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Abstract—Managing energy efficiently is paramount in modern
smartphones. The diverse range of wireless interfaces and sen-
sors, and the increasing popularity of power-hungry applications
that take advantage of these resources can reduce the battery
life of mobile handhelds to few hours of operation. The research
community, and operating system and hardware vendors found
interesting optimisations and techniques to extend the battery life
of mobile phones. However, the state of the art of lithium-ion
batteries clearly indicates that energy efficiency must be achieved
both at the hardware and software level. In this survey, we will
cover the software solutions that can be found in the research
literature between 1999 and May 2011 at six different levels:
energy-aware operating systems, efficient resource management,
the impact of users’ interaction patterns with mobile devices
and applications, wireless interfaces and sensors management,
and finally the benefits of integrating mobile devices with cloud
computing services.

Index Terms—Operating systems Energy efficiency, Energy
management, Human computer interaction, Sensors, Context
awareness, 3G mobile communication, IEEE 80211 Standards.

I. INTRODUCTION

ODAY’S mobile phones are equipped with a wide range
of sensing, computational, storage and communication
resources that bootstrapped the birth of rich mobile appli-
cations such as location-aware services and mobile social
networks. However, those applications can potentially reduce
the battery life of mobile handsets to few hours of operation.
Unfortunately, battery technologies have not experienced
the same evolution as the rest of hardware components in
mobile handsets. Most mobile phones are powered by lithium-
ion batteries that can provide many times the energy of other
types of batteries in the same fraction of space. However,
the state of the art in battery technology shows that the
only alternative left at the moment to extend the battery
life of mobile phones is reducing the power consumption
at the hardware level and designing more energy efficient
applications and operating systems.

The research community, hardware manufacturers and OS
designers already found positive solutions to extend the battery
life of mobile handsets at different levels such as hardware, op-
erating system, wireless technologies and applications. How-
ever, these efforts are limited by the heavy layering existing
on smartphone platforms that makes difficult exploiting cross-
layer optimisations, which might be fairly straightforward
otherwise. One of the main reasons behind this limitation is
a complex business ecosystem in which multiple players (e.g.
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cellular network providers, content providers, cloud service
providers, hardware manufacturers and OS vendors) compete
to retain their share of the mobile business.

In this survey we analyse and compare general solutions for
energy efficiency on mobile devices at the software level on six
major axes: from operating system solutions to energy savings
via process migration to the cloud and protocol optimisations.
Our main contribution is to classify and provide a short
summary of the multiple efforts on studying, modeling and
reducing energy consumption in mobile devices. The work we
consider in this study are ones published between 1999 and
May 2011. Future hardware and next generation low power
wireless interfaces are excluded since they could be part of
an independent survey themselves. We selected the solutions
that can still be realistically implemented in current and future
mobile handsets at the software level. Although including a
quantitative comparison of the different solutions was one of
our initial goals for the survey, mobile platform fragmentation
issues and the diversity of evaluation methodologies made it
unviable. Nevertheless, as far as we are concerned, this is
the most recent survey about energy-efficient techniques on
mobile operating systems since the one published in 1995 by
Welch [1].

II. SURVEY STRUCTURE

As we have mentioned in the introduction, power-efficiency
in mobile systems can be achieved at different levels. Hence,
the survey is structured following a taxonomy of the papers
under study based on the type of optimisation they are
proposing. This classification is as follows:

o Energy aware operating systems (Section III, Table I).
The main question about energy efficiency in mobile
devices is Who should be responsible for energy man-
agement? Applications or operating system?. Probably
the right answer is both. At the operating system level,
the main idea is to reduce energy consumption by unify-
ing resource and energy management and by leveraging
collaboration between applications and operating system.
In fact, a key part of energy-efficient resources and energy
management is having a good understanding of how
resources are demanded by users and applications in the
system. This section describes some attempts towards
energy aware mobile operating systems, energy-efficient
resource management and resource profilers.

o Energy measurements and power models (Section IV,
Table II). Understanding how energy is being consumed
by the hardware components is essential in order to de-
sign energy-aware systems. This section describes some
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papers that measured the energy consumption and defined
power models for modern smartphones.

o Users’ interaction with applications and computing re-
sources (Section V, Table III). Battery lifetime has be-
come one of the top usability issues of mobile systems.
Hence, improving battery lifetime is highly related to
a better understanding of how users interact with their
battery and their resources. Any energy-aware system
must be able to know when, where and how the user
drains the battery and when there will be future charging
opportunities. This section comprises different papers
trying to understand battery charging cycles and users’
resource demands.

o Wireless interfaces and protocol optimisations (Sec-
tion VI, Table IV). Wireless interfaces are major power
consumers on mobile systems. There are multiple ways
of making wireless interfaces more efficient at every layer
of the protocol stack (also cross-layer optimisations) by
taking advantage of the different power states. However,
they usually require application, operating system and
network infrastructure cooperation. As we have already
mentioned in the introduction, discussing new wireless
interfaces and link layer optimizations are not within the
scope of this survey.

o Sensors optimisations (Section VII, Table V). Location-
aware applications became one of the most popular
services in mobile systems. A mobile device has sen-
sors such as GPS, network-based positioning systems
and accelerometer for location with different resolutions
and power demands. As a result, there is a trade-off
between energy-consumption and accuracy. This section
discusses solutions to minimise the energy consumption
of continuous sensing at the software level.

o Computation off-loading (Section VIII, Table VI). Cloud
computing is opening new possibilities to mobile systems
in many ways. Computation off-loading has been shown
to be effective for extending the computational power and
battery life of resource-restricted devices since the late
90s. In fact, even modern mobile operating systems rely
more and more on online services running in the cloud.
Remote execution allows migrating computation from
battery-powered mobile devices to wall-powered, higher
performance machines hosted somewhere on the Internet.
However, there are factors such as network state that
can clearly affect its performance. This section covers
the most relevant works about computation off-loading
in mobile devices from an energy perspective.

Finally, Appendix A contains all the energy measurements
of smartphone components and power models that can be
found in some of the papers included in this survey. As we
have already mentioned in the introduction, it is not possible
to make a quantitative comparison of the solutions along the
different areas due to the diversity of mobile platforms and
the diversity of evaluation methodologies used in the papers
under study.

III. ENERGY AWARE OPERATING SYSTEMS

Most of the literature about energy-awareness on mobile
devices takes the perspective of managing individual compo-

nents efficiently rather than from an overall operating sys-
tems viewpoint. This section describes the motivations behind
considering energy as a fundamental resource in mobile op-
erating systems as they currently do with memory, I/O and
CPU. We will describe works about mobile energy-aware
operating systems, energy-aware scheduling mechanisms, non-
intrusive resources profilers and the benefits of leveraging the
collaboration between applications and operating systems to
save energy. Note that resource-specific optimisation will be
described in sections VI and VIIL

A. The need of energy-awareness in mobile OS

The concept of an energy-aware operating system has been
proposed in the late 90s with energy-aware operating systems
for laptops like Odyssey [5] and ECOSystem [17] (the later
work is within the umbrella of the Milly Watt project [18]). In
2000, Ellis pointed up that energy should be considered as a
first-class resource in addition to the traditional OS perspective
of maximizing performance [3]. Although this topic has been
almost abandoned during the mid 2000s, it has regained
researchers attention recently due to the energy limitations
of current smartphones in which power-hungry applications
(or even malware) can reduce the battery life of the handset
to few hours of operation. This was the motivation behind
mobile energy-aware operating systems for mobile handsets
such as Cinder [9] and ErdOS [10].

There are two opposite propositions about how and by
whom energy-aware policies in mobile devices should be
performed. On the one hand, some authors suggest that
applications must adapt dynamically to energy limitations as
in Chameleon [19] but this approach lacks of a central entity
responsible for monitor all the resources consumption caused
by other applications. On the other hand, other researchers
suggest that resources and energy management should be
entirely done at the operating system. However, this solution
can present scalability problems. Both Odyssey and ECOSys-
tem present an intermediate solution. They follow a hybrid
approach in which both applications and operating system
collaborate to reduce the power consumption in a mobile
phone. Ideally, the operating system must know applications’
resource demands and the available energy resources until the
next charging opportunity to reduce the power consumption
while maximising user experience. However, new program-
ming models, schedulers, energy measurement tools, resource
profilers and power-based APIs must be developed in order to
support software-level energy management.

In 1995, Noble et al. introduced Odyssey [5]. In general
terms, it can be defined as a Linux-based energy-aware op-
erating system in which applications can adapt in runtime
the quality of service delivered to the users (e.g. degrading
video bit-rate or fidelity to reduce bandwidth and energy re-
quirements by the applications) based on the available energy
and resources. The system design can be found in different
papers as can be observed in Table I. Odyssey monitors
resource demands and provides an API to applications in order
to enable a bi-directional communication channel between
them and the operating system to notify the availability and
demand of resources. Odyssey also addresses applications’
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TABLE I

TOWARDS AN ENERGY-AWARE OPERATING SYSTEM. HYBRID SOLUTIONS ARE THOSE THAT LEVERAGE THE INTERACTION BETWEEN APPLICATIONS AND
OPERATING SYSTEM TO MANAGE RESOURCES MORE EFFICIENTLY AND THEREFORE, ACHIEVE ENERGY SAVINGS.

Energy-aware operating systems

Cite Name Description

[2], [3], [4] EcoSystem Hybrid energy-aware operating system for mobile devices (mainly laptops) that relies on an energy-aware
scheduller.

[5],[6],[7] Odyssey Hybrid Linux-based energy-aware operating system that adapts applications’ QoS (quality of service) to
energy demands.

[81, [9] Cinder Hybrid mobile operating system built on top of HiStar OS. It allows users and applications to control
and manage limited device resources in a similar fashion to ECOSystem.

[10] ErdOS Centralised energy and context-aware mobile OS built as an extension of Android OS. It exploits
proactive resource management techniques and it enables transparent opportunistic access to remote
resources in nearby devices.

[11] CondOS Context-aware OS architecture to manage efficiently sensing resources.

Resource profilers and resource management techniques

Cite Name Description

[12] PowerScope Hybrid resource profiler (part of Odyssey OS). It combines off-line and online techniques and maps
energy consumption to program structure (procedure level).

[13] Joule Watcher Fine granularity and event-driven resource profiler at the thread-level.

[14] STPM Hybrid middleware solution for Linux to support adaptive power management based on the observed
demand patterns from applications.

[15] CIST Hybrid application-aware middleware framework which adapts its behaviour to application’s needs.
Focused on wireless interfaces.

[16] Koala Centralised and proactive resource manager.

diversity and concurrency by taking advantage of applications’
history and feedback. In other words, energy management
is performed by estimating the future resource and energy
demands in order to determine what fraction of the total
energy is consumed during a certain period of time by each
application [7]. To do so, Odyssey takes advantage of the
online profiler PowerScope [12], which will be described later
in this section, to build a power model of the system.

ECOSystem is another linux-based operating system that
allocates energy to competing tasks, also taking into account
the fairness between applications and the trade-off between
performance and energy consumption. In ECOSystem, en-
ergy is fairly allocated to multiple hardware components and
applications using the currentcy' unit abstraction as it is
described in [4] and [2]. With this model, ECOSystem aims
to achieve a battery lifetime goal using the discharging rate
as an indication of energy consumption instead of using an
energy model as Odyssey does. In order to do it, ECOSystem
tracks applications’ resource demands using an adaptation
of Resource Containers [20]. ECOSystem has an energy-
centric scheduler that selects the next process to be executed
depending on the currentcy spent by those tasks relative to its
specified share. All those features allow defining policies that
selectively degrade applications’ service level to preserve en-
ergy capacity for more important tasks. Nevertheless, there are
some critics to this approach. Flinn and Satyanarayanan claim
that ECOSystem degrades performance by de-scheduling ap-
plications to leverage non ideal battery characteristics while
Odyssey leverages adaptivity [7].

Let’s focus now on mobile energy-aware operating systems.
Cinder [9] is a mobile OS designed on top of the HiStar
exokernel that exploits device-level accounting and power
modelling. It has been tested on HTC Dream devices but

"Energy currency used by EcoSystem to allocate energy to applications

at the moment it requires building an offline energy model
of the system as in Odyssey. Cinder tracks applications and
services responsible for resource use even across interprocess
communication calls serviced in other address spaces. It aims
to provide effective energy allocation by providing isolation,
subdivision and delegation to applications. The authors claim
that this approach also allows detecting malware and buggy
applications and it can easily limit their access to computing
resources and energy.

Similarly to ECOSystem, Cinder allocates energy to appli-
cations using two abstractions called reserve and taps to form
a graph of resource consumption. In Cinder, the system battery
is represented in the resource graph as the root reserve. When
an application consumes a resource, the Cinder kernel reduces
the right values in the corresponding reserve and its scheduler
only allows threads to run if they have enough reserves to run.
The rate at which the reserves are being consumed is con-
trolled by taps which are defined as special-purpose threads
whose only role is to transfer energy between reserves (they
support constant and proportional rates). Once an application
has consumed all its reserves, the kernel prevents its threads
to perform more actions. Nevertheless, Cinder allows reserve
debits between tasks for performing additional actions.

ErdOS [10] proposes a different philosophy to save energy
compared to the previous cases. ErdOS has been conceived
as an extension of Android OS?. ErdOS work was motivated
by the fact that resources’ state (e.g. GPS and cellular net-
works) and the usage patterns and habits of mobile users
are diverse and highly context-dependent. Moreover, the way
users interact with their applications cause complex interde-
pendencies between hardware and software components. As a
consequence, managing computing resources to applications
proactively based on predictions of the resources state and

2t can execute any existing Android application
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the users’ demands is more flexible and efficient than algo-
rithmic resource management [21]. In order to support this
feature, ErdOS proposes monitoring resources state, applica-
tions resources’ demands and users’ interaction patterns with
applications and learning from users’ behaviour and habits
(defined as users activities) to predict future resource demands
and availability in an event-based fashion. In addition, the
authors consider that computation, sensing and networking
should not be exclusively limited to local machine resources
so that accessing others in neighbouring handsets could be
beneficial both in terms of energy, quality of service and
usability. To do so, ErdOS leverages low power wireless
interfaces and existing social links between mobile user to
enable opportunistic resource sharing in a secure and fair way.

CondOS is a context-aware OS that also has saving energy
in mind [11]. In this positioning paper, the authors claim
that instead of allowing applications to manage independently
but inefficiently the available sensing resources, the operating
system must be responsible for that. This consideration could
provide different benefits such as better memory management,
scheduling and security as well as in terms of energy savings.
Finally, it is worth mentioning an interesting and totally
decentralised energy allocation model that was proposed for
the Nemesis OS [22], (an operating system designed for
multimedia applications). In this case, the authors describe
how to allocate energy using a micro-economy model. The
system allocates energy to applications based on their cost and
utility but it also considers how much congested the system
resources are. Applications have a defined credit to use when
accessing resources so they have a motivation to adapt their
energy consumption.

B. Resource profilers and resource management techniques

Efficient power management in mobile platforms is a com-
plex and challenging research problem due to the multitude
of possible hardware configuration options and power states,
and the interdependencies between computing, sensing and
networking resources caused by applications. As Snowdon
et al. claim in [16], power management in present main-
stream operating systems tends to be simplistic and as a
consequence, sub-optimal. Traditional operating systems run
the workload to completion at the maximum performance
setting and then they shift into a low-power mode (or to
the lowest performance setting) to achieve energy savings.
There are more efficient ways of managing resources from an
energy-aware perspective. However, this requires an accurate
knowledge of any task being performed inside the computer
system (at the process or thread level) in order to be aware of
the resource demands.

Hardware resource monitors have proved to offer valuable
information in the field of performance analysis. This section
shows how similar techniques are being applied to investigate
the energy usage patterns of individual threads and processes.
We will cover the different types of resource profilers (from
thread-level to application one) and general resource manage-
ment techniques (sections VI and VII will look at resource-
specific management and optimisations). Similar systems can
be found in following sections regarding remote execution

in order to estimate the cost of executing a task locally or
remotely.

Odyssey OS utilizes PowerScope [12] to map energy con-
sumption to program structure in a similar fashion to CPU
profilers such as prof command in Unix machines. In other
words, it maps energy to program structure at the procedure
level so it can help to identify applications behaving as
energy sinks. PowerScope combines both online and off-
line techniques to profile applications. It requires an external
power meter and a second computer to reduce the energy
overhead and any possible interference at the profile stage,
using statistical sampling to collect traces. As it happens
with energy models obtained using off-line methods, this
approach is not scalable since it requires repeating the off-line
training for every single hardware configuration and machine.
Nevertheless, this kind of tool has two advantages: it allows
developers to re-implement applications in order to meet the
design goals and it also allows the operating system to manage
resources more efficiently.

PowerScope estimates the energy use of applications by
measuring the time spent in each state and by counting the
number of state transitions. The authors claim that, in addition
to mapping energy costs to specific processes, it is necessary
to identify thread-level activities. For instance, a task which
blocks frequently (e.g. sockets) may expend larger amounts of
power on other resources such as the screen, disk, and network
when the processor is idle. An evolution of PowerScope
is described in [23]. In this case, the authors introduce a
predictive system to manage resources proactively in order to
support multi-fidelity computation. The resources monitoring
tool takes advantage of simple machine learning techniques so
the resources manager can process larger number of adaptions
with much more accuracy in a single step.

Joule Watcher [13] is a fine-grained and event-driven en-
ergy profiler that also accounts the energy consumption at
the thread-level. In this case, they use counters embedded
in the target hardware drivers to register events that imply
the consumption of energy by monitoring CPU, battery and
memory. Those parameters are accessed in the thread and from
the system context so it makes possible estimating the energy
consumption of individual threads and the whole system.
Obviously, because of the limited number of resources it
monitors, its real integration on a modern energy-aware OS
can be compromised.

Regarding resource management, earlier works described
that energy-efficiency must be performed on the application
side. Nevertheless, applications are usually responsible for
performing transformations to increase the possible energy
savings while the management policies are implemented in the
operating system. Heath et al.described how application trans-
formations can increase device idle times by informing the OS
about the length of an upcoming period of idleness [24].

Self-tuning power manager (STPM) [14] is an energy-aware
resource management middleware framework focused on 1/O
devices (i.e. wireless interfaces) which leverages collaboration
between applications and system and also provides an energy-
aware caching system. The idea is that applications disclose
ghost hints about their intentions of using any of the I/O
devices while the system exposes context information about
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the general state of the system to applications. With this
knowledge, STPM adapts the power management strategy to
the observed pattern from the applications. The author claims
that STPM makes better power management decisions because
it tries to achieve the best combination of performance and
energy conservation given a specific application workload.
In theory, this approach does not limit which requests are
serviced by hardware devices to applications as it might
happen in ECOSystem [2].

Likewise, CIST [15] shows that it is possible to achieve
higher energy savings by considering the needs of the ap-
plications rather than analyzing the behaviour of resource.
It does not require learning from applications as STPM
does [14]. CIST exploits Dynamic Power Management (DPM)
techniques [25] to reduce power consumption at runtime
and it takes advantage of idle times from applications to
selectively turn off hardware resources when idle. It takes
into consideration the overhead caused by the implicit energy
handoff described in [26]. The system evaluation was done
with the wireless card in Windows Mobile devices.

Koala [16] is a recent pro-active approach that allocates
resources based on the prediction of the performance and
energy consumption of each piece of software by collecting
fine-grained statistics about them. At each scheduling event,
the application behaviour is matched against the system policy
to find the most appropriate operating condition to achieve an
energy goal. They used an arbitrary policy to demonstrate that
it is possible to dynamically trade performance and energy
demands with an energy-delay policy. Such a policy provides
a single parameter for tuning the system to achieve energy-
savings. Finally, Llama [27] is another adaptive resource
management technique that estimates (for a particular user and
device) how much battery is likely to remain unused. Based
on this prediction, it adjusts the quality of service of the appli-
cations in order to achieve the forecasted energy requirements.
However, the authors have not properly evaluated the potential
energy savings that the system can achieve and they were more
interested in how Llama modifies the charging patterns of the
few participants in their experiment.

IV. ENERGY MEASUREMENTS AND MODELS

Designers of modern smartphone hardware and vendors
have incorporated power-saving features to allow hardware
components to dynamically adjust their power consumption
based on required functionality and performance. Many of
these features are available for software developers; however,
making an efficient use of them requires software developers
to have a good understanding of the implications of their
design decisions in terms of energy. In fact, mobile phones
present significant differences in terms of power consumption
signatures depending on the manufacturer, operating system
and other contextual factors such as network coverage. This
section introduces several analysis of the power consumption
in modern smartphones. Many of these models and measure-
ments can be found in the tables available in the Appendix.

One of the most detailed and general analysis of energy
consumption in mobile handsets is the study completed by
Carroll and Heiser in [28]. The authors present a detailed

break-down of the power consumption of the Openmoko Neo
Freerunner phone (2.5G) using an external high-resolution
power meter. The authors analysed this device because its
circuit schematics are freely available as opposed to other
closed platforms such as iPhone, Windows Mobile, Android
and Symbian. As a result, this platform allows the authors
to break down the overall energy consumption per hardware
component accurately at different power states.

Their results show that the most energy intense component
are the GSM module (700mW at full capacity and 800mW
when performing a phone call approximately) and the display
(400mW including LCD panel, touch-screen, backlight and
graphics accelerator). They also demonstrated that the content
displayed in the screen can affect the energy consumption
in the LCD panel: 33.1mW with white screen and 74.2mW
for a black screen. The authors validated the overall energy
consumption of a HTC Dream and Google Nexus One with
the ones they obtained with the Openmoko Neo Freerunner.
The last part of the paper is a coarse-grained estimation of
the potential energy consumption of different usage patterns.
They modelled five usage profiles (the paper does not include
any justification of the values used to model each profile) and
they simulated the energy consumed by these usage profiles
per day. They estimated that the total battery life varies by
almost a factor of 2.5 between the two extreme use cases: the
business user and a phone permanently at the suspend state.

Other studies looked at the energy consumption of specific
hardware components. Fitzek et al. analysed the energy impact
of 2G and 3G network usage for Nokia N95’s [29]. Specifi-
cally, they analysed the energy consumption of three common
services like text messaging, voice and data using an applica-
tion called Nokia Energy Profiler’ and an external power meter
for correctness. Their experimental results report a larger
energy consumption in 3G networks for text messaging (SMS)
and voice services compared to 2G networks. The energy
consumption of sending text messages increases linearly with
the length of the message while the signal strength clearly
affects the time required to transmit the message in both types
of networks. Interestingly, this parameter is not considered in
some of the power models that will be described later. In
the case of voice services, using GSM requires around 46%
less energy than UMTS networks. However, 3G+ technologies
become more energy efficient to transmit large volumes of
data.

The work by Balasubramanian et al. in [30] goes a bit
deeper in the analysis of IEEE 802.11 standards and cellular
networks (using exclusively Nokia Energy Profiler as measure-
ment tool). They found that cellular networks present a high
tail energy overhead by staying in high energy-states after
completing a transfer. This effect is much lower in GSM than
in 3G networks. On the other hand, IEEE 802.11 networks do
not present any tail energy and they are more efficient than
cellular networks. However, they have an energy overhead
caused by associating to the access point procedures. The
authors modelled the energy consumption required by the

3Nokia Energy Profiler is a proprietary application available for some Nokia
devices. Its maximum resolution is 4Hz. It is a popular energy measurement
tool for many energy papers in Symbian handsets. It allows measuring energy
consumption on the go.
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TABLE 11
COMPARISON OF THE DIFFERENT ENERGY MEASUREMENTS AND POWER MODELS. THE TABLE HIGHLIGHTS THE MOBILE PLATFORM, WHETHER OR NOT
THE POWER MEASUREMENTS WERE DONE WITH AN EXTERNAL MULTIMETER, AND THE RESOURCES UNDER STUDY. RESOURCES SUCH AS CAMERA,
AUDIO SUPPORT, SD CARD AND ACCELEROMETER ARE NOT CONSIDERED IN THIS TABLE BECAUSE OF SPACE LIMITATIONS. (SEE APPENDIX FOR
DETAILS)

Energy measurements and power models

Resources analysed

Cite  Platform Powermeter CPU Display GPS Bluetooth WiFi GSM 3G  Description

[28] Openmoko v NV v v v v v Power measurements.

[29] Symbian v v v' Energy impact of 2G and 3G cellular networks.

[30] Symbian v v v" Energy costs of wireless interfaces. Impact of
tail energy.

[31] Android v v High resolution analysis of 802.11 interfaces.

[32] Symbian v v Energy model for data transmissions on WiFi as
a function of the traffic burstiness.

[33] Android v v v v v v PowerTutor: online Power Model based on the
voltage curve and linear regression techniques to
infer power consumption at each different power
state.

[34] Android v v v v Power Model for Android using application
benchmarks.

[35] Symbian v v v Power Model using linear regression.

wireless interfaces in the devices they studied. Those findings
were used to implement a protocol called TailEnder which is
described in section VI.

Another interesting power model for wireless interfaces in
Symbian devices has been done by Xiao et al. in [32]. In
this case, the authors aim to model the energy impact of data
transmission over IEEE 802.11g as a function of the traffic
burstiness and an off-line measurement of the power consumed
by the devices at a specific power state. Their model, validated
using both an external multimeter and Nokia Energy Profiler,
can be used to estimate the energy consumption of IEEE
802.11g interfaces in runtime but it is not clear the power
overhead that this technique will have in the system due to
the computation requirements.

The work by Rice and Hay [31] is probably the more accu-
rate energy measurement of WiFi interfaces in smartphones.
In this paper, the authors present a platform to run automatic
measurements in mobile phones using high-resolution power
meters. Their platform synchronises the device and the mea-
surement tool which is sampling at 250KHz with minimal
error; using short screen pulses for synchronisation. The paper
also incorporates a detailed analysis of the cost of sending
messages over a IEEE 802.11 links. Their results reveal that
the energy cost per KB transmitted varies with the buffer size,
and interesting effects during transmissions and idle power
states.

The rest of the papers described in this section attempt to
create a general system-level power model. Xiao et al. [35]
consider the processors, wireless LAN interface and display
in Symbian devices. Their model uses linear regression with
nonnegative coefficients and the Nokia Energy Profiler to
know the total energy consumption in the handset. In the case
of Android devices, PowerTutor* uses information about the
discharging rate of the voltage curve to estimate the power

4The application is available in the Android Market. In their website, the
authors claim that it has been validated for HTC G1, HTC Dream and Nexus
One devices

consumption [33]. Despite that it is probably the most com-
plete model, it does not consider resources like accelerometer
and camera, and it does not take into account the impact of
signal strength and burstiness on wireless interfaces’. In order
to obtain the power model, PowerTutor uses linear regression
to compute the coefficients about the energy consumption of
each individual resource by combining all the hardware power
modes. In theory, this model will not require using an external
multimeter to measure the power consumption and it enables
online estimation of the power consumption looking at the
power state and the resources usage in the handset. However,
one of its limitations is that it requires a quite expensive
computational training to obtain the model and it does not
present an evaluation of the overhead caused by estimating
the power consumption in runtime and how frequently this
action is done.

A different approach compared to PowerTutor is the one
suggested by Shye et al. [34] (more detailed in section V-B).
This solution uses a background logger that samples resources
utilisation at 1Hz to estimate the power consumption of mobile
devices during normal users activity. As the previous models,
this model has been derived by linear regression techniques us-
ing a power meter. However, they used application benchmarks
rather than power states to derive the model. As a result, its
measurements can be inaccurate because of relying exclusively
on applications. It has been validated for HTC G1 devices and
it only considers EDGE as possible cellular interfaces.

V. USERS’ INTERACTION WITH APPLICATIONS AND
COMPUTING RESOURCES

An important aspect of energy management is having a good
understanding of how, when and where users interact with
their handsets and how they demand energy. This problem
can be divided in two as it is shown in Table III. The first
one is about understanding the charging-discharging cycle

5The authors mention in the paper that is currently under investigation
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of the users. Both users and the operating system must be
able to detect future power limitations to prioritise amongst
various tasks that the device can perform. However, in order
to efficiently prioritise those tasks without affecting the user
experience, we need to know how users interacts with their
handsets (and particular resources), and therefore how they
demand energy.

A. Battery interaction and charging cycles

Ravi et al. propose a system for context-aware battery
management that warns the user when it detects a power
limitation before the next charging opportunity [36]. They
use the current set of applications running, the discharging
rate (arguably an inaccurate indicator) and phone call logs
as inputs of their forecasting algorithms. Their motivation is
guaranteeing that crucial applications (e.g. phone, messaging)
should not be compromised by non-crucial ones. The evalua-
tion of their algorithm was simulated with the Reality Mining
Project [46] traces. Their results indicate that their algorithm
can predict battery consumption and charging opportunities
for users without a high usage entropy. The authors stress the
difficulty to predict phone calls because of the impact of social
factors and the high variability of calling patterns between
weekends and weekdays.

Similarly, Oliver [37] uses classification methods to iden-
tify three distinct types of charging patterns among 17,300
blackberry users. Those clusters are defined as opportunistic
chargers, light-consumers and nigh-time chargers. The logs
were created using a light and event-based background ap-
plication that monitors charging activity, battery level and
system shutdowns. In a following technical report [38], they
used clustering and classification algorithms to predict the
remaining energy level in mobile handsets. They implemented
a toolkit called EET designed to predict the successful exe-
cution rate of energy intensive applications. This tool allows
developers to evaluate the energy consumption requirements of
their applications against real user energy traces. EET tries to
determine the subset of high-level energy characteristics that
best differentiate users. Their results show that it is possible to
predict the energy level on a mobile handset within 7% error
within an hour and within 28% error within 24 hours.

Rahmati et al. [39] analysed how mobile users interact
with their handsets from a humancomputer interaction (HCI)
perspective. Their results are obtained from direct surveys to
mobile users and from a background process used to monitor
ten mobile users. They found qualitative and quantitative
evidences about the problems caused by energy user-interfaces
which can cause under-utilised power-saving settings, under-
utilised battery energy and, consequently, dissatisfied users. A
similar procedure has been followed by Banerjee et al. in [27].
They monitored and interviewed 10 mobile users between 42
to 77 days. In this case, the authors claim that, despite the fact
that there is a great variation among users, most of recharges
happen when the battery has substantial energy left and a
considerable portion of the recharges are driven by context
(location and time). That information was used to implement
Llama, an adaptive resource management already described in
section III.

To conclude this section, it is necessary to mention some of
the previous works on predicting the remaining battery capac-
ity. In [47], the authors introduce a history-based and statistical
technique for online battery lifetime prediction based on the
battery voltage curve while [48], [49] and [50] describe four
different stochastic battery models to estimate the battery life
in embedded systems.

B. Users’ interaction with mobile applications and resources

The works in this section are highly related with the
previous ones covering resources allocation and power models.
As we have already remarked, an important requirement for
effective and efficient energy management in mobile devices
is a good understanding of where and how energy is used
and how much of the system’s energy is consumed by each
part of the system. System architects should consider users’
interaction patterns with the devices to clearly understand
the impact of any optimisation on user experience. However,
monitoring resources usage is still a challenging task due to
the high diversity of applications and resources in moderns
smartphones and the need to design non-intrusive and privacy-
aware monitoring tools.

Some studies are based on traces collected directly from
the network [51]. The main advantages of that kind of study
are that they do not have any impact on the mobile device
and they can gather a larger number of traces. However,
unlike background loggers running on the device, they are
limited about the information they can collect. For instance,
Trestian et al. performed a large-scale network-based study
of mobile usage to characterize the relationship between
users, applications (based on URL requests) and their mobility
patterns [40]. Their results demonstrate that applications usage
is highly correlated with users’ habits and location.

The largest-scale experiment performed from the end users’
perspective was done using traces collected from a cross-
platform application that checks the state of cellular networks
and the performance of network-based applications called
3GTest [41]. Despite the fact that this is not a completely
energy-oriented paper, the traces from 30,000 mobile users all
over the world can be considered representative. They provide
rich information to understand the performance of cellular
networks before designing energy-aware systems. With the
traces obtained, the authors identified bottlenecks in the wire-
less network and also performance limitations and bugs in
operating system and popular network-centric applications. In
their results, the authors mention that network properties can
vary depending on the time-of-day and location for a specific
operator. Similar results were found by Tan ef al. [52] in a
shorter and more geographically limited scenario.

In [42] the authors analysed the mobile traffic patterns of 43
mobile users across 2 different mobile platforms using packet
sniffers. Their results indicate that the amount of daily traffic
generated by a user can vary from 2 to S0O0MB (browsing
contributes over half of the total amount). They also looked at
the inefficiencies caused by the generally small transfer size
of the packets (median size of 3KB). This fact incurs a huge
overhead in the lower layer protocols that varies from 12% to
40% when using transport security. Moreover, the uplink and
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TABLE III
STUDIES ABOUT USERS’ INTERACTION WITH BATTERIES, APPLICATIONS AND COMPUTING RESOURCES

Battery interaction and charging cycles

Cite Platform Description

[36] Linux and Symbian Battery life and charging opportunities predictor using contextual information and machine

learning algorithms.

[37] [38] Blackberry Charging cycle analysis. Energy level prediction using clustering and classification algo-

rithms

[39] Windows Mobile 5 Surveys with mobile users and battery monitoring to understand charging patterns.

[27] Windows Mobile 5 Battery monitoring and power manager system “Llama”.

Users’ interaction with mobile applications and resources
Cite Platform Participants Length Description

[40] n/a 281.394 1 week Online-applications usage and mobility patterns from net-
work traces.

[41] iPhone, Android, WiMo 30.000 n/a Cellular networks analysis from an end-user perspective.

[42] Android and WiMo 43 26-147 d. Analysis of smartphone traffic in 2 platforms.

[43] iPhone 25 10 weeks Monitoring tool for iPhone handsets. Privacy and design
considerations with a brief usage analysis.

[34] Android 20 12 days Resources profiler and energy model for Android Gl
devices. Break down of energy consumption in mobile
handsets per component in real scenarios.

[44] Android and WiMo 33/222 7-28 weeks Resources usage diversity of users from two different
platforms. Temporal impact.

[21] Android 18 1-2 weeks Impact of temporal and spatial context and users’ habits
in resource demands and energy consumption. Resources
interdependencies caused by users’ interaction patterns.

[45] WiMo 4-16 1-2 weeks Resources profiler in mobile handsets which incorporates

users’ feedback.

downlink retransmission rates are 3.7% and 3.3% respectively.
Consequently, 25% of the TCP sessions in cellular networks
can experience a retransmission. They emphasize that while
packet loss is the main factor that limits the throughput
of smartphone traffic, larger buffers at Internet servers can
improve the throughput of a quarter of the transfers. Moreover,
a good knowledge of the traffic patterns in smartphones can
enable new radio management policies that can save up to
35% of energy by reducing the idle time with minimal impact
on the system performance and usability as we will see in
section VI.

There are other works that monitor mobile users from
a more general perspective. An example is LiveLab, a re-
programable and event-based resources logger for jail-broken
iPhone devices [43]. The authors describe a non-intrusive
methodology to measure real-world smartphone usage and
wireless networks taking into account users’ privacy. They ran
surveys to understand the privacy concerns of the users which
revealed that they are happy to be monitored if their identities
are not associated to the data collected. This paper seems to be
an extension of a previous work by Rahmati and Zhong [53]
which tried to understand how users interact with non-voice
applications over a 4 months period. Their results also indicate
that users’ location affect the applications they use. However,
the results presented in this paper are not representative since
experiment subjects did not have cellular data plans so they
mainly interacted with their online applications in locations
with open wireless access points.

In LiveLab, the authors describe how a logger must be
designed to not incur additional energy and computational
costs in the handset. They consider that a non-intrusive logger
must be event-based to avoid periodical polling by taking into

account the state of the resources, it must take advantage
of information already available in the handset and it should
leverage system wake-ups to reduce additional overhead for
data collection. However, the paper does not mention the
resolution of the data logger and the energy cost of this
technique. The paper also contains a short study of 25 iPhone
smartphone users. The results show that users’ interaction with
the device and the state of the resources depend on contextual
information such as time and space. Moreover, usage patterns
also evolve in time. However, the analysis of the human
interaction is very simple and seems to be focused exclusively
on only two users.

Shye et al. [34] developed a background logger that pe-
riodically monitors resource utilisation at 1Hz during normal
usage. In order to estimate how much energy accounts to each
specific application and resource, they used an energy model
built using linear regression techniques (already described
in section IV). Their results show that energy consumption
depends on the way each individual user interacts with the
device. The authors found a large variation in the power break-
down between users and they claim that the screen and the
CPU are the two largest power consuming components while
the idle state accounts for 49.3% of the total system power
when averaging across all the users. However, those numbers
can be biased by their own logger and its high sampling
frequency®. This paper also suggests optimisations to increase
the battery life of mobile devices. For instance, the authors
describe a technique to reduce the energy consumption of
the long screen usage intervals by slowly reducing the screen

9The overhead caused by the background logger in the system resources
is not included in the paper and the CPU cost can be associated with it.
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brightness and the CPU frequency over time taking advantage
of a phenomena called change blindness (this concept refers
to the inability for humans to detect large changes in their
environment). This approach is similar to the one suggested
by Falaki et al. for Symbian devices screen in [54] and the
one described by Brakmo et al. to set the CPU in sleeping
mode during small periods of time in which the CPU load is
low (e.g. situations like when the user is reading a document
or looking at a website) [55].

A second work by Falaki et al. also looked at the diversity
of usage patterns among 33 Android and 222 Windows Mobile
users’ [44]. They collected two different dataset in order to
see the differences between screen state, applications, traffic
patterns and battery level across all those users. In the case
of Windows Mobile dataset, it only has data about which
application was running and the screen state. Consequently,
the dataset does not contain all the possible interactions with
the device and diversity of mobile users. The authors aim
to characterise intentional users activities and how they can
impact network and energy usage. They also highlight that
the results suggest that a proactive system-centric resource
management customised to each user can achieve important
energy savings due to the wide spectrum of usage patterns.

Vallina-Rodriguez et al. performed a study using a back-
ground application to collect traces from 18 mature Android
users during 2 weeks [21]. The dataset contains contextual
information and more than 25 state and usage statistics from
multiple resources and applications, sampled every 10 sec-
onds®. This study notably differs from previous works because
it tries to understand the existing relationships between re-
sources caused by the interaction patterns of the users.

The authors take advantage of machine learning techniques
to better understand these dependencies and to see how con-
textual information and users’ habits cause resource demands.
The paper demonstrates that it is possible to predict how
users will interact with their mobile devices using location
and temporal information. Consequently, the authors claim
that based on the experimental results, an algorithmic resource
management is not feasible for mobile devices and it is
necessary to find more flexible ways of managing resources
which can adapt to users’ interaction patterns. They suggest
that an efficient resource management in mobile systems must
be proactive, system-centric and user-centric by leveraging
contextual and fine-grained information from the system.

MyExperience [45] is a system for capturing both objective
and subjective data directly from Windows Mobile handsets.
In the paper, it is not clear what kind of traces they are
collecting and how detailed their logs are. The work describes
design considerations and the system architecture as well as a
performance evaluation of its footprint in the CPU, memory
and the battery life. The authors estimated that their logger can
reduce the battery life of the handset around a 12% despite
using context triggers to sample the information. What really
differentiates this work from others is that it requests users’
feedback to understand the perceptual experience of the user

"The windows mobile traces were not collected by the authors and were
part of a previous experiment.

8The subjects noticed a slight reduction of their battery life and the highest
power consumption caused by the monitoring tool is around 300mW

after accessing an specific service. The paper also presents a
brief study of the battery interaction patterns, mobility and
text messages from 14 users during 1-2 weeks’. Interestingly,
the charging pattern results obtained in this paper are similar
to the ones that can be found in [27].

VI. WIRELESS INTERFACES AND PROTOCOL
OPTIMISATIONS

Battery drain is a general problem in any portable wireless
device. In the case of cellular networks, new technologies
such as LTE aim to reduce the energy cost per transmitted bit
compared to previous standards [56]. Other studies are focused
on solutions that extend the battery life of mobile devices
by improving the handover mechanisms [57] and on local
wireless connectivities. There have been great improvements
such as Bluetooth Low Energy (BLE, previously known as
Wibree) [58], low-power WiFi techniques, 6LowPAN on top
of IEEE 802.15.4 standards [59] and new technologies such
as Qualcomm’s FlashLink [60].

Moreover, it is possible to achieve energy savings at each
layer of the protocol stack. A recent survey by Tsao and
Huang [61] details the efforts to implement energy-efficient
MAC protocols in IEEE 802.11 standards while the survey by
Jones et al. collects all the studies performed before 2001 [62].
In fact, it is important to highlight that optimisations for
IEEE 802.11 standards are not usually applicable for cellular
networks because of their different power modes and features.
Nevertheless, this survey is mainly focused on solutions for
energy-efficient management of IEEE 802.11 interfaces that
can be implemented at the software level in current mobile
phones. Techniques involving protocols below the network
layer are excluded.

Generally, there is an energy-usability trade-off when man-
aging networking resources in mobile systems. As an ex-
ample, cellular interfaces present three power modes: DCH
(Dedicated Channel) FACH (Forward Access Channel), an
intermediate power mode, and IDLE. In the case of WCDMA
technologies, a large fraction of energy is wasted in these
intermediate but still high-power states after the completion
of a typical transfer in case there is going to be an immediate
transmission once the current one is finished in order to
improve the user experience in cellular networks. Note that
in GSM technologies, the inactivity timer in the FACH state
is much smaller compared to 3G (6 vs. 12 secs). As a
consequence, as it was already described in previous sections,
the work by Balasubramanian er al. [30] shows how cellular
networks present a high fail energy overhead caused by the
FACH power state. TailEnder is a protocol designed to save
energy in mobile handsets by scheduling data transfers using
prefetching and caching for applications which can tolerate
it so it can minimise the tail energy caused by the inactivity
timer [63].

On the other hand, IEEE 802.11 networks are more efficient
than cellular networks for transmitting data but they present a
higher overhead when the device is associating to the access
point and a higher power consumption in idle mode. Because
of this reason, most of the works described in this section try

9The authors clearly mention that their results are not representative
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to leverage low power interfaces or contextual information
to smartly wake up the WiFi interface from sleep mode
when there is likely to have an access point instead of being
permanently in a higher power state (or even idle) as we can
see in table IV.

A common solution for IEEE 802.11 networks (i.e. WiFi)
is based on exploiting traffic shaping techniques. There are
periods of time during transport-layer sessions in which it is
possible to set the wireless interface in low power modes. For
instance, Bertozzi explores transport protocol optimisations
for reducing the energy consumption of IEEE 802.11 stan-
dards with minimum performance overhead [64]. This paper
describes how it is possible to monitor the run time parameters
in the transport protocol (such as the receive buffer utilisation)
to identify idle periods with a much higher granularity than
the RTT values. Similarly, Krashinsky and Balakrishnan [65]
propose setting the wireless interface to sleep during TCP slow
start phase by designing an alternative adaptive algorithm to
the IEEE 802.11 power saving mode (PSM).

Two recent publications regarding energy efficient manage-
ment of the power states of wireless networks are Catnap [66]
and Micro Power Management [67]. Both papers exploit the
fact that wired networks are usually the bottleneck while IEEE
802.11 standards support higher data rates. Catnap reduces
the energy consumption by allowing the wireless interface to
sleep during data transfers. This is achieved by shaping the
traffic to combine small gaps between packets into bigger sleep
intervals, even during data transfers. However, this solution re-
lies on the collaboration of a middle-box which decouples the
wired segment from the wireless one. The system evaluation
was performed under realistic network conditions. The results
reveal that this technique can set the wireless interface to sleep
for almost 40% of the time for a 10MB transfer. Nevertheless,
its performance might be compromised under common mobile
traffic because of the small transfer size of mobile traffic [42].

Likewise, Micro Power Management [67] takes advantage
of short time intervals during wireless transmissions (in the
order of 100ms) in which it is possible to set the NIC interface
into idle state. This paper differs from Catnap [66] because
it does not require cooperation from a middlebox and it
simply adapts frame delay to demanded network throughput
with minimal cooperation from the access point. In the case
of incoming data, it exploits IEEE 802.11 retransmission
mechanism to wake up the device. Their results show that it
is possible to achieve more than 30% power reduction for the
wireless transceiver for various applications without affecting
the user experience.

There are also indications about the fact that energy ef-
ficiency of wireless networks can be affected by the traffic
pattern. Tan et al. describe a new client-centric protocol called
PSM-throttling!? in [68]. The authors mention that PSM mode
usually requires infrastructure support and it can degrade the
transmission throughput thus increasing transmission delay.
Consequently, that kind of solution is not suitable for QoS
applications. The authors describe how it is possible to reshape
the TCP traffic into periodic bursts with the same average
throughput as the server transmission rate so the client can

10pPSM stands for Power Saving Mode

accurately predict the arriving time of packets and set the
wireless interface in a lower power mode accordingly. Other
works such as [77], [78] and [79] also analyse the energy
savings that can be achieved by traffic shaping techniques.

Compression can also be used for reducing energy con-
sumption. It has been estimated that sending a bit on a
wireless link requires over 1000 times more energy than a
single 32-bit computation. Several research projects looked
at the benefits of compressing text data (or degrading the
quality in case of video and audio) on a wireless transmission
despite the implicit computational and memory costs. Barr
and Asanovic [69] indicate that it is possible to save up to
57% of energy by compressing text data before transmitting
it on a WiFi link. However, those techniques require tools
to estimate in runtime when compression will cause energy
savings or not in order to decide when it must be used. Pre-
viously, both Housel and Lindquist [80], and Krashinsky [81]
demonstrated the benefits of using HTTP compression in terms
of energy savings and bandwidth requirements without adding
any additional delay in the transmission. In fact, compression
can reduce the parsing time of XML and JSON data when
it is transmitted over a bandwidth-constrained link. Most of
modern web browsers (including mobile ones) support GZIP
because of this reason.

A third type of work takes advantage of the complementary
strengths of the several wireless interfaces supported in mobile
phones and tries to combine them efficiently. In [70], Agarwal
et al. describe an energy management architecture called
Cell2Notify which uses the cellular radio on a smartphone to
wake-up the wireless LAN interface upon an incoming VoIP
to redirect the call through the WiFi interface. This system
leverages the better quality and energy-efficiency of WiFi for
data transmissions while minimising its expensive scanning
cost. Their simulations results indicate that it is possible to
save around 70-80% of energy compared to the single radio
case. Shih et al. had previously described in [71] a similar
solution.

Agarwal et al. [72] and the authors of Blue-Fi [73] describe
how to save energy by taking advantage of Bluetooth radios
and contextual information to serve as a paging channel
for IEEE 802.11b. The results (obtained with a real system
deployment with iPAQ PDA’s equipped with Bluetooth radios
and Cisco Aironet wireless networking cards) show that it is
possible to save between 23% to 48% of energy compared
to the present IEEE 802.11b standard operating modes with
negligible impact on performance. The system also predicts
when there will be Wi-Fi connectivity by combining con-
textual information obtained from Bluetooth scans contact-
patterns and from cell-tower information. It allows the system
to switch wireless interface on and off depending on their
availability. A slightly different approach is the one leveraged
by ZiFi [74]. This system provides a similar functionality to
the previous system but it takes advantage of the interference
signature generated by the WiFi beacons on the ZigBee scans.
The authors did not evaluate the potential energy savings that
they can achieve with that system.

Context-for-wireless is a context-aware intelligent switching
algorithm between WiFi and cellular networks to reduce the
energy consumption substantially [75]. The authors propose
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TABLE IV
WIRELESS INTERFACES AND PROTOCOL OPTIMISATIONS. MOST OF THE STUDIES FOR WIRELESS INTERFACE RESOURCE MANAGEMENT ARE TARGETING
IEEE 802.11 STANDARDS. THEY EXPLOIT OTHER WIRELESS INTERFACES AND CONTEXTUAL INFORMATION TO IDENTIFY WHEN A WIRELESS ACCESS
POINT WILL BE AVAILABLE. THIS ALLOWS TURNING ON OR OFF THE WIRELESS INTERFACE WHEN NECESSARY AND, CONSEQUENTLY, REDUCING THE
ENERGY SPENT WHILE IN HIGH POWER MODES SUCH AS IDLE MODE.

Wireless interfaces and protocol optimisations

Interfaces Used

Cite Name WiFi  Cellular Others Description

[30]  TailEnder v v Effect of Tail energy on 3G networks. Prefetching and traffic shapping techniques.

[64] n/a v Identifies idle periods in a TCP session to set the wireless interface in a lower
power mode.

[65] n/a v Sets the wireless interface to sleep during TCP slow start phase.

[66]  Catnap v Allows the device to sleep during data transfers with the collaboration of a middle-
box.

[67] MPM v Traffic shapping technique to exploit short idle times on wireless transmissions.
(Simulation).

[68] PSM-Throttling v Traffic shape techniques to generate periodic bursts to easily predict the arriving
time of packets with QoS support.

[69] n/a v v Data compression on wireless transmissions.

[70]  Cell2Notify v v Exploits Cellular Networks to wake up WiFi interfaces for VoIP applications.

[71]  WakeOnWireless v v Exploits Cellular Networks to wake up WiFi interfaces in VoIP applications.

[72] n/a v v Exploits Bluetooth to wake up WiFi interfaces in order to reduce power
consumption of WiFi in idle mode. (Windows Mobile Prototype)

[73]  Blue-Fi v v v WiFi coverage prediction using cellular networks and Bluetooth scans to reduce
the power consumption of WiFi in idle mode.

[74]  ZiFi v v Exploits ZigBee to activate WiFi interfaces depending on the interference caused
by WiFi beacons on the ZigBee discoveries.

[75]  Context-for- v v v Leverages contextual information, history, network conditions and users’ mobility

wireless to enable an energy-efficient management of WiFi and cellular networks.

[29] n/a v Smart energy-efficient usage of cellular network standards (2G and 3G) depending
on the requirements of the application.

[76] SALSA v v Decides which interface to use based on the energy-delay trade-offs of the

available interfaces.

leveraging contextual information such as time, history, cellu-
lar network conditions and mobility to formulate the selection
of wireless interfaces as a statistical decision problem and to
predict future network conditions. As a result, they do not
need to power up the WiFi interface so often. Their results
over simulations show that Context-for-wireless can double
the battery life of mobile handsets. Nevertheless, the authors
also mention that both the analysis and the field validation they
have performed can be compromised by the small number of
participants in their experiment.

In the case of cellular networks management, the energy
results from [29] described in section IV lead the authors to
suggest that the operating system must be able to switch the
type of network depending on which service is being requested
by the user and the applications. Their simulation results
show that it is possible to obtain important energy savings
despite the energy and time cost of making handoffs from
GSM to UMTS and vice versa. However, this study does not
analyse how the transitions between networks can affect the
user experience due to the implicit time required to complete
the change.

Finally, Ra et al. use the Lyapunov optimisation framework
to select the optimal link for a wireless communication taking
into account the energy-delay trade-off [76]. Their algorithm
known as SALSA, adapts to channel conditions and requires
only local information to decide whether and when it must
defer a transmission in order to save energy.

VII. SENSORS OPTIMISATIONS

Sensing and context-awareness played a fundamental role
in the explosion of rich mobile applications in the last years.
Mobile applications often need location data to update locally
relevant information, to provide a service requested by the
user, to find nearby friends or when to adapt the system
to manage resources efficiently. However, accessing sensing
resources can be expensive in terms of energy. Consequently,
continuous energy-efficient location sensing has become a hot
topic both in pervasive computing and sensor networks.

In this section we concentrate on solutions at the software
level, although there are also some researchers trying to
demonstrate the need to re-design the system architecture at
the hardware level for energy-efficient sensing [89]. Priyantha
et al. propose adding a low power micro-controller or an addi-
tional low power core in the multi-core processor responsible
for managing sensors. Such a small modification, enables most
parts of the phone to enter a low power sleep state while
the low power sensor processor is continuously sampling and
processing sensor data.

Modern smartphones include different types of location
sensors with different resolution and energy demands: GSM,
WiFi-based and GPS location sensors have an average error
in the order of 400m, 40m and 10m'! respectively. In these
applications, GPS is often preferred over its alternatives such

"Even in clear sky, GPS can present measurement errors in the order of
hundreds of meters
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TABLE V
SENSOR OPTIMISATIONS. MOST OF THE WORKS AIMT TO TACKLE THE CONTINUOUS LOCATION SENSING CHALLENGE. THE TABLE HIGHLIGHTS THE
TECHNIQUES USED BY EACH ONE OF THE SOLUTIONS.

Sensor-based optimisations

Sensors Used

GPS Accel. GSM  Probab.
Models

Cite  Name Platform

Adaptation  Description

[82] SenseLess Symbian v v

[83] EnLoc Symbian v v v v

[84] A-Loc Android v v v v

[85] EnTracked Symbian v

[86] RAPS Symbian v v v v

Android

[87] n/a Android v v v

[88] JigSaw Symbian

iPhone

Energy-efficient location-sensing combining ac-
celerometer and GPS. It exploits the accuracy-energy
trade-off. Evaluation with a real deployment.
Energy-efficient location-sensing combining ac-
celerometer and GPS. It exploits the accuracy-energy
trade-off and probabilistic models of human mobility.
Evaluation via simulation.

Energy-efficient location sensing taking advantage of
probabilistic models and a combination of all the
location sensing resources.

v Estimates system conditions and mobility to schedule
position updates to online location services. Results
obtained with simulation but validated with a real
deployment.

v Rate-adaptive positioning system that uses a proba-
bilistic mobility model of the user, all the location-
sensing resources, opportunistic synchronisation be-
tween users and resource state monitoring.

v Location sensing application that takes advantage
of accelerometer-based suppression, location-sensing
piggybacking and energy-aware adaptation of the
sensing parameters.

v General framework for continuous sensing of any
sensing resource. Supports accelerometer, micro-
phone and GPS.

as GSM/WiFi based positioning systems because it is known
to be more accurate despite its higher energy demands.

Mobile applications are becoming more context-aware,
specially location-aware. Consequently, support for energy-
efficient continuous sensing became a demand of mobile
developers to provide richer applications. In this space, it is
possible to differentiate three types of solutions which can be
complementary:

o Systems that combine multiple sensors to reduce the
energy consumption while minimising the error.

o Methodologies that rely exclusively on probabilistic mod-
els of users’ location to infer future locations to reduce
the number of sensing reads.

« Solutions that try to find heuristics to adapt the sampling
rate.

Ben Abdesslem et al. [82] combine accelerometer and
GPS reads. The main idea is using less expensive sensors
more often instead of more energy expensive sensors. By
choosing when to use more energy-efficient sensors, it is
possible to decrease the energy consumption of mobile sensing
applications. However, the evaluation of the system does not
provide accurate values since the authors based their results
on the battery life. They gave two devices to the same user:
one running SenseLess (implemented using the Python PyS60
API) and the other one sampling GPS periodically every 10s
during 30 min approximately. The results indicate that the
device running SenselLess takes 58.8% less energy than the
one sampling periodically its GPS. However, its measurement

error is increased because the system considers actions like
sitting down or standing up as movements.

EnLoc [83] provides a location sensing adaptive framework
that exploits mobility patterns of the user and decides which
sensor to use taking into account the accuracy-energy trade-off
of the different location sensors available in mobile phones.
The authors take advantage of users’Logical Mobility Tree
(LMT). This model allows the system to sample at a few
uncertainty points which may be sufficient for predicting
future locations. EnLoc utilises dynamic programming to find
the optimal localization accuracy for a given energy budget:
it decides which localisation sensor will be the best one for a
given scenario and energy budget. The system was evaluated
based on the measurement error using simulations from real
mobility traces and energy measurements obtained from a
Nokia N95 using Nokia’s Energy Profiler.

A-Loc [84] incorporates probabilistic models of user loca-
tion and sensor errors. It was implemented as a middleware
solution for Android devices which requires applications’
collaboration. A-Loc selects the most energy-efficient sensor
to meet applications accuracy requirements which are either
specified explicitly by applications or automatically by the
system. The system uses the probabilistic models to choose
among different localisation methods and tunes the energy
expenditure to dynamically meet the error requirements.

EnTracked [85] looks at the problem of uploading location
information to an online location server under application-
specific positioning error limits. EnTracked estimates and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VALLINA-RODRIGUEZ and CROWCROFT: ENERGY MANAGEMENT TECHNIQUES IN MODERN MOBILE HANDSETS 13

predicts the system state and mobility of the user'? to schedule
position updates in order to minimise the power consumption
while optimising robustness. Their evaluation has been done
with simulations but the results have been validated in real
scenarios with Symbian devices. Their results reveal potential
energy savings around 40% to 50% compared to periodic
sampling with a maximum (and also unlikely) error of 200m.
EnTracked uses the GPS-estimated uncertainty to quickly
schedule a new measurement if a potential bad measurement
is performed. A similar work has been done in [90], using
what they call uncertainty-aware tolerances which are user-
defined error bounds that provide accuracy guarantees with
consideration of different sources of data uncertainty: sensing
uncertainty, sampling uncertainty and communication delay.
They exploit hidden Markov models to predict the mobility
of the users and they also take advantage of Bluetooth scans
to identify static scenarios based on devices in the same
location. Their simulation results point out that it is possible to
achieve at least 16% of energy savings for 17.5m of tolerance
and up to 80% for 250m. The system was also evaluated with
emulation and a real world deployment.

GPS accuracy in urban areas can be poor. RAPS [86]
takes inspiration from this observation and uses location-time
history of the user to estimate user velocity and adaptively turn
on GPS in case the estimated uncertainty in the prediction
exceeds the accuracy threshold. RAPS integrates a bunch
of solutions to improve accuracy and to reduce the energy
consumption. It allows synchronising GPS readings between
neighbouring mobile devices to reduce power consumption, it
blocks GPS reads when the user is subscribed to cellular base
stations where it is unlikely to get a GPS read (e.g. an area
where the user is usually indoors) and it exploits accelerometer
data to estimate user velocity. In fact, RAPS can detect human
activity which has a timescale larger than multiples of 16
seconds by simply turning on the accelerometer for a short
period of time. Combining those features together, allows
reducing the energy consumption around 40% compared to
periodic GPS sampling (7' = 180s). In this case, the results
were validated with a real deployments using Android and
Symbian devices.

Zhuang et al. [87] implemented a location sensing mid-
dleware system that combines four techniques to reduce en-
ergy consumption in location sensing smartly: substitution,
suppression, piggybacking and adaptation. Some of those
techniques can be found in some of the previous works.
As the authors describe in the paper, substitution makes
use of alternative location-sensing mechanisms (e.g. network-
based location sensing) that consumes lower power than
GPS. Suppression utilises less power-intensive sensors such
as accelerometers to suppress unnecessary GPS sensing if the
user is static. Piggybacking synchronizes the location sensing
requests from multiple running location-based applications'3.
Finally, adaptation aggressively adjusts sensing parameters
such as time and distance depending on the remaining battery
capacity. The system is designed as a middleware layer on

12The system only supports pedestrians as possible movement model

3The energy consumption becomes even more significant if multiple
applications are requesting location reads. This paper is the only one that
takes this solution into account

the Android OS and their evaluation results show that this
approach can save up to 75% of energy by reducing the access
to GPS reads on 98% using real-life measurements with an
error lower than 100m.

The last paper in this section is Jigsaw [88], a middleware
solution that improves the resolution of several sensors (such
as accelerometer, microphone and GPS) while also reducing
the energy consumption required to sense the environment. Al-
though Jigsaw is application-centric, it provides specific APIs
to recognize users’ activities using contextual information with
machine learning techniques. The authors claim that one of the
most-energy consuming tasks when sensing the environment
is processing raw sensor data from sensors. For example, the
microphone generates data at a much higher sampling rate than
other sensors and requires computational-intense algorithms to
be processed. The authors claim that the system can perform
energy-efficient long term GPS tracking; however, the paper
lacks a detailed energy evaluation.

VIII. COMPUTATION OFF-LOADING

Cloud computing is a promising technology which has the
potential of providing many benefits to mobile computing such
as computational power and energy efficiency. Even in the
late 90s, Vahdat et al. [3] and Rudenko [94] considered that
energy can be considered as another internet resource similar
to computation. In fact, more and more applications and even
OS services rely on cloud computing every year. Leveraging
cloud computing services for mobile devices has received large
interest recently and will definitely gain more interest in the
future with services such as Apple’s iCloud or Microsoft Live
Mesh'4.

Those earlier works already envisioned the possibility of
integrating cloud support at different levels, from programmer-
decisions [95] to compiler-based [96] and automatic solu-
tions [97]. However, factors such as network conditions can
affect the efficiency of process migration. This fact opens
vast research opportunities on analysing the energy impact
and benefits of process migration and virtualisation in mobile
handsets.

Miettinen and Nurnimen analysed the critical factors that
must be taken into account for energy-efficiency in process
migration from a network perspective [98]. They claim that
the benefits and costs of migrating an application to the cloud
can be divided into temporal (e.g. time required to transfer
the data from the device to the cloud, to compute the task
in the cloud and the time to transfer result information),
computational and in terms of energy too. However, those
benefits are dependant on the highly-variable performance of
the underlying resources (e.g. CPU, bandwidth and network
latency) which must be fine-grained monitored (consequently,
some of the works described in section III can be used for
this scenario). In fact, some authors assert that the key to the
successful implementation of remote execution is prediction.
The client-side must be able to predict when the cost of
performing remote execution will not outweigh its benefits
based on the state and the availability of resources.

14Nevertheless, those services are more focused on storage support rather
than computation offload
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TABLE VI
COMPUTATION OFF-LOADING

Off-loading Computation

Cite Name Platform  Description

[91] Spectra Odyssey Self-adaptive remote execution system for pervasive computing based on Odyssey OS. Programmers
must decide which methods can be offloaded.

[92] NWSLite n/a Computationally-efficient and highly accurate proactive utility for mobile computing off-loading.
Decides when to perform offloading based on available resources state and application needs.

[93] Maui WiMo Fine-grained monitoring of applications to efficiently off-load computation to the cloud in Microsoft

.Net platform. Requires developers to decide which methods can be offloaded.

Spectra [91] (built on top of Odyssey OS) is a remote
execution system designed for pervasive computing which
monitors environmental conditions and both local and remote
resources state (mainly energy but also CPU, network and
cache). With this knowledge, Spectra adjusts the relative
importance of each task and decide where to locate function-
ality dynamically. However, Spectra requires programmers to
decide how to partition an application manually for different
fidelities. Spectra chooses the execution plan that maximizes
a user-provided utility function at runtime. The evaluation
results show that Spectra can select the best execution plan
for the applications they’ve tested.

NWSLite [92] is a computationally efficient and highly
accurate prediction utility for mobile computing off-loading.
NWSLite was implemented as an extension of Network
Weather Service (NWS), a forecasting toolkit for adaptive
scheduling of grid computing applications. The authors draw
attention to the fact that network bandwidth and latency dictate
the time required for communication while CPU availability
on both the device and the target impacts local and remote
execution time. NWSLite leverages statistical techniques'
which use past behavior to predict the potential costs of
offloading the application to the server. The goal of the
system is to enable high accuracy to reduce prediction er-
ror because a large deviation can cause incorrect decisions
about the best execution choice for the device as it is also
described in Maui [93]. Compared to Spectra, NWSLite has
a much more fine-grained tool for monitoring applications
and resources. It applies statistical forecasting techniques to
individual performance histories and generates forecast reports
for the resources being monitored. In fact, it selects the most
appropriate statistical technique at a given time for a specific
resource (e.g. from the simple Last Value to Sliding Window
techniques).

Maui is a robust architecture for process migration which
decides at runtime the methods that could be executed re-
motely with different techniques [93]. The decisions are driven
by an optimisation engine that aims to achieve the best
energy savings under the current connectivity constrains and
historical data about the process execution. Maui supports
two mechanisms for remote execution on mobile devices.
As the authors say, the first one relies on programmers to
specify how to partition a program by allowing them to
define which states could be executed remotely and how
to adapt the program partitioning scheme to the changing

5The authors mention that performing the prediction can be expensive in
terms of power consumption since the statistical techniques can use floating-
point operations

network conditions. Secondly, it supports full process and full
VM migration to allow individual applications to migrate to
the cloud. As we have previously remarked, Maui monitors
resources with a fine-grained profiler to know their current
state but it also uses historical program data to predict how
the process will behave. In fact, Maui supports mechanisms to
identify the current state of the running methods to extract only
the program state needed for the migration. The evaluation of
a real system deployment shows that it is possible to achieve
important energy savings in resource-intensive applications.
There are also recent works looking at the integration of
cloud computing services with mobile devices without an
energy-efficiency perspective. CloneCloud [99] describes a
flexible architecture for Android devices that enables accessing
cloud computation to augment mobile device computational
power without requiring the programer to think about appli-
cation partitioning. CloneCloud enables applications to off-
load part of their execution from the mobile device onto
device clones in the cloud at application-layer virtual ma-
chines such as Dalvik VM, Java VM and .NET. To con-
clude, Cloudlets [100] discusses the technical obstacles and
the performance benefits behind exploiting virtual machine
technology on mobile handsets to rapidly migrate the whole
OS to instantiate customized service software in the cloud.

IX. CONCLUSION

Mobile handsets are still power-hungry devices despite the
tremendous efforts done by hardware manufacturers and op-
erating system vendors in the last years. Modern mobile plat-
forms such as Android and iPhone are built as modifications
of general-purpose operating systems which do not consider
energy-efficiency as a key performance goal. In fact, modern
handsets incorporate power-hungry hardware resources such
as touchscreen displays and location sensors, and they support
Internet data services so they are always connected to the
network. All these resources bootstrapped a rich ecosystem
of mobile applications but their design is clearly driven by
usability factors rather than energy efficiency.

Since the mid-90s, researchers have been emphasizing the
need of considering energy as a fundamental system resource
in mobile devices. In this survey, we covered the most relevant
articles about energy-efficient resource management in mobile
systems that can be implemented in current mobile handsets.
We classified the papers in six categories based on the type of
optimisation they propose: operating system and efficient re-
source management, energy measurements and power models,
users’ interaction with mobile resources, wireless interfaces
and sensors management, and finally, we talked about the new
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opportunities that process and system migration to the cloud
can offer. As far as we know, this is the first survey about
mobile green computing in the last decade and we strongly
believe that some of the improvements highlighted in this
survey will be part of future mobile OS design.

Managing mobile resources from an energy-efficient per-
spective without diminishing the user experience is clearly
one of the most challenging problems in mobile computing
nowadays. Power management considerations often require
certain actions to be deferred, avoided or slowed down to
prolong battery life. It can even require changing dynamically
the power states of the hardware components and applications
behaviour depending on the available resources. However,
these techniques can impact the user experience with the
handsets.

Moreover, limitations such as the lack of energy-aware
support from hardware components make this problem even
harder to solve. Hardware manufacturers do not offer enough
information about the energy consumption in runtime to
the operating system and applications. Many power-hungry
resources are embedded in the same chipset as in modern
ARM-based chips and the system does not have enough visi-
bility about the power consumption and the power modes of
the different resources available in the device. Consequently,
most of the works rely on energy measurements obtained
with external multimeters or with inaccurate power models'®
obtained from linear regression techniques.

We hope that this survey motivates the need for energy-
aware support in mobile operating systems. Efficient resource
management requires new application models, schedulers and
also non-intrusive tools for monitoring the different resources
and energy demands caused by applications and users. Un-
derstanding how users interact with their applications and
resources can be directly translated into important energy
savings, as demonstrated by some of the papers included in
the survey. In fact, latest publications demonstrate that users
interact with their devices and applications at specific locations
and times but, because of the difficulty of accessing this
data from the handsets, these studies generally lack statistical
representativeness. Similarly, the deployment of new wireless
standards such as LTE will clearly open new resource manage-
ment research challenges in addition to the ones highlighted
in this survey. Consequently, we believe there are enough
indications to claim that an energy-efficient operating system
must be context-aware and user-centric.

On the other hand, mobile operating systems must take
advantage of all the possibilities they have to save energy.
As we can currently see in modern platforms and applications,
the dependency on cloud services is becoming more necessary
for different purposes such as storage and computation off-
loading. However, we strongly believe that collaborative mech-
anisms for sharing resources opportunistically with co-located
devices using low-power local wireless connectivities can have
two immediate benefits. Firstly, devices can save important
amounts of energy and secondly, they can improve the user
experience and quality of service by enabling access to remote

16Researchers are using power models validated for an specific device to
measure the power consumption in phones with different hardware settings
to the one the model was originally built.

resources that might not be available locally. Nevertheless,
the characteristics of current local wireless interfaces such as
Bluetooth make supporting this feature difficult. Mobile com-
putation should not be limited exclusively to the local device
and, as a result, resources management should be distributed
and collaborative within groups of collocated devices. This
approach will need to face new trust schemes, access control
policies, security mechanisms, privacy and possibly incentive
schemes while trying to minimise the negative impact of users’
mobility.
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Overall energy consumption per Power State. See paper for details (break-down).
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GPS

State Power (mW)

Enabled (internal antenna)
Enabled (external antenna)
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Disabled 0.0
Device: Nokia N95. Paper: [29]
Measurement Tool: AGILENT 66319D @ f= n/a
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Measurement Tool: Nokia Energy Profiler @ 4Hz
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Energy cost of Wi-Fi at different power modes
Device: Nokia N95, HTC G1, Nokia N810. Paper: [32]

Measurement Tool: Fluke 189 @ f= n/a

WiFi Power Mode

Average Power (mW)

N810 Gl N95
IDLE 884 650 1038
SLEEP 42 68 88
TRANSMIT 1258 1097 1687
RECEIVE 1181 900 1585

Energy Cost per Application
Device: Symbian (no specific handsedt detailed). Paper: [38]
Measurement Tool: n/a

Application Average Power (mW)
GSM Phone call 900
Video Playback 1100
Bluetooth Class 2 (IDLE) 2.5
Bluetooth Scan 75

Power Model for Android (G1). Paper:

[33]

Measurement Tool: Battery Voltage Curve validated with Monsoon meter at SKHz

HW unit Parameter Range Coefficient
CPU Avg CPU utilisation operating @ 384  0-100 4.34 mW/%
MHz
Avg CPU utilization operating @ 246 0 -100 3.42 mW/%
MHz
CPU On 0-1 121.46 mW
WiFi Channel Bitrate 0-54 Ber = 48 — 0.768 x* Channel Bitrate mW
Low-power mode 0-1 20 mW
High-power mode 0-1 710 + Ber * Uplink BitratemW
Audio Audio On 0-1 384.62 mW
LCD Brightness 0-255 2.40 mW/step
GPS GPS ON 0-1 429.55 mW
GPS Sleep 0-1 173.55 mW
Cellular Data rate 0-inf NA
Downlink queue 0-inf NA
Uplink queue 0-inf NA
3G Idle 0-1 10 mW
3G FACH (Shared Channel) 0-1 401 mW
3G DCH (Dedicated Channel) 0-1 570 mW
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