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Abstract

Posterior probability estimation is desired in many practical applications but is not produced directly

by standard SVM. Sigmoid-�tting is an e�ective way to convert SVM outputs into posterior probability

estimates. In many real world problems such as speech recognition, training targets are often imperfect.

This project demonstrates how patterns of distortion in SVM posterior estimates relate to the randomness

in training targets and di�erences in data class prior distributions. A prior compensation scheme is derived

to improve the quality of posterior estimates and shown to be e�ective on a binary classi�cation problem.

1 Introduction

Support Vector Machine (SVM) has becoming increasingly popular in the machine learning community with
many successful applications. However, standard SVM approach does not produce a posterior probability
P (classjinput) estimate, which is often useful and required in many practical recognition applications. For
example, in pattern recognition, we are interested in �nding a model with maximum posterior probability for
a given input observation, which leads to Bayes optimal decision based on equal loss assumption. Several
methods have been proposed to modify the standard SVM to produce posterior probabilities, such as the
regularized likelihood method by Wahba [4] and sigmoid-�tting method by Platt [1]. The �rst part of this
project implements the sigmoid-�tting method and tests it on a simple binary classi�cation problem.

In many real classi�cation problems, the target labels are not perfect. For example, in speech phoneme
recognition, frames of speech are labelledmanually at phonetic level by human transcribers. However, although
transcribers are highly trained linguistically, the ambiguous nature of phonetic identity and segmentation leads
to a fair amount of arbitrariness in labelling especially for frames around transitions between di�erent phones.
It is not uncommon to see a 10 to 20 percent disagreement among transcribers on realistic speech corpora.
Training classi�ers with these imperfect targets certainly gives less than optimal performance and distorted
posterior probability estimates. From past experience, it is interesting to notice that the pattern of distortion
in posterior probability estimate is related to the prior distributions of di�erent classes in training data. In
the second part of this project, I will explore such distortion patterns and how to improve SVM posterior
probability estimation with noisy training targets.

I will �rst describe the sigmoid-�tting method and experiment result in the next section. Section 3 will
discuss what happens when randomness is introduced in training targets. Section 4 proposes a method for
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improving SVM posterior probability estimation along with some experiment results. I will conclude with
discussion in the last section.

2 Fitting-Sigmoid Method for SVM Posterior Estimation

In [1], Platt proposed a sigmoid-�tting method to post-process standard SVM output (unthresholded) into
posterior probability estimates. Given f(x) , the unthresholded output of an SVM, one �ts a parametric
sigmoid model to approximate posterior probability of a class:

P (y = 1jf) =
1

1 + exp(Af +B)
(1)

where A and B are parameters to be determined. It was shown [1] that �tting sigmoid produces good posterior
estimates while retains the sparseness of SVM solution. To �t the sigmoid, one can use a maximum likelihood
method on a training set (fi; yi). Since SVM target yi are +1 or �1, we �rst transform it by:

ti =
yi + 1

2
(2)

Then, parameters A and B are found by minimizing the negative log likelihood of the training data, which is
a cross-entropy error function:

min�
X
i

ti log(pi) + (1� ti) log(1� pi) (3)

where

pi =
1

1 + exp(Afi +B)
(4)

A robust method for solving this two-parameter optimization problem is to use a model-trust algorithm based
on the Levenberg-Marquardt algorithm [2].

2.1 Example of SVM Posterior Probability Estimation

The sigmoid-�tting method is tested with a simple binary classi�cation problem consisting of two Gaussian-
distributed data classes. Figure 1 (left panel) shows the prior distribution of randomly generated data points
with �1 = �1, �2 = 1 and �2

1
= �2

2
= 0:7, and priors of the two classes are 0:8 and 0:2. In this experiment,

I used 1000 data points for training an SVM with Gaussian kernels using SVMTorch [3]. Another separate
set of 1000 data points are used for �tting the sigmoid. All performance results and posterior estimation are
based on a held-out test set of 1000 data points from the same distribution. Figure 1 (right panel) shows that
the SVM posterior estimates are very accurate. Table 1 shows the confusion matrix of the classi�cation based
on the posterior probability estimates.

3 Introducing Randomness in Targets

In real applications, training targets are often imperfect. In this section, I analyze the SVM posterior proba-
bility estimation using sigmoid-�tting method with some randomness introduced into training targets.
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Ref/Target class1 class2

class1 96.25% 3.75%
class2 18.91% 81.09%

Table 1: Confusion matrix for binary classi�cation with training with perfect targets.
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Figure 1: Left: Prior distribution of two classes are 0.8 and 0.2. Right: Posterior probability estimates using SVM

output and sigmoid-�tting method.
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Figure 2: Posterior Probability Estimates using modi�ed training data with a = 0:8.

Distribution of the data is modi�ed as follows: let a be the proportion of data points that have correct class
labels; let b = 1� a be the proportion of data points whose class labels are randomly re-assigned according to
the prior distribution of the two classes. Thus, the prior distribution of the modi�ed data set is the same as
before. Using the modi�ed data, an SVM is trained and a sigmoid is �tted. Figure 2 gives posterior probability
estimates using the modi�ed training data with a = 0:8. Clearly, the posterior probability estimates are much
worse than that using perfect data. More interestingly, notice that posterior estimates now are highly favoring
the data class with larger prior. This makes sense intuitively: when data is less correlated with class labels (i.e.
data contains less information for determining class labels), it is better o� for the classi�er to favor the class
with larger prior. In the limit when all targets are completely random, a classi�er should assign everything to
the class with larger prior to achieve minimum classi�cation error. Next, I will characterize the e�ect of prior
di�erences quantitatively and propose a method for compensating for the prior di�erences.

4 Compensating for Prior Di�erences

Consider the problem of minimizing an expected cross-entropy function for estimating posterior probabilities

� = �Eft logg(x) + (1� t) log(1� g(x))g (5)

where t is a 0-or-1 target and g(x) is some function of input x, which is in our case the output of posterior
probability estimation. Now consider a new training set having proportion a perfect targets and b = 1 � a

random targets as described in the previous section. Let d be the correct training target and r be the randomly
assigned target according to prior distribution.

� = �Efa[d logg(x) + (1� d) log(1� g(x))] + b[r log g(x) + (1� r) log(1� g(x))]g (6)

= �

Z
p(x)dx

1X
k=0

fa[dk log g(x) + (1� dk) log(1� g(x))] + (7)
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Ref/Target class1 class2

class1 98.87% 1.13%
class2 36.32% 63.68%

Ref/Target class1 class2

class1 96.25% 1.50%
class2 28.36% 71.64%

Table 2: Confusion matrices for binary classi�cation with modi�ed targets at a = 0:8. Left: before prior compensation,

Right: after prior compensation.

b[rk log(g(x)) + (1� rk) log(1� g(x))gp(qkjx) (8)

= �

Z
p(x)dxfap(qjx) log g(x) + (1� p(qjx)) log(1� g(x))] + b[r log g(x) + (1� r) log(1� g(x))]g (9)

= �

Z
p(x)dxfap(qjx) log g(x) + a(1� p(qjx)) log(1� g(x)) + br log g(x) + b(1� r) log(1� g(x))(10)

+[(ap(qjx) + br) log p(qjx)� (ap(qjx) + br) log p(qjx)] (11)

+[a(1� p(qjx)) + b(1� r)] log(1� p(qjx))� [a(1� p(qjx)) + b(1� r)] log(1� p(qjx))]g (12)

= �

Z
p(x)dxf(ap(qjx) + br) log

g(x)

p(qjx)
+ [a(1� p(qjx)) + b(1� r)] log

1� g(x)

1� p(qjx)
g+ Constant (13)

Take the �rst derivative of the expression in the integrand in (13) with respect to g and set to 0. We get:

p(qjx)
p(qjx)

g(x)

1

p(qjx)
+ 1� p(qjx)

1� p(qjx)

1� g(x)

�1

1� p(qjx)
= 0 (14)

)
ap(qjx) + br

g(x)
=

a� ap(qjx) + b� br

1� g(x)
(15)

) g(x) = ap(qjx) + br (16)

) Eg(x) = ap(qjx) + bp(q) (17)

Thus, the expected optimizing solution is not exactly the posterior probability, but a weighted sum of posterior
probability and prior probability with a and b as weights. To compensate for prior di�erences, one gets:

p(qjx) =
g(x)� bp(q)

a
(18)

The proposed prior compensation scheme is tested on the binary classi�cation problem with di�erent values
for a. Figure 3 shows the posterior estimates for a = 0:8 and a = 0:9. In both cases, prior compensation
improves posterior probability estimation. If posterior probability estimates are used to perform classi�cation,
performance are also improved and are more balanced for the two classes when prior compensation is used
(c.f. Table 2).

5 Discussion and Conclusion

This project demonstrated that sigmoid-�tting method for SVM posterior probability estimation works well,
at least for the simple binary classi�cation problem presented. There appears to be systematic relationship
between prior distribution and pattern of distortion in posterior estimates when randomness is introduced
into training targets. A prior compensation scheme is proposed to improve posterior estimation under this
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Figure 3: Comparison of posterior estimates with and without the proposed prior compensation scheme. Left: a = 0:8,

Right: a = 0:9.

condition and experimental results support its e�ectiveness. It will be interesting to apply the SVM based
posterior probability estimation to real applications such as various tasks in speech recognition. For simple
binary classi�cation problems such as voicing/unvoicing detection, the proposed prior compensation scheme is
expected to work well since the assumption of randomness in training targets is more appropriate. For more
complex problems such as classi�cation of entire phoneme set, it is not clear how e�ective prior compensation
will be because of the high dependencies among di�erent errors in label targets.
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