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Abstract

This paper shows by simple example that the solution space of the popular EM algorithm may contain
many local optima of di�erent qualities. Based on the previous works in local search algorithms, an
algorithm is developed to learn a predictive evaluation function of state features, which not only provides
a measure of goodness of a state, but also gives hints on how promising the state is if used as a starting
state for a new EM run. Preliminary experiments show that the algorithm enhances the EM performance
in some problem domains.

1 Introduction

In the past twenty years, the Expectation-Maximization (EM) algorithm has been successfully applied to a va-
riety of problems involving incomplete data, such as learning hidden Markov models, training neural networks,
and learning mixture models. The EM associates a given incomplete-data problem with a simpler complete-
data problem, and iteratively �nds the maximum likelihood estimates of the data. In a typical situation, the
EM converges [McLachlan and Krishnan 97] monotonically to a �xed point in the state space, usually a local
maximum.

Like the state space of many local search algorithms in global optimization problems, the state space for
the EM in maximum likelihood estimation problems can be potentially very complex. In some domains, there
exist many local maxima with very di�erent likelihood estimates. Di�erent starting states often lead to dif-
ferent local maxima. Figure 1 and 2 illustrate this problem with a simple example of learning a mixture of
two univariate Gaussians to model a normalized Sine distribution with the EM.

Finding a global maxima in a complex state space has known to be di�cult, especially in cases where
large number of sub-optimal local maxima exist. Previous works [Boese et al. 94] have showed that in some
combinatorial global optimization domains, there exist some apparent global geometric structures in the op-
timization cost surfaces. For example, when using hill-climbing in the Traveling Sales Person and Graph
Bisection problems, the cost surfaces exhibit a global convex structure, \big valley", which suggests good

�Source codes and an HTML version of this report are available at http://www.cs.berkeley.edu/~ shawnc/281/�nalprj

1



0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6

p(
X

)

X

Distribution specified by Sine function

abs(sin(x))/4

0

0.05

0.1

0.15

0.2

0.25

0.3

p(
X

)

X

Two Gaussians found by EM

PI 2*PI

"functestresult.data"

Figure 1: A Simple Example of Learning Mixture Model with EM: 1000 single-dimensional data points were generated
randomly according to the distribution: p(x) = abs(sin(x))=4 (left). A mixture of two Gaussian distributions (right)
was used to model this data set, and learned with the EM.

solutions are located near other good solutions in some predictable way.

In recent works [Boyan and Moore 98][Boyan 98], Boyan and Moore developed a strategy for learning to
predict good starting states for local search algorithms in global optimization problems. In a global optimiza-
tion problem, there exist a state space X and an objective function Obj : X� > R, and the goal is to to �nd a
state x� in X which maximizes Obj. Their STAGE algorithm de�nes an evaluation function of state features,
which in addition to giving a measure of the utility of a state (directly related to the Obj), also predicts which
states might lead to a good �nal state using a given local search algorithm. The evaluation function is updated
periodically using the training data obtained from past local search trajectories. The STAGE then uses the
evaluation function to suggest new promising starting states for the local search algorithm. The STAGE has
been demonstrated to be very e�ective when used with local search algorithms like hill-climbing, WALKSAT,
in several large real-world applications. Can we apply this idea to the EM?

There are many similarities between the EM and the local search algorithms used in the global optimization
problems. Applying the EM in an incomplete-data problem can actually be perceived as a special instance
of local search. For example, when learning a mixture of Gaussians, the state space consists of all possible
assignments to the means, covariance matrices, and prior probabilities of the Gaussian distributions. The EM
algorithm starts with some assignment to these state variables, and iteratively updates the state variables
until it converges to a state with a locally maximum likelihood estimate of training data. The EM iterations
correspond directly to the trajectories produced by a local search algorithm moving around in the neighbor-
hood structure of a global optimization problem.

[Dempster et al. 77] shows that convergence of the EM is linear with the rate of convergence proportional
to �max, where �max is the maximal fraction of missing information. This implies that the EM can be slow
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Figure 2: Surface Plots of Minimum Negative Log Likelihood Estimates Found by EM vs. Starting States: For the
example in Figure 1, three hundred EM runs were started from randomly generated states, and the minimum negative
log likelihood estimates of the training data were recorded. Each run was allowed to continue until the EM made no
progress in the past ten iterations.

to converge, and too many re-starts are probably not desired. When the solution space has many sub-optimal
�xed points, knowing which states are promising as starting state will certainly help.

As illustrated in Figure 2, the local extrema are abundant in the solution space of the EM, and the qualities
of these extrema may di�er signi�cantly. Only some of these extrema give near-global-optimal likelihood esti-
mates. Although it might not be easily identi�able, there may possibly exist some relevance between certain
features (computed from the state descriptions) of a starting state to the solution found by the EM. Hence, it
is reasonable to hope a STAGE-like algorithm will enhance the performance of the EM. The monotonic and
deterministic characteristics of ordinary EM trajectories also help applying the STAGE to the EM. Each state
along an EM trajectory can be directly used as a training data point for the predictive evaluation function;
whereas in some stochastic local search algorithms, most states along a trajectory except the �nal state needs
to be discounted, and reinforcement learning techniques are often necessary.

The EM and its extensions actually consist of a large family of algorithms, usually speci�c to each appli-
cation. To demonstrate that the EM can bene�t from the learning of a predictive evaluation function, this
project focuses on applying the EM algorithm in learning a mixture of Gaussian distributions. The Gaussian
distribution has many nice properties [Bishop 96]. In particular, the EM formulation of the mixture of Gaus-
sians provides closed form update formula for the state variables, the means, covariance matrices, and the
prior probabilities. The [Bishop 96] gives update formulas for a special case of multi-dimensional Gaussians,
where each has a covariance matrix which is some scalar multiple of the identity matrix. In the general case,
the update formulas for a mixture of multi-variate Gaussians with arbitrary covariance matrices are as follows:
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where
zji = Prob(jjxi) (4)

It is possible to also consider the number of Gaussians in a mixture model as another variable for optimization.
However, for simplicity, this work assumes this number is predetermined, possibly by cross-validation.

This project attempts to develop a STAGE-like algorithm to enhance the performance of the EM by learning
to predict which starting states lead to good local optima. The next section describes the algorithm in full
detail. Section 3 presents some preliminary experimental results. Finally, we will conclude with discussions
and future works.

2 Algorithm

The algorithm presented here follows closely to the framework of the STAGE. For convenience, we will call it
STAGE-EM hereafter. We �rst give an overview of the STAGE-EM; we then discuss in detail learning and
using the predictive evaluation function. We also give a simple illustrative example of an actual STAGE-EM
run.

2.1 Overview

In learning a mixture of Gaussians using the EM, we are to �nd an optimal assignment to the means, covariance
matrices, and prior probabilities of the Gaussian components, which gives the maximum likelihood estimate
of the training data. For convenience, we use the negative log of the likelihood estimate as the objective value
(Obj). Hence, the task is to �nd a state with minimum Obj. In addition, we de�ne another quantity V (x) as
the expected best Obj on a trajectory that starts from a state x using the EM. We also refer to V (x) as the
predictive evaluation function, whose format will be described shortly.

Figure 3 gives a simple 
owchart of the STAGE-EM. In the beginning of the �rst iteration, a random
starting state is generated. Then, the STAGE-EM repeats the following sequence: running EM to optimize
Obj, training the predictive evaluation function V (x) with the new EM trajectory, local searching in the state
space to optimize V (x) and producing a new starting state for the EM. The loops end when a prede�ned
number of iterations is reached. In each iteration, the EM uses a newly found starting state suggested by
the V (x), unless the local search on V (x) makes no progress. In that case, a new starting state is randomly
generated.
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Figure 3: STAGE-EM Algorithm: 
owchart (left) and predictive evaluation function architecture (right).

2.2 The Predictive Evaluation Function

The predictive evaluation function V (x) plays a central role in the STAGE-EM. The V (x) is a function of some
state features. A state feature can be any deterministic function computed from a given state description.
Often used features include the variances of some state variables, the means of some state variables, and some
components of the Obj. The format of the function is problem dependent. It can be a simple linear regression,
a quadratic regression, or even a multi-layer perceptron. However, overly complex functions have problems of
over-�tting and may require large amount of training data. Conversely, very simple functions may not capture
the state space structure. The state features are not limited to the state variables.

In this work, we use a simple quadratic predictive evaluation function. This evaluation function resembles
the appearance of a radial basis function network, as shown in Figure 3. Some state features are extracted
from a state description; a number of basis functions of up to second degree are formed from the features;
a linear combination of the basis functions gives the �nal prediction. The training task is thus to learn the
coe�cients of the basis functions. This is done using an on-line linear regression, which gives the same result
as o�-line batch training, but does not require storing all past training data points. Because of the problems
with singular matrices, the singular value decomposition (SVD) technique is used. Note that in STAGE, for
certain stochastic search algorithms, the linear regression can be easily modi�ed to take into account of a
discount factor, and hence resembles a TD(�) reinforcement learning method.

Once a predictive evaluation function is trained, it can be used to predict how promising each state is as a
starting state for the EM. To �nd a good starting state, local search is performed on the evaluation function
to optimize V (x). It should be noted that although the evaluation function is only in a quadratic form of the
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state features, it is generally not possible to �nd the global optimum by simply taking some partial derivatives.
The features are usually complex functions of the state variables and training data, and they are often not
invertible. Therefore, �nding a global optimum of the V (x) in terms of state features does not actually give a
new starting state. Any local search algorithm can be used here, and simple ones like stochastic hill-climbing
are often good choice. An interesting note here is that, we can actually use the STAGE (or STAGE-EM) for
this local search task, and the whole algorithm becomes recursive in some sense. However, for most problems,
this second level application of STAGE might require a large amount of training data to be e�ective.1

2.3 A Simple Example

To illustrate the operations of the STAGE-EM, we again use the example given in Figure 1 and 2. In
this task, one thousand single dimensional data points were randomly generated according to a distribution,
p(x) = abs(sin(x))=4, in the interval, 0 � x � 2�. A mixture of two univariate Gaussians were used to model
this distribution, and hence there were six state variables, the means, the variances, and the prior probabilities
of the two Gaussians. The selected features were the variance of the two means, which dictates the distance
between the centers of the Gaussians, and the variance of the two variances, which dictates the di�erence in
the widths of the two Gaussians. Let us refer to the two features, p and q, and coe�cients v0:::v5. Then, the
predictive evaluation function can then be written as:

V (x) = v0 � 1 + v1 � p+ v2 � q + v3 � p
2 + v4 � p � q + v5 � q

2 (5)

Figure 5 (right) shows the best negative log likelihood estimates of twelve successive runs of the Random Multi-
restart EM, and twelve successive runs of the STAGE-EM, using the same random number seed. Figure 4 and
Figure 5 (left) shows the learned predictive evaluation function surface plots for the STAGE-EM at the end of
EM runs 2, 6 and 9. It can be observed that the STAGE-EM learned overtime that the good starting states
lie in two regions with low predicted obj values. Both the two regions agree on one of the state feature, the
variance of the means, but di�er in the other state feature. However, as most trajectories ended up at a state
closer to one of the region, the local search naturally found a new starting state in that region. Eventually a
fairly good state was found in EM run 10 for the STAGE-EM.

3 Experiments

This section presents some preliminary experimental results of applying the STAGE-EM to mixture model
learning problems. Due to time and resource constraints, four experiments were conducted only on arti�cially
generated data sets. From these simple experiments, we hope to gain some insights on the operation of the
STAGE-EM, and whether it is promising to extend the algorithm to other applications.

The training and testing data sets in each experiment were generated with the same data generating func-
tion. Each set contains 2000 data points. The top table in Table 1 shows the description of the experiments.
For each experiment, the STAGE-EM was run against a random multi-restart EM with the same random
number seed. The total computation time consumed by each algorithm in each trial was held approximately
equal. Each trial was repeated 30 times under the same condition. The tabulated results in the bottom
table in Table 1 show the percentage improvements of the STAGE-EM over random multi-restart EM on the

1This work has included facilities for this recursive call, but no experiment has been conducted on it.
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Prediction Function Surface Plot after 2 EM Runs
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Prediction Function Surface Plot after 6 EM Runs
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Figure 4: Sample Run of the STAGE-EM for the Example in Figure 1: Predictive Evaluation Function surface plots
after 2 (left) and 6 (right) EM runs.

Prediction Function Surface Plot after 9 EM Runs
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Figure 5: Sample Run of the STAGE-EM for the Example in Figure 1: On the left, a Predictive Evaluation Function
surface plot after 9 EM restarts. On the right, plots of minimum negative log likelihood estimates found by Random
Multi-restart EM (solid line) and STAGE-EM (broken line) at consecutive EM runs.
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Task Dimension Data Generating Function Number of Gaussians
1 3 z = sin(x)tan(y) 5
2 3 z = (x3 + y3 + 5xy2 + 7x2y + 9x2

+11y2 + 13xy + 15x+ 17y + 1)=1000 7
3 3 z = sin(xy=10)(x+ y) 10
4 4 z = sin(x)tan(y)cos(z) 5

Task Percentage Improvement on Maximum Likelihood Estimates
Training Set Test Set

Average Best Worst Average Best Worst
1 5.51 10.66 -1.11 5.38 9.28 -2.17
2 2.04 3.72 -1.50 2.04 5.16 -2.25
3 5.27 10.90 0.05 5.74 11.61 2.43
4 2.25 4.07 0.07 1.60 4.36 -1.78

Table 1: Experiment Results: The top table shows the description of each task. The bottom table shows the percentage
improvements of STAGE-EM over Random Multi-restart EM for each task in 30 trials. The improvement calculation
was based on the (geometric) average of the maximum likelihood estimates of all data points.

(geometric) average likelihood estimates of both training set and testing set data points. The overall results
show modest improvements were achieved by the STAGE-EM. In some cases, the improvements were over ten
percent, and in a few rare cases, the STAGE-EM performed actually worse.

For this set of experiments, two state features were used for constructing the predictive evaluation function,
the variance of average widths of the Gaussians, and the negative log likelihood estimates (the Obj itself) on
partial training data. In most cases, the learned evaluation function exhibits similar surface shapes, where
the predicted good starting states lie in the region of high variance of widths of the Gaussians, and low Obj.
Figure 6 (left) shows the predictive evaluation function surface plot obtained in one of the runs for Task 1. A
learning curve for Task 1 has also been generated for various sizes of training set, also shown in Figure 6 (right).

4 Discussion and Future Works

The preliminary experimental results described in the previous section show that the STAGE-EM may en-
hance the performance of the EM algorithm in learning mixture models of Gaussian distributions. However,
whether a problem can bene�t from the STAGE-EM, and by how much if it can, is largely problem and user
dependent. When facing a new problem, it is preferable to �rst run the EM algorithm a few times and exam-
ine the results analytically. Typically, the STAGE-EM is most promising in domains where the EM performs
reasonably well, but still exhibits signi�cant di�erences in the qualities of solutions when started from di�erent
state con�gurations. One important criterion is the existence of a coherent global structure of solution space
associated with some state features. However, in many cases, such a global structure is not easily identi�able.
The discovery of this global structure depends on the state features selected, the predictive evaluation function
format adopted, and the regression techniques used.
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Figure 6: Plots for Task 1: On the left, the predictive evaluation function surface plot learned by STAGE-EM. On the
right, learning curves (and their quadratic �ts) of the Random Multi-restart EM (top) and the STAGE-EM for various
training set sizes.

A few problems remain with the current formulation of the STAGE-EM algorithm ( and the STAGE algo-
rithm in general). Which state features are selected for constructing the predictive evaluation function plays
a vital role in the performance of the STAGE-EM. Although there are a few suggestions for possibly good fea-
tures, such as using the variance of certain state variables, the feature selection remains a black art. One may
hope to recognize some general pattern of useful state features once the algorithm is applied to more problem
domains. Another di�culty for applying the STAGE-EM is that, for each new problem, a large number of
parameters need to be tuned in order to achieve any reasonable performance. The tunable parameters include
the number of state features, the step size and patience for the local search used to optimize the evaluation
function, and so forth, plus many parameters associated with the EM formulation itself. Correct settings of
these parameters require much experience, domain knowledge, and computation resources.

Despite the existing problems with the current formulation of the STAGE-EM, the wide usage and applica-
bility of the EM algorithm indicates that there may still exist many potential applications for the STAGE-EM.
It would be of both theoretical and practical interests to adapt the the STAGE-EM to other domains where
the EM algorithm succeeds, such as learning HMMs, learning Bayesian network structures, and a variety of
other incomplete-data problems.

References

[Bishop 96] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, England, 1996.

9



[Boese et al. 94] Boese, K. D.; Kahng, A. B.; and Muddu, S. 1994. A new adaptive multi-start
technique for combinatorial global optimizations. Operations Research Letters
16:101-113.

[Boyan 98] Boyan, J. A. "Learning Evaluation Functions for Global Optimizations." Ph.D.
Thesis (draft), CMU, May 1998.

[Boyan and Moore 98] Boyan, J. A. and A. W. Moore. "Learning Evaluation Functions for Global Opti-
mization and Boolean Satis�ability." Fifteenth National Conference on Arti�cial
Intelligence (AAAI), 1998 (to appear).

[Dempster et al. 77] Dempster, A.P.; Laird, N. M.; and Rubin, D. B. 1977. \Maximum Likelihood
from Incomplete Data via the EM Algorithm." Journal of the Royal Statistical
Society. Series B, 39(1), 1-38.

[McLachlan and Krishnan 97] McLachlan, G. J. and T. Krishnan. The EM Algorithm and Extensions. John
Wiley & Sons, Inc. New York, NY, 1997.

10


