represented di-
rectly. An intermediate class of reinforcement algorithms

are actor-critic methods [12]. While the actor module pro-
vides a direct representation of the policy for these meth-
ods, it relies on the critic module for feedback. The role of
the critic is to learn the value function.

In contrast, Direct Reinforcement methods represent the
policy directly, and make use of immediate feedback to ad-
just the policy. This approach is appealing when it is pos-
sible to specify an instantaneous measure of performance,
because the need to learn a value function is bypassed.

In trading, asset allocation and portfolio management
problems, for example, overall performance accrues grad-
ually over time. For these financial decision making prob-
lems, an immediate measure of incremental performance is
available at each time step. Although total performance
usually involves integrating or averaging over time, it is
none-the-less possible to adaptively update the strategy
based upon the investment return received at each time
step.

Other domains that offer the possibility of immedi-
ate feedback include a wide range of control applications.
The standard formulation for optimal control problems in-
volves time integrals of an instantaneous performance mea-
sure. Examples of common loss functions include aver-
age squared deviation from a desired trajectory or average
squared jerk.!®

A related approach that represents and improves policies
explicitly is the policy gradient approach. Policy gradient
methods use the gradient of the expected average or dis-
counted reward with respect to the parameters of the policy
function to improve the policy. The expected rewards are
typically estimated by learning a value function, or by using
single sample paths of the Markov reward process. There
have been several recent, independent proofs for the con-
vergence of policy gradient methods. Marbach & Tsitsiklis
[58], [59] and Baxter & Bartlett [7]'® show convergence to
locally optimal policies by using simulation based method-
ologies to approximate expected rewards. Sutton et al [60]
and Konda & Tsitsiklis [61] obtain similar results when
estimating expected rewards from a value function imple-
mented using a function approximator. An application to
robot navigation is provided by Grudic and Ungar [62].
Note that some of the so-called “policy gradient” meth-
ods are not Direct Reinforcement methods, because they
require the estimation of a value function. Rather, these
methods are more properly classified as actor-critic meth-
ods.

B. Policies vs. Values

Much attention in the reinforcement learning community
has been given recently to the question of learning policies
versus learning value functions. Over the past twenty years
or so, the Value Function approach has dominated the field.

15«Jerk” is the rate of change of acceleration.

16Baxter & Bartlett have independently coined the term “Direct
Reinforcement” to describe policy gradient methods in an MDP
framework based on simulating sample paths and maximizing average
rewards. Our intended usage of the term is in the same spirit, but
perhaps more general, referring to all algorithms that do not need to
learn a value function in order to derive a policy.
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The approach has worked well in many applications, and a
number of convergence theorems exist that prove that the
approach will work under certain conditions.

However, the value function approach suffers from sev-
eral limitations. The original formulation of Q-Learning is
in the context of discrete state and action spaces. As such,
in many practical situations it suffers from the “curse of di-
mensionality”. When Q-Learning is extended to function
approximators, it has been shown in many cases that there
are simple Markov Decision Processes for which the algo-
rithms fail to converge [63]. Also, the policies derived from
a Q-Learning approach tend to be brittle, that is, small
changes in the value function can produce large changes
in the policy. For finance in particular, the presence of
large amounts noise and nonstationarity in the datasets
can cause severe problems for a value function approach.!?

We find our Recurrent Reinforcement Learning algo-
rithm to be a simpler and more efficient approach. Since
the policy is represented directly, a much simpler functional
form is often adequate to solve the problem. A signifi-
cant advantage of the RRL approach is the ability to pro-
duce real valued actions (eg. portfolio weights) naturally
without resorting to the discretization necessary in the Q-
Learning case. Constraints on actions are also much easier
to represent given the policy representation. Other advan-
tages are that the RRL algorithm is more robust to the
large amounts of noise that exists in financial data, and is
able to quickly adapt to nonstationary market conditions.

C. An Ezample

We present an example of how an increase in complexity
occurs when a policy is represented implicitly through the
use of a value function. We start with the most simple
trading problem: a trader that makes decisions to buy and
sell a single asset where there are no transaction costs or
trading frictions. The asset returns r, are from a binomial
process in {-1, +1}. To make matters even more simple, we
will assume that the next period’s return r¢41 is known in
advance. Given these conditions, the optimal policy does
not require knowledge of future rewards, so the Q-Learning
discount parameter v will be set to 0. We will measure the
complexity of the solution by counting the number of tanh
units that are required to implement a solution using a
single function approximator.

It is obvious that the policy function is trivial. The op-
timal policy is to take the action a; = 7¢y1. In terms of
model structure, a single tanh unit would suffice. On the
other hand, if we decide to learn the value function before
taking actions, we find in this case that we have to learn
the XOR function. As shown in Figure 11, the value func-
tion is +1 when the proposed action a has the same sign as
r¢4+1 and -1 otherwise. Because of the binomial return pro-
cess, we can solve this problem using only two tanh units.
Due to the value function representation of the problem,
the complexity of the solution has doubled.

17Brown [64] provides a nice example that demonstrates the brit-
tleness of Q-Learners in noisy environments.

This doubling of model complexity is by comparison mi-
nor if we make the problem a little more realistic by al-
lowing returns to be drawn from a continuous real-valued
distribution. The complexity of the policy function has not
increased, a; = sign(r¢+1). However the value function’s in-
crease in complexity is potentially enormous. Since returns
are now real valued, if we wish to approximate the value
function to an arbitrarily small precision, we must use an
arbitrarily large model.

D. Discussion of the S&P 500 / T-Bill Results

For the S&P 500 / T-Bill asset allocation problem de-
scribed in Section IV-C, we find that RRL offers advan-
tages over Q-Learning in performance, interpretability and
computational efficiency. Over the 25 year test period, the
RRL-Trader produced significantly higher profits (5860%
vs. 3359%) and Sharpe ratios (0.83 vs. 0.63) than did
the Q-Trader. The RRL-Trader learns a stable and robust
trading strategy, maintaining its positions for extended pe-
riods. The frequent switches in position by the Q-Trader
suggests that it is more sensitive to noise in the inputs.
Hence, the strategy it has learned is brittle.

Regarding interpretability, we find the value function
representation to be obscure. While the change in the
policy as implemented by the RRL algorithm is directly
related to changes in the inputs, for the value function the
effect on policy is not so clear. While the RRL-Trader has
an almost linear policy representation (a net with just a
single tanh unit), the Q-Trader’s policy is the argmax of
a two layer network for which the policy is an input. The
brittle behavior of the Q-Trader is probably due to the
complexity of the learned Q-function with respect to the
inputs and actions. The problem representation for the
Q-Trader thus reduces explanatory value.

The sensitivity analysis presented for the RRL-Trader
strategy in Section IV-C.3 was easy to formulate and imple-
ment. It enables us to identify the most important explana-
tory variables, and to observe how their relative saliency
varies slowly over time. For the Q-Trader, however, a sim-
ilar analysis is not straightforward. The possible actions
are represented as inputs to the Q-function network, with
the chosen action being determined by the argmax. While
we can imagine proxies for a sensitivity analysis in a sim-
ple two action {long, short} framework, it is not clear how
to perform a sensitivity analysis for actions versus inputs
in general for a Q-Learning framework. This reduces the
explanatory value of a Q-Trader.

Since the {long, short} Q-Trader is implemented using a
neural network function approximator, Bellman’s curse of
dimensionality has a relatively small impact on the results
of the experiments presented here. The input dimension-
ality of the Q-Trader is increased by only one, and there
are only two actions to consider. However, in the case of a
portfolio management or multi-sector asset allocation sys-
tem, the dimensionality problem becomes severe.'® Portfo-
lio management requires a continuous weight for each of N

18We have encountered this obstacle in preliminary, unpublished
experiments.



12 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 4, JULY 2001, PP 875-889

assets included in the portfolio. This increases the input di-
mension for the Q-Trader by N relative to the RRL-Trader.
Then, in order to facilitate the argmaz discovery of actions,
we can only consider discrete action sets. The number of
discrete actions that must be considered is exponential in
N. As another issue, we must also consider the possible
loss of utility that results due to the finite resolution of
action choices.

In terms of efficiency, the advantage updating represen-
tation used for the Q-Trader required two networks each
with 30 tanh units. In order to reduce run time, the sim-
ulation code was written in C. Still, each run required ap-
proximately 25 hours to complete using a Pentium Pro 200
running the Linux operating system. The RRL networks
used a single tanh unit, and were implemented as uncom-
piled Matlab code. Even given this unoptimized coding,
the RRL simulations were 150 times faster, taking only 10
minutes.

VI. CONCLUSIONS

In this paper, we have demonstrated how to train trading
systems via Direct Reinforcement. We have described the
Recurrent Reinforcement Learning (RRL) algorithm, and
used it to optimize financial performance criteria such as
the differential Sharpe ratio and differential Downside De-
viation ratio. We have also provided empirical results that
demonstrate the presence of predictability as discovered by
RRL in intradaily US Dollar/British Pound exchange rates
and in the monthly S&P 500 Stock Index for the 25 year
test period 1970 through 1994.

In previous work [1], [2], we showed that trading systems
trained via RRL significantly outperform systems trained
using supervised methods. In this paper, we have com-
pared the Direct Reinforcement approach using RRL to
the Q-Learning Value Function method. We find that an
RRL-Trader achieves better performance than a Q-Trader
for the S&P 500 / T-Bill asset allocation problem. We ob-
serve that relative to Q-Learning, RRL enables a simpler
problem representation, avoids Bellman’s curse of dimen-
sionality and offers compelling advantages in efficiency.

We have also discussed the relative merits of Direct Re-
inforcement and Value Function learning, and provided ar-
guments and examples for why value function based meth-
ods may result in unnatural problem representations. For
problem domains where immediate estimates of incremen-
tal performance can be obtained, our results suggest that
Direct Reinforcement offers a powerful alternative.
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Fig. 1. A trading system based on Direct Reinforcement, the ap-
proach taken in this paper. The system trades the target series,
making trading decisions based upon a set of input variables and the
current positions held. No intermediate steps such as making fore-
casts or labelling desired trades are required, and it is not necessary
to learn a value function. The trader learns a strategy via trial and
error exploration, taking actions and receiving positive or negative
reinforcement based on the results. A trading performance function
U(8), such as profit, utility or risk-adjusted return, is hence used to
directly optimize the trading system parameters §. The system is re-
current; the feedback of system state (current positions or portfolio
weights) enables the trading system to learn to correctly incorporate
transactions costs into its trading decisions. For the traders consid-
ered in this paper, the Direct Reinforcement (policy search) method
Recurrent Reinforcement Learning is used to optimize the trader.

Price

. . . . . . . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time

Fig. 2. Artificial prices (top panel), trading signals (second panel),
cumulative sums of profits (third panel) and the moving average
Sharpe ratio with n = 0.01 (bottom panel). The system performs
poorly while learning from scratch during the first 2000 time periods,
but its performance remains good thereafter.
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Fig. 3. An expanded view of the last thousand time periods of
Figure 2. The exponential moving Sharpe ratio has a forgetting time
scale of 1/n = 100 periods. A smaller  would smooth the fluctuations
out.

t=1:5000 t=5001:10000
1000 1000
= o
O 500 - o 500
0 mﬂﬂHHHH HHHHHHH 0 nHHHHHH HHHHHHHH
-0.01 -0.005 0 0.005 0.01 -0.01 -0.005 0 0.005 0.01
1000 Returns 1000 Returns
= M o
2 500 H 2 500
[ [ ’7 H
0 r—ﬂﬂ” Hﬂﬂm 0 mHHH Hﬂm
-0.01 -0.005 0 0.005 0.01 -0.01 -0.005 0 0.005 0.01
1000 Profits 1000 Profits
o o
0 500 o 500
u u i

o

0
-0.2 -0.1 0 0.1 0.2 -0.2 -01 0 0.1 0.2
Sharpe Ratios Sharpe Ratios

Fig. 4. Histograms of the price changes (top), trading profits per
time period (middle) and Sharpe ratios (bottom) for the simulation
shown in Figure 2. The left column is for the first 5,000 time periods,
and the right column is for the last 5,000 time periods. The transient
effects during the first 2000 time periods for the real-time recurrent
learning are evident in the lower left graph.
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Fig. 5. Boxplots of trading frequency, cumulative sums of profits and
Sharpe ratios vs. transaction costs. The results are obtained over 100
trials with various realizations of artificial data and initial system
parameters. Increased transaction costs reduce trading frequency,
profits and Sharpe ratio, as expected. The trading frequency is the
percentage of the number of time periods during which trades occur.
All figures are computed on the last 9,000 points in the data set.
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Fig. 6. {Long, short, neutral} trading system of the US Dol-
lar/British Pound that uses the bid/ask spread as transaction costs.
The data consists of half-hourly quotes for the 5 day per week, 24 hour
interbank FX market. The time period shown is the first 8 months
of 1996. The trader is optimized via Recurrent Reinforcement Learn-
ing to maximize the Differential Downside Deviation Ratio. The first
2000 data points (approximately two months) are used for training
and validation. The trading system achieves an annualized 15% re-
turn with an annualized Sharpe Ratio of 2.3 over the approximately 6
month long out-of-sample test period. On average, the system makes
a trade once every 5 hours.

S&P 500 Index
- == With Divs. Reinvested

S&P-500

Treasury Bill Yield

-
IS
T

S i ” L S&P 500 Div. Yield
bl 1 [
812t oo ! ‘1 B
2 !
> [ | 1 " i
>10 Y N
Q 1 / | | ~
S gt A A Wl ANN 1
g . [ATIARY p I - P N
g 6F\ | I ~ - n v i
< \ A , Vg / v \ ,
47 \I \I it L L L L VW "/ ]
1970 1975 1980 1985 1990
Time

Fig. 7. Time series that influence the return attainable by the S&P
500 / TBill asset allocation system. The top panel shows the S&P
500 series with and without dividends reinvested. The bottom panel
shows the annualized monthly Treasury Bill and S&P 500 dividend
yields.
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Fig. 8. Test results for ensembles of simulations using the S&P 500
stock index and 3-month Treasury Bill data over the 1970-1994 time
period. The boxplots show the performance for the ensembles of
RRL-Trader and Q-Trader trading systems. The horizontal lines in-
dicate the performance of the systems and the buy and hold strategy.
The solid curves correspond to the RRL-Trader system performance,
dashed curves to the Q-Trader system and the dashed and dotted
curves indicate the buy and hold performance. Both systems signifi-
cantly outperform the buy and hold strategy.

RRL-Trader System vs Q-Trader System

: T T
- - Buy and Hold
— RRL-Trader
- - Q-Trader -7
.
10" | S
2 Loend
El B
(o
i
o .
30 Y \v‘/ ) ) ‘ il
% 1 T T T T
5]
._I‘_ 07 \—] \_ﬂ_] U U |
X _1L B
el : : : :
- - - — I [ [ r = r |
3 T un
= Of [ T T L A Vol g '
'|_ - L J\“ [ |“\‘\ b [ R R !
Oo-1k L‘L,J‘ oo ity i ‘J‘ e U ]
1970 1975 1980 1985 1990

Fig. 9. Test results for ensembles of simulations using the S&P 500
stock index and 3-month Treasury Bill data over the 1970-1994 time
period. Shown are the equity curves associated with the systems and
the buy and hold strategy, as well as the trading signals produced by
the systems. The solid curves correspond to the RRL-Trader system
performance, dashed curves to the Q-Trader system and the dashed
and dotted curves indicate the buy and hold performance. Both sys-
tems significantly outperform the buy and hold strategy. In both
cases, the traders avoid the dramatic losses that the buy and hold
strategy incurred during 1974 and 1987.
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Sensitivity Analysis: Average on RRL-Trader Committee
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Fig. 10. Sensitivity traces for three of the inputs to the RRL-Trader
trading system averaged over the ensemble of traders. The non-
stationary relationships typical among economic variables is evident
from the time-varying sensitivities.
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Fig. 11. A representation of the value function to be learned by the
Q-Learning algorithm for the example given in the text (Section V).
The function represents the Q-value, Q(r, a), which is the value from
taking action “a” in state “r”. The figure on the left shows the value
function for the case of discrete, binary returns. The Q-function has
the form of the XOR problem, while the optimal policy is simply
a = r. The figure on the right shows the value function when re-
turns are real-valued (note the change in axes). The Q-function now
becomes arbitrarily hard to represent accurately using a single func-
tion approximator of tanh units while the optimal policy is still very
simple, a = sign(r).
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