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Abstract

A number of interesting properties of articulatory features motivate its incorporation into speech recog-
nition systems. This work explores the possibility of extracting articulatory features from pre-processed
speech signals (modulation spectrogram) using a special temporal ow model (TFM) neural network. Good
performance was obtained with the TFMs on each feature category, and the results were comparable to or
better than that of the multilayer perceptron (MLP) with much larger number of parameters on the same
tasks.

We also show results of applying the TFM outputs in the estimation of posterior phoneme probabilities
with another MLP. Reasonable phoneme frame accuracy were obtained, and the TFM/MLP system gave
complimentary resultls to that of an MLP-only system. Combination of the results from the TFM/MLP
system and MLP-only system gained signi�cant improvements in the phoneme frame accuracy.

Analysis on the trained TFM network gave interesting node activation correlation patterns, corre-
sponding to useful cues for articulatory feature extraction. We also discuss the e�ect of recurrent links and
mutiple time-delayed links of TFM on the context window size.

1 Introduction

The motor theory of perception suggests that human brains interpret the received speech signals in terms of
the neural pattern production that are needed to articulate the same incoming speech. If this theory were
to stand, it must be true that there are enough information in the speech signals to recover the articulatory
features (AF), which can be any suitable physical description of the vocal tract during speech production.

No matter the motor theory were true or not, there are several potential advantages of incorporating AFs
into speech processing systems. The slow varing nature of our speech aparatus motivates an AF-based model,
especially for the continuous speech processing, where coarticulation is abundant. The physical limitations of
the vocal tract determine that both anticipitory and carry-over coarticulation can occur in di�erent articulators
asynchronously. The conventional way of modeling speech as non-overlapping segments (e.g. in units of
phonemes) may be very inaccurate around the transition regions of speech units. Thus, modeling speech as
several parallel continuous articulatory features with asynchronous transition might be more suitable [4]. It
is also suggested that the AFs are more robust towards cross-speaker variation and signal distortions such as
additive noise, which better reect real-world conditions.

Practically, AFs have desirable properties [3] to be incorporated in the automatic speech recognition
systems (ASR). The AF set is su�ciently small, compared to the commonly used basic speech units such as
phonemes. This small size enables maximal sharing of acoustic data by di�erent features, and hence requires
minimal amount of training data. On the other hand, the AF set is su�ciently large that combinations of
articulatory features provide consistent and deterministic mapping to speech units such as phonemes.

Despite the advantages of incorporating AF into ASRs, there is no general speech corpus with good AF
transcription in existence. Experiments with AF set usually have to be carried out by a heuristic mapping
from phonetic transcriptions.

�This is a Final Project Report for EE225D, Prof. N. Morgan and Prof. B. Gold, EECS, UC. Berkeley, Spring 1999.
yThanks to Dr. L. Shastri, K. Kircho�, and members of ICSI Realization groups for comments, suggestions, and assistance.
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In the past, researchers have attempted various models for AF extraction and modeling. Richards et. al. [12]
have used articulatory codebook for point-to-point mappings from the articulatory to acoustic domains. Deng
and Sun [4][3]used HMM for overlapping AF representation. Kircho� [10] developed MLPs for AF extraction.
King et. al. [8] developed an articulatory featured syllabic model of speech recognition system.

2 Temporal Flow Model

In this work, we developed an AF extraction scheme based on the Temporal Flow Model (TFM) of Watrous
and Shastri [15]. TFM supports arbitrary link connectivity across multiple layers of nodes, admits feedforward
as well as recurrent links, and allows variable propagation delays to be associated with links (cf. Figures 2
and 3). The recurrent links in TFM provide a means for smoothing and di�erentiating signals, measuring the
duration of features, and detecting their onset. The use of multiple links with variable delays allows the system
to maintain context over a window of time and thereby carry out spatio-temporal feature detection and shift-
invariant pattern matching. In combination, the use of recurrent links and variable propagation delays provide
a rich mechanism for simulating such properties as short-term memory, integration and context sensitivity |
properties that are essential for processing time-varying signals. In the past TFM has been successfully applied
to a number of tasks including phoneme discrimination [16][17], syllabic segmentation [14], and hand-printed
digit recognition [13].

3 Experiments

3.1 Numbers95 Corpus

The experimental test-bed was a subset of the Numbers95 corpus [2] containing \uent" numbers such as are
spoken in the context of household addresses, over telephone bandwidth. Each utterance in this corpus was
labeled and segmented at the phoneme level. A total of 33 di�erent syllables and 34 di�erent phonemes occur
in this corpus. Despite the restricted size of the lexicon, the corpus contains speech spoken by a large number
of individuals (of both genders) spanning a wide range of geographical dialects, speaking rates and variable
utterance lengths. Our training set consists of 600 utterances, 100 of which were used for cross-validation.
The test set consists of 500 utterances distinct from those in the training set.

3.2 Front-end Processing

The speech waveforms in the corpus were �rst processed into a modulation-�ltered spectrogram (MSG) rep-
resentation [5][9]. This representation encodes the speech signal in terms of low-frequency energy (< 16 Hz)
across time and frequency. It was shown that signi�cant alteration of the modulation spectrum has a delete-
rious e�ect on speech intelligibility [6]. For the current study the spectrum was partitioned into 13 discrete,
critical-band like channels, over which the MSG was computed using a 250-ms, Hamming window with a slide
interval of 10-ms. Other front-end processing schemes such as RASTA [7], may also be used, but were not
included in this study due to time and resource constraints.

3.3 Articulatory Feature Set

There were many choices of AF sets to be used. For this work, we adopted a particular AF system with �ve
categories of orthogonal articulatory dimensions. The AF categories and features are shown in Table 1. The
AF labels for the training and test utterances were obtained by a heuristically de�ned deterministic mapping
from phoneme to feature in the category.

3.4 Overall Experiment Setup

The two phases of the overall experiment setup is shown in Figure 1. In the �rst phase, one TFM neural network
was constructed for each feature category. The input to each of the TFM was a vector of 13 MSG values for each
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Feature Category Size Features

Voicing 3 +voice, -voice, silence
Manner 7 stop, vowel,fricative, approximant, nasal, lateral, silence
Place 10 dental, labial, coronal, palatal, velar, glottal, high, mid, low, silence

Front-Back 4 front, back, nil, silence
Lip Rounding 4 +round, -round, nil, silence

Table 1: Feature categories, number of features in each category, and features.

TFM TFM TFMTFM
TFM

Many Hidden Units
MLP with

Phoneme Probabilities (To HMM)

13 13 13 13 13

3 7 10 4 4

34 (phones appeared in Numbers95)

Voicing Manner Place Front-back Roundness

(13 outputs)
Modulation Spectrogram Processing

Speech Signal Waveform

Phase 2

Phase 1

Figure 1: The overall experiment setup shown in two stages. See text for detail.

time frame. Each TFM had one output node for each of the possible features in the corresponding category,
and the target value for each output node was either one (for an on-feature) or zero (for an o�-feature). Each of
the TFMs was trained and tested seperately, and essentially performing an one-out-of-N classi�cation. Since
we have used either sum of squared error (SSE) or cross-entropy criteria, upon convergence1, the network
outputs approximated the posterior probabilities of each feature given MSG inputs. Taking the feature with
highest output value therefore gave the optimal decision under Bayesian error framework [11].

In the second phase, the 28 outputs of all TFMs were combined and fed into a single-hidden-layer multilayer
perceptrons (MLP) with 400 hidden units and nine frames of context window, to esitmate the posterior
probabilities of phoneme for each time frame. Again, the phoneme that corresponds to the output node with
highest value was picked as the label of the frame for determining phoneme frame accuracy. The vector of all
MLP outputs can be directly plugged into the HMM training in a full HMM/ANN-based ASR.

3.5 Network Architecture

Two distinct TFM network con�gurations were investigated, one with global connectivity (Figure 2), the other
with tonotopic connectivity (Figure 3). Both con�gurations contained an input layer, two hidden layers (H1
and H2), and an output layer. The input layer in both con�gurations contained 13 nodes - one for each
of the eleven MSG features. The two network con�gurations di�ered, however, in (a) how the input layer
was connected to H1 and (b) the density of lateral connections within H1. In the global con�guration, all

1Here we assume a global minimum or a "fairly close" local minimum was obtaied.
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Figure 2: TFM Network Structure: a typical global model with 13 inputs and 4 outputs. Heavy dots in the �gure
denotes omitted links.

input nodes were connected to all H1 nodes and all H1 nodes were densely connected via lateral links. In the
tonotopic con�guration, H1 nodes were divided into distinct groups, each receiving activation from a small
number of adjacent input nodes (i.e., channels). Nodes within a group were densely connected, but nodes
across groups had only sparse interconnections. In both con�gurations, H1 nodes were fully connected to H2
nodes which, in turn, projected to the output node.

3.5.1 Global Model

Figure 2 shows a typical con�guration of the global model used for the \Lip-rounding" feature category. The
model has 13 input nodes, each receiving an MSG feature. H1 and H2 consist of hidden nodes with self-
recurrent links. Between each input node and each node in H1 there are three separate links, each with a
di�erent propagation delay (1, 2, 3). Nodes within H1 are also connected with lateral links. Between each
node in H1 and each node in H2, there are three links with delays 1,2, and 3, respectively. Nodes in H2 are
connected to the output nodes via a similar constellation of links. In general, the number of links, propagation
delays and the number of hidden nodes can vary depending on the task.

3.5.2 Tonotopic Model

Figure 3 shows a typical con�guration of the tonotopic model used for the \Lip-rounding" feature category. The
hidden nodes in H1 are divided into four distinct groups. Each of these receives activation from four adjacent
input nodes. The input nodes of adjacent groups overlap by a factor of one (i.e., the \receptive �elds" of
two adjacent groups overlap by 1). An H1 node receives three links with propagation delays of 1, 2 and 3,
respectively, from each input node in its receptive �eld. All nodes within a group are fully connected with
links of di�erent propagation delays. Nodes across groups are also connected via links of di�erent propagation
delays, but these links are quite sparse. The H2 nodes receive three links from each H1 node with propagation
delays of 1,2,and 3, respectively. H2 nodes are also fully linked to the output nodes in a similar manner. In
general, the size of, and the overlap between, the receptive �elds of H1 nodes, the number of nodes within
each group in H1, the number of links, propagation delays and the number of H2 nodes can vary depending
on the task.
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Figure 3: TFM Network Structure: a typical tonotopic model with 13 inputs and 4 outputs.Heavy dots in the �gure
denotes omitted links.

3.6 Training and Testing Procedures

The training of the TFM networks were carried out with Gradsim [18] a gradient optimization package that
supports both time-delayed and recurrent links, and almost any arbitrary link connectivities. For all experi-
ments, we have used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, a second order gradient-based
weight optimization scheme. For the error criteria, we have experimented with both sum of squared errors
(SSE) and cross-entropy. In almost all cases, the cross-entropy criteria appeared to be superior, in both con-
vergence time and network quality. It should be noted that the Gradsim was not optimized for the current
task (e.g. it cannot read p�les directly), and the training became a bottle-neck of the entire experiments and
consequently limited the size of training set to be used.

3.6.1 Two Stage Training for Di�cult Categories

During training the TFMs, especially for the categories with large number of features (e.g. \place" has 10
possible features), a few features with large number of examples in training set seemed to dominate (very low
false negative and very high false positive responses). Features with very small number of examples in training
set tended to have very high false negative responses. This was possiblly due to an insu�cient complexity
of network parameter space and abundant strong attractors in local minima around error regions where high
prior features dominated. To remedy this without largely increasing the network size and training time, we
devised a two-stage training procedure for feature categories with large number of features. For example, in
the case of \place", we �rst heuristically created coarser distinctions by grouping several features together
(e.g. the features \labial" and \dental" were grouped together). This resulted in a reduction from ten to �ve
possible features for the \place". We trained a TFM with �ve output nodes for the \place" feature category. In
the second stage, we created a TFM with ten output nodes corresponding to the original ten possible features
of \place", and 18 inputs, 13 for MSG vector and 5 for the outputs from the network trained in the �rst stage.
This resulted in a better performance as shown in Table 2. The trade-o� for the gained performance was a
slightly longer training time and larger number of parameters (two TFMs instead of one).
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Training True Positive Rate for each feature Total
Method dental labial coronal palatal velar glottal high mid low silence Frame Acc.

1-stage 14.46 38.96 73.91 59.45 53.46 0.00 74.14 64.48 73.49 83.99 69.32
2-stage 4.14 52.57 73.84 61.22 66.51 0.00 77.56 67.62 78.82 84.41 72.46

Table 2: Comparison between performances of one-stage and two-stage training of TFM for \place" category. All
numbers are in percentage.

Feature TFM TFM MLP MLP MLP MLP
Type Accuracy 50 HU 100 HU 200 HU 400 HU

Voice tonotopic 88.60 84.83 84.98 85.06 85.11
#params 1-stage (1186) (6100) (12200) (24200) (50000)

Manner global 78.93 75.61 77.26 76.84 76.88
#params 2-stage (2746) (6100) (12200) (24200) (50000)

Place global 72.46 68.11 69.00 70.23 70.69
#params 2-stage (4410) (6100) (12200) (24200) (50000)

Fr-back global 79.42 75.93 77.19 77.37 75.84
#params 1-stage (1168) (6100) (12200) (24200) (50000)

Round global 80.05 75.48 77.35 77.77 78.42
#params 1-stage (1168) (6100) (12200) (24200) (50000)

Table 3: Frame accuracy of features for the best TFM networks and MLP networks. Accuracies are given in percentage.

4 Results and Performance Evaluation

Table 3 shows the frame accuracy for each feature category using the TFM networks, and the number of
parameters in the models. As a comparison, we also created single-layer multilayer perceptrons (MLP) with
50 to 400 hidden units (HU), to perform the same AF extraction tasks. The MLPs were trained using
QuickNet, and a nine-frame context window was used in all experiments. The results showed that the TFMs
gave comparable or better results for all feature categories with much smaller number of parameters as the
MLP counterparts. In these experiments, the performances of global and tonotopic networks were not observed
to di�er signi�cantly.

We computed the frame accuracy of phonemes at the output of the MLP that took as inputs the posterior
probabilities for all features estimated by the TFMs. The frame accuracy of phonemes on the test set was
71.16%. As a comparison, we also trained an MLP with 400 hidden units to estimate the posterior phoneme
probabilities directly from MSG vectors without going through the AF extraction. The frame accuracy of
phonemes for the MLP-only model was 69.02%.

Although the frame accuracy of phonemes in the models with and without AF extraction appeared to be
close, their confusion matrices looked considerablly di�erent. This prompted for a combination of the two
results for a possiblly better performance. Two simple combination rules were tried. The �rst was taking the
sum of posterior phoneme probabilities from the two models, and the second was taking the product of these
probabilities. Indeed, signi�cant improvements were obtained, where the sum rule yielded a frame accracy of
74.45%, and the product rule 74.86%.

5 Network Analysis

One advantage of the compact size of the TFMs is that it may be easier to perform post-training analysis on
the network, to understand how and what the network have actually learned. The motivation for doing such
analysis can be �nding hints for network pruning and discovering new sub-features important for the feature

6



��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

Modulation Spectrogram Representation
Low Freqency Bands High Freqency Bands

Un-round

Negatively Correlated

Positively Correlated

A

B C

Figure 4: Network node activation correlation pattern for \un-round" in Lip-Rounding feature category.

extraction task. In this study, we have used a simple technique of computing correlation of node activations
as a trained network responded to an utterance. We present examples of �ndings from this analysis below.

5.1 Learning in the Hidden Layers

In the TFM for the \lip-rounding" feature, we have discovered some interesting correlations between the
output nodes, hidden nodes, and input nodes. As shown in Figure 4, the output node \un-round" was
positively correlated with some node (A) in the second hidden layer; node A was found to negatively correlate
with some node B in the �rst hidden layer, and positively correlate with some node C in the �rst hidden layer.
Further more, node B appeared to be positively correlated with input nodes in the lower freqency bands, and
un-correlated with inputs nodes in the higher frequency bands. On the other hand, node C appeared to be
positively correlated with input nodes in the higher freqency bands, and un-correlated with inputs nodes in
the lower frequency bands. Such a correlation pattern suggested that node A was essentially computing some
enery di�erence between the higher and lower frequency bands in the input signal. Why was this correlation
pattern an useful feature for distinguishing \round" and \un-round"?

Figure 5. shows the common positions of �rst and second formants of some cardinal vowels (CV) [1].
The CVs on the left of horizontal axis are more \unround", and the ones on the right are more \round".
From this �gure, one can easily see that a more positive di�erence between the energy in higher and lower
freqeuncies coresponds to a more likely \un-round" CV. Of course, this was probablly not the only cue that
the network used to distinguish \un-round" from \round". Further analysis may reveal other interesting
correlation patterns.

Another example of the node activation analysis was on the TFM trained for the \manner" feature category.
It was found that a node in the second hidden layer which was highly correlated with the output node for
\approximants", seemed to correlate with an upward shift of spectral energy from lower to higher frequency
regions in successive time frames. Whether this was a potential cue for �nding \approximants" is subject to
further investigation.

5.2 Context Window Analysis

As previously mentioned, the multiple time-delayed links and recurrent links in the TFM provide a exible
context window. To better understand the relationship between the network architecture and context window
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Figure 5: First and second formants of some Cardinal Vowels.

size, analysis was performed on trained TFM network by providing a single impulse in a single input channel
at some time frame. Figure 6 shows node activations when all recurrent links were removed from the network
(multiple time-delayed links were intact), and Figure 7 shows same node activations with all recurrent links
reinstated. For the network with recurrent links absent, the context window size can be calculated as follows:

Letmin be the minimum delay for signal to reach output nodes from input nodes. Letmax be the maximum
delay for signal to reach output nodes from input nodes. The context window size is then max �min + 1.
In the network for producing Figure 6, min = 3 and max = 9, and the context window size is therefore 7.
This can be veri�ed by looking at the output node activations (between 3 steps and 9 steps after the input
activation).

Clearly, in the network with recurrent links, the context window size can be arbitrarily large, and currently
it remains di�cult to fully characterize the stability and capability of the recurrent system.

6 Future Work

A number of extensions to the current experiments can be performed. The phonetic transcription of the
Numbers95 corpus contains many inaccuracies. For a better evaluation of the models, we should perform the
experiments on a corpus with more accurate transcription. One such corpus available is the TIMIT.

The current study was limited to the extraction of AFs and �nding the posterior phoneme probabilities of
each frame from the AFs. It would be interesting to embed the AF extraction system into a full HMM/ANN-
based ASR system for an evalution of the system at a word recognition level. Also the performance of the AF
extraction system may improve as a result of iteratively embedded training.

The current experiments only used MSG as front-end processing. It is reasonable and interesting to try
out other processing methods, such as RASTA-plp, MFCC, etc. Better performance may also be expected for
combined results of di�erent front-end processings.

One potential advantage of AF set is the expected robustness and invariance across speaker and acoustic
conditions. Kircho� [10] has demonstrated that incorporating AF set in the ASR was particularly bene�tial
to reverberant and noisy speech. It would be interesting to see the results of the TFMs under degraded signal
conditions.
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Figure 6: Node activations to an impulse in channel 3 at frame 51, for a TFM with all recurrent links removed.
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7 Conclusion

This paper presented the experiment of extracting AFs from pre-processed speech signals using TFM neural
networks. Results show that the TFMs were able to obtain good performances, comparable or better than
that of MLP counterparts with much larger number of free parameters. We also applied the outputs from the
TFMs in the estimation of posterior phoneme probabilities with large MLP, and achieved reasonable results.
Combination of the results from the TFM/MLP system and MLP-only system gave signi�cant improvements
in the phoneme frame accuracy. We also analyzed the trained TFM network and discovered interesting node
activation correlation patterns, corresponding to useful cues for AF extraction. The e�ect of recurrent links
and mutiple time-delayed links of TFMs on the context window size was also investigated.
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