

DESPERATELY SEEKING IMPOSTORS: DATA-MINING FOR COMPETITIVE IMPOSTOR
TESTING IN A TEXT-DEPENDENT SPEAKER VERIFICATION SYSTEM


Matthieu Hébert


Nuance Communications
1380 Willow Road


Menlo Park, CA 94025
hebert@nuance.com


Nikki Mirghafori
�


International Computer Science Institute
1947 Center Street, Suite 600


Berkeley, CA 94704
nikki@icsi.berkeley.edu


ABSTRACT


Precise determination of the operating point of a real-world
verification application is of great importance. For a text-
dependent password-based security system, this can be a chal-
lenging task, as lexically matched impostor test data may be non-
existent. In this work we present a data mining approach for ex-
tracting suitable impostor data. The approach may be applied to
either the Target database (the application data itself) or the Stock
databases (data from other applications). The method entails 1)
determining Levenstein distances of impostor text utterances with
respect to the claimant password 2) selecting subsets of impostor
data at various levels of lexical distance, 3) calculating the score
threshold using such subsets, 4) extrapolating the score threshold
(and hence the operating point) for lexically perfectly-matched
data. Experiments on four databases in two languages are pre-
sented. This approach, as applied to the Target database, provides
an accurate and inexpensive solution to a formidable real-world
problem.


1. INTRODUCTION


It is crucial to both set and measure the operating point of a real-
world application accurately. When a password-based security ap-
plication is in the deployment phase, claimant data can be easily
collected for measuring the performance. However, assuming that
each user has a unique text password, lexically competitive im-
postor data is often non-existent, as only the true speaker speaks
her/his own password. This is a real problem for real-world appli-
cations, as without lexically competitive impostor data, it is possi-
ble to neither measure nor set the operating point of the application
accurately.


How can we get around this lack of impostor data? Some op-
tions may be:


* Perform a separate data collections to gather challenging,
impostor attempts for a given application. Obviously, this
approach is expensive and does not scale with the size of
deployment.


* Use impostor score distribution from other deployments.
This approach is simple, but suffers from potential mis-
match in acoustic condition of the databases.


* Generate synthetic impostors synthetically [1].
�


The second author performed the work while at Nuance Communica-
tions.


* Use lexically mismatched data for impostor testing. The
mismatch may be somewhat alleviated by collecting a com-
mon utterance – an utterance which all speakers speak. This
utterance may be used to train the speaker model (in addi-
tion to the password) and for impostor testing. We discuss
the drawbacks of this approach below.


* Mine existing data to extract tokens that have the most sim-
ilar lexical content to the target utterance. This paper is
dedicated to this topic.


The idea behind using a common utterance is that it would
be easy to solicit speakers to say, for example, zero through nine,
at enrollment time. This utterance would be used to both train
the speaker model and conduct impostor testing. The reasoning
is that, although the common utterance is lexically mismatched
to the password, it may be more competitive than a completely
mismatched utterance since the speaker model is adapted on this
utterance. The following experiment elucidates the problem with
mismatching data: We chose an American English digits database
and trained 313 speaker models using an GMM system (details
of the system are described in [4]. There were 4,833 true speaker
trials and 5,730 impostor trials. The following configurations were
compared:


* A – Lexically matched:
Enrollment: 3 repetitions of an 8-digits password
True speaker trial: 1 repetition of the 8-digits password
Impostor trial: 1 repetition of the 8-digits password


* B – Lexically mismatched (using common utterance)
Enrollment: 3 repetitions of an 8-digits password plus the
common utterance
True speaker trial: 1 repetition of the 8-digits password
Impostor trial: 1 repetition of the common utterance


Note that the two experiments were set up such that the (im-
postor, speaker model) pairing was conserved; that is, the same im-
postors attempted to break into the same speaker models in both A
and B, except that in setup B, they uttered the common utterance.
The EER of the two systems were 6.33% and 3.06%, where sys-
tem B produced a much more optimistic view of the performance
than system A. To make matters worse, consider if system B is
used for tuning the system and to set the threshold. At FA of 0.5%,
the threshold would be set to 0.3, where, for system B the perfor-
mance would be: FA = 0.5% and FR = 8.15%. However, setting







the threshold at 0.3 for system A, the operating point would be:
FA = 5.2% and FR = 7.06%. That is, the FA rate would be higher
by a factor of 10. Clearly, using lexically mismatched impostor
test data can create a real problem. Figure 1 shows the impostor
score distribution for the two systems. We see that lexical match
of the impostor utterance has a great impact on the impostor score.
Even if there is no text-based ASR verification of the password,
this result confirms the conventional wisdom that impostors who
know use the password are more challenging.


Fig. 1. The plots show the impostor score distribution for System
A (lexically matched) and System B (lexically mismatched).


Clearly there is a need for a way to estimate the operating
point and set thresholds using a better lexically matched impos-
tor set. This paper proposes a data mining method to find strings
with the most overlap with the target password. This method is
both inexpensive and simple, and obviates the need for collecting
extra information from users. In Section 2 we explain our data-
mining solution. In Section 3, the results of our experiments on
four databases in two languages are reported. Conclusions and fu-
ture work are presented in Section 4.


2. THE APPROACH


In the previous section, we delineated the problem of using lexi-
cally mismatched impostors to determine the operating point and
set thresholds in a text-dependent system. The crux of the solu-
tion that we propose is the following: since we do not have access
to data that is completely lexically matched, we can calculate the
score threshold for multiple impostor sets with varying degrees
of lexical difference from the target password. We can then ex-
trapolate the score threshold for lexically competitive impostor at-
tempts. Figure 2 portrays the main idea of this paper schematically.


We use Levenstein distance to select impostor subsets which
have varying distances from the targets. Our preliminary experi-
ments were done using very simple dialogs, i.e., digits passwords,
hence Levenstein distance on the word transcription level was cal-
culated. This approach can be easily implemented for general text
passwords and the distances calculated on the phonetic transcrip-
tion level, using forced alignment of the word transcriptions.


In applying Levenstein distance, we have assigned a favorable
bias for N-plets. The distances used in the algorithm were:


* substitution: d=2


* insertion: d=1


Fig. 2. The figure is a schematic drawing of the main idea of this
paper. Our goal is to extrapolate the score threshold for the system
with lexically competitive impostors (depicted by the star).


* deletion: d=1


* 3-plet: d=-1


* 4-plet: d=-2


This assignment of weights means that we can actually have
negative distances. The rationale is to bias strings that a) contain
the correct digits, and b) include them in the correct order. For
example, the distance between the pair (1234,1234) would be -2,
for pair (1234, 4321) is 6, and for (1234, 1626364) is 3. Obviously,
the smaller the distance, the higher the degree of match between
the strings.


The data mining procedure is simple. For each target account
in a given experiment, we calculate the Levenstein distance be-
tween the account’s lexicon and the lexicon of every possible im-
postor attempt in our database. We can then subset the data (target
account - attempts pair) based on the distance and calculate the FA
rate for each subset (see Figure 2).


The next question is, what kind of data should we mine? The
simple answer is: both the Stock Database (data from other ap-
plications) and Target Database (true speaker data from the appli-
cation we want to tune). The argument for mining Stock data is
that we may find sufficient number of lexically perfect-matched
impostor tokens that we may not even have to resort to the extrap-
olation technique. The argument for using the Target database is
that Stock data may introduce another level of unpredictable vari-
ability (channel, regional accent, and other acoustic mismatches).
Experiments on both types of databases were performed and re-
ported in the next section.


Note that the proposed technique is vaguely related to the body
of work on score normalization for speaker verification systems.
The closest approaches are H-Norm [3] and Z-Norm [2]. There
exists a notable difference between these studies and the present:
our goal is not to improve the raw performance of a speaker veri-
fication system, but rather to accurately set the operating point of
that system.


3. EXPERIMENTS


We chose three American English digits databases and one UK
English database for our experiments. The password length for all







databases was four digits. To be able to measure the accuracy of
the data mining approach, we chose datasets where we had lex-
ically matched impostor data. Each claimant model was trained
on three repetitions of the password. For impostor Stock database,
we used the four digit utterances from the training corpus of the
Nuance speech recognition system.


We generated multiple impostor data sets, where the impostor
utterances in each set had a particular Levenstein distance from
the target password. There were between 700 to 28,000 impostor
trials in each subset, with an average of 12,000 trials per subset.


Figures 3 and 4 show the results generated from all the im-
postor subsets. On the x-axis, we see Levenstein distance and on
the y-axis, the score threshold to achieve FA rate of 1%. Note
that for a string length of 4, a distance of -2 constitutes a perfect
match. Some data points corresponding to particular distances are
absent from Figure 4, as Target databases tend to be lexically more
sparse. That is, there is not a lot of lexical variety and there may
not be any utterances which have a particular distance from the
password string of the speaker. Overall, the trends look promising
and seem to correspond to our hypothesis which was depicted in
Figure 2. Next, we examine the results in more detail.


Fig. 3. Threshold estimates using impostor data mined from the
Stock database. A distance of -2 constitutes a perfect match.


Earlier, we hypothesized that if we can mine the Stock
databases to find impostor data which has perfect lexical match
to the password, there may be no need for the extrapolation tech-
nique. Figure 5 shows the thresholds for FA=1% for lexically
perfectly matched impostor utterances. The columns on the left
are from the Target database (hence are the actual target thresh-
olds) and the columns on the right are from the Stock database.
If the channel conditions of the Target and Stock databases are
matched, Stock data may be a good source for mining. However,
if the Stock data is acoustically either more or less challenging, the
thresholds may be over- or under-estimated. For example, our EA
Stock database is relatively well balanced with all types of chan-
nels. EA-N Target data, however, is composed of a significant frac-
tion of hands-free electret and cellular data. Given this mismatch,
we see that using EA Stock data causes an underestimation of the
Threshold for EA-N. Overall, it appears that there is a another de-
gree of variability, which may not be precisely characterizable, if
a Stock database is used.


Figure 6 shows the result of the extrapolation process when


Fig. 4. Threshold estimates using impostor data mined from the
Target database. A distance of -2 constitutes a perfect match.


Fig. 5. Thresholds for FA=1% for lexically perfectly matched im-
postor utterances, from both Target and Stock databases.


mining the Target database. Using all points (except for the perfect
match, distance=-2), we have estimated the threshold at distance=-
2, using a linear fit to the data. The x’s on the top left of the figures
are the actual threshold. We see that the data mining approach con-
sistently underestimates the actual threshold by roughly 0.1 to 0.3.
Specifically, the delta between the actual threshold and the esti-
mated threshold for the four databases shown in Figure 6, from top
left to bottom right, are: (-0.27, -0.16, -0.26, -0.08). The estimate
of the threshold is close and the error pattern is consistent. The
technique seems viable and the consistent underestimation could
be alleviated by adding a calibration factor of 0.15 to the extrapo-
lated estimates.


For due diligence, we also extrapolated the thresholds esti-
mates using data from the Stock databases, as shown in Figure
7. Again, using all points (except for the lexical perfect match,
distance=-2), we estimated the threshold at the lexical perfect
match point using a linear fit to the data. The stars on the top left
of the figures are the actual target threshold and the x’s on the top
left are the estimate of the threshold based on lexically perfectly-
matched Stock data. As we previously discussed, the lexically
perfectly-matched estimates from the Stock data are sometimes







−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EA−N


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EA−U


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EA−V


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EUK−A


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


Fig. 6. The plot shows extrapolation of score threshold using data
from the Target database. The estimate of the threshold is close
and the error pattern is consistent.


an under- and sometimes an over-estimate of the actual threshold.
However, if we compare the extrapolated Stock thresholds to the
real threshold (x’s and *’s), we see that the extrapolation is con-
sistently below the actual threshold. The delta is larger than using
Target data, as the range is between 0 and 0.5 (for Target data, the
range was between 0.1 and 0.3). Both of these factors contribute
to our recommendation that Stock data makes a poorer choice for
data mining in this application.


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EA−N


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EA−U


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EA−V


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


−2 0 2 4 6 8
0


0.2


0.4


0.6


0.8


1


1.2
EUK−A


Levenstein Distance


T
hr


es
ho


ld
 (


at
 F


A
=


1%
)


Fig. 7. The plot shows extrapolation of score threshold using data
from the Stock database. The estimate of the threshold is more
variable and less consistent.


Finally, we applied the extrapolated thresholds (with and with-
out the 0.15 calibration factor) from the mining of the Target
database to calculate the actual FA. Table 1 shows the effective
FAs for the four tested database. The target FA was 1.0%. The
Table shows the necessity of the calibration factor. The effective
FAs (with the calibration factor) range from 0.8% to 1.6%, with
an average of 1.2%. Considering how challenging the task of set-
ting the operating point (thresholds) is, and recalling that the FA
rates with the common utterance approach could be as much as ten
times the Target FA, this result is very satisfactory.


Database FA FA
(no calibration factor)


EA-N 2.6% 1.5%
EA-U 2.1% 1.0%
EA-V 3.0% 1.6%


EUK-A 1.5% 0.8%
Average 2.3% 1.2%


Table 1. Table shows actual FA rates for the four tested databases.
The target FA is 1.0%.


4. CONCLUSIONS AND FUTURE WORK


In this work we presented a data mining approach for extracting
suitable impostor data for calibrating real-world text-dependent
applications. This viable solution is simple and fast, and presents
an inexpensive solution to a formidable real-world problem. Al-
though currently presented for simple dialogues (i.e., digit strings),
could easily be applied to more complex ones.


Either the Target database (the application data itself) or the
Stock databases (data from other applications) may be mined. The
method entail 1) determining Levenstein distances of impostor text
with respect to the claimant password 2) selecting subsets of im-
postor data at various levels of lexical distance, 3) calculating the
score threshold using such data sets, and 4) extrapolating the score
threshold (and hence the operating point) for lexically perfectly-
matched data.


Experiments on four databases in two languages (American
English and UK English) were presented. The application of this
approach to Target database resulted in a simple and inexpen-
sive way to estimate thresholds and determine the operating point
for a system without lexically matched impostor data. When the
data mining approach was applied to the Stock database, however,
the results were less consistent due to channel and acoustic mis-
matches. Perhaps if the channel distribution of the Target database
is maintained when mining Stock data, this variability would be
reduced. This is a topic for future investigation.


5. REFERENCES


[1] D. Genoud and G. Chollet. Deliberate imposture: a chal-
lenge for automatic speaker verification systems. In EU-
ROSPEECH, pages 1971–1974, 1999.


[2] M. Carey R. Auckenthaler and H. Lloyd-Thomas. Score nor-
malization for text-independent speaker verification systems.
In Digital Signal Processing, volume 10, pages 42–54, 2000.


[3] D.A. Reynolds. Comparison of background normalization
methods for text-independent speaker verification. EU-
ROSPEECH, 1997.


[4] R. Teunen, B. Shahshahani, and L.P. Heck. A model-based
transformational approach to robust speaker recognition. In
ICSLP, Bejing, China, 2000.






