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Abstract

The impact of reduced weight and output precision on the back-propagation train-
ing algorithm [Wer74, RHW86] is experimentally determined for a feed-forward multi-
layer perceptron. In contrast with previous such studies, the network is large with
over 20,000 weights, and is trained with a large, real-world data set of over 130,000
patterns to perform a difficult task, that of phoneme classification for a continuous
speech recognition system.

The results indicate that 16b weight values are sufficient to achieve training and
classification results comparable to 32b floating point, provided that weight and bias
values are scaled separately, and that rounding rather than truncation is employed
to reduce the precision of intermediary values. Output precision can be reduced to 8
bits without significant effects on performance.



1 Introduction

Research into artificial neural networks (ANNs) is
hindered by their extensive computational demands.
However, these algorithms exhibit massive fine-
grained parallelism and require only moderate arith-
metic precision. These properties can be exploited in
the design of high performance, low cost neurocom-
puters.

Advances in CMOS VLSI technology are rapidly
increasing the computational power that can be in-
tegrated on a single die. However, a VLSI neuro-
computer with adequate processing power and stor-
age capacity for current research problems will require
hundreds, if not thousands, of dice with current tech-
nology. Inter-chip connections are much less dense
than intra-chip connections, and inter-chip connec-
tions have much higher parasitic loads than intra-chip
connections. These effects combine to ensure that for
large multi-chip systems, sustainable performance is
limited by inter-chip bandwidth, rather than by on-
chip processing power.

Cost considerations dictate the use of commercial
RAM packages to provide storage for all but the small-
est systems, and so a significant fraction of the inter-
chip bandwidth requirement will be for processor-
memory traffic. The storage requirements of an ANN
algorithm are dominated by storage for the connection
weights, and the transfer of these weight values dom-
inates processor-memory traffic. These observations
imply that using the minimum weight precision nec-
essary for satisfactory training and classification per-
formance is essential in maximizing the performance
of any large neurocomputing system.

During the execution of an ANN algorithm par-
titioned over a parallel neurocomputing system, the
transfer of neuron output values dominates the traffic
between processing nodes. Using the minimum neces-
sary output precision is therefore important in reduc-
ing inter-processor communication requirements.

Reducing operand precisions has the added benefit
of reducing the size of datapath circuitry. Though
this effect is significant in reducing system costs with
current technologies, the impact of future technology
scaling will make the reduction of datapath widths
much less important than the reduction in operand
bandwidth across chip boundaries.

In this paper, the impact of reducing weight and
output precisions is experimentally determined for a
feed-forward multi-layer perceptron that forms part
of a speech recognition system. The ANN is trained
using the popular error back-propagation algorithm
[Wer74, RHW86]. Earlier studies have examined arti-
ficial problems or small real data sets to determine

acceptable ranges for these precisions. This paper
contains an experimental analysis of a large network
trained with a large real-world data set to perform a
difficult task.

2 ANN Architecture

A phoneme-based speaker dependent continuous
speech recognition system is under development at
ICSI. The system utilizes a layered ANN to gener-
ate emission probabilities for a hidden Markov model
(HMM) speech recognizer. Initial experiments indi-
cate that this method compares favourably with con-
ventional HMM speech recognition methods [MB90].

The network has 26 inputs. These are 12th or-
der Perceptual Linear Prediction (PLP) coefficients
[Her90] plus first order derivative terms for each
speech frame. The input values are normalized to
zero-mean and unity variance across the set of training
data. These inputs are directly and fully connected to
a layer of 256 hidden units. There are 61 outputs from
the network, one per DARPA-phone to be recognized.
The hidden layer is directly and fully connected to the
output layer.

The database used consists of 500 sentences of con-
tinuous read speech from speaker DTD of the Re-
source Management RM-1 corpus, totalling 166023
10ms frames. Each frame is annotated with a pho-
netic label derived from an iterative application of the
Viterbi algorithm on a path constrained by the cor-
rect transcription of the training set. The data is split
into a training set of 400 sentences (131322 frames)
and a test set of 100 sentences (34701 frames). The
training set is used for the back-propagation learning
algorithm. The test set is used to check the perfor-
mance of the training algorithm to avoid over-fitting
of the network to the training set.

There are two phases in the training scheme, which
is a recent variant of the cross-validation learning ap-
proach used in [MB90]. Training starts by assigning
some range of random values to all the weights, say
+7r. An initial value for «, the learning constant, is
chosen and this value remains constant throughout the
first training phase. A single training iteration con-
sists of one pass through the training set, updating
weights after every frame. After each training itera-
tion, the net’s performance is measured using the test
set. When the performance improvement is less than
some minimal improvement parameter 1%, the train-
ing scheme switches to the second phase. In the sec-
ond phase of training, the value of « is halved before
each iteration. When the performance improves by
less than ¢% during the second phase, training stops.



The default values chosen for the training schedule
parameters are initial random weights in the range
r = £0.05, initial @« = 0.1, and minimum performance
improvement ¢ = 0.5%. Training performance has
been found to be relatively insensitive to the exact
value of these parameters.

3 Experimental Methods

All simulations were executed on various configu-
rations of the RAP neurocomputer [MBAB90], the
largest containing 24 processors. The RAP uses
TMS320C30 DSPs that implement 32-bit floating-
point arithmetic using a proprietary format [Tex88].

Reduced precision weight representations were sim-
ulated by adapting an existing ANN training pro-
gram, “mlp”, to call a weight quantization routine
after each training pattern. The quantization routine
rounds each updated floating-point weight to the near-
est value allowed by the simulated fixed-point repre-
sentation, saturating if necessary. The effect of this
is to simulate a processor that stores weights to some
lesser precision between training patterns, but which
performs all other arithmetic using the DSP’s native
32-bit floating-point precision. This provides an upper
bound on the performance to be expected with lower
precision weights; as in practice a neurocomputer may
also implement other parts of the algorithm using
lower precision arithmetic. The TMS320C30’s floating
point format has a 24-bit significand, represented as
a normalized two’s-complement number with an im-
plied most-significant non-sign bit. This allows the
simulations to model two’s-complement weights of up
to 25 bits, where this number includes the sign bit.

The original mlp program used a table lookup with
over 1000 entries to implement the sigmoid function.
Reduced output precisions were simulated by quantiz-
ing the entries in this table.

4 Results

The first series of experiments investigated the effect
of changing the exponent of the fixed-point weights.
The exponent of the MSB (sign bit) was varied in the
range 0-5 for weight precisions of 12, 16, 20, and 25
bits. For example, an MSB exponent of 1 for a 16-bit
weight would allow weights in the range +2. Biases
were treated the same as weights. The default param-
eters listed above were used for the training schedule
and outputs were kept at full precision. The network
had 256 hidden units giving a total of 22589 weights
and biases. The results are presented in Figure 1. The
graph plots the highest score achieved on the test set
against the exponent of the MSB for each of the weight
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Figure 1: Effect of Varying Exponent and Precision.
256 hidden units, « = 0.01, r = £0.05, i = 0.5%.

precisions !.

The scores for 20b and 25b fixed point weights are
comparable to those of the 32b floating point for MSB
exponents in the range 1-5. The scores for the lower
precision weights show much greater variation with
MSB exponent. With 16b weights an MSB exponent
of 3 provided the best scores, close to those of 32b
floating point. The 12b weight runs also had the best
performance with an MSB exponent of 3, though this
gave over 10% lower scores than 32b floating-point.

The next series of experiments investigated a much
larger number of weight precisions over a smaller range
of MSB exponents. Weights in the range 12-20 bits
and 25 bits were employed with MSB exponents in the
range 1-3. The results are given in Figure 2, plotted
as best test score against number of weight bits for
different MSB exponents. Overall, the scores are fairly
insensitive to changes in the weight MSB exponent in
the range 1-3, although lower precision weights (12—
16b) have slightly better scores with a range of +8,
while higher precision weights (19-25b) have slightly
better scores with a range of £4. These results would
seem to indicate that around 17-18 bits are required
to achieve scores comparable to that of 32b floating-

1The best scores in these experiments are somewhat lower
than the scores we have reported recently [MHB*91], but these
latter studies used networks with 200,000-300,000 weights, and
still only achieved about 6% better performance at the frame
level than the nets used in the current experiment. These lat-
ter nets yield a final word performance for the perplexity-60
word pair grammar of over 92%, a reasonable score for a simple
context-independent HMM system.
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Figure 2: Effect of Varying Exponent and Precision.
256 hidden units, « = 0.01, » = +0.05, 7 = 0.5%.

point, if the weights and biases are treated uniformly.

It was found that the higher scoring networks took
roughly the same number of iterations (8-12) over the
training set to converge as the 32b floating point ver-
sion (9). Lower scoring networks tended to peter out
in fewer training iterations (4-6). This indicates that
there is no loss in training performance, as measured
by number of training presentations required, for lower
precision weights.

The weight and bias distributions resulting from
these first experiments were examined. Figure 3 shows
a bias histogram for the 32b floating point network
after training, Figure 4 shows the weight histogram.
Figures 5 and 6 show bias and weight distributions for
a 16b network with weights in the range +£8.

These histograms show that weight values tend to
be clustered around zero in a Gaussian distribution,
while bias values tend to be larger and negative. In the
16b net the bias values are seen to be hitting against
the range limitation. These histograms suggested that
it would be beneficial to fix the bias exponent sepa-
rately from the weight exponent.

In the next set of experiments, the bias exponent
was varied over the range 2-5 while the weight ex-
ponent was set to 1-2. Figure 7 plots the results for
weights in the range £2, and Figure 8 plots the results
for weights in the range +4. For short weight lengths,
scaling the bias values separately gives a large im-
provement in scores. Higher weight precisions were
fairly insensitive to changes in the bias exponent.
These results show that 16b weights in the range +2
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Figure 3: Histogram of 32b float biases of trained net-
work.
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Figure 4: Histogram of 32b float weights of trained
network.
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Figure 5: Histogram of 16b biases of trained network.
Biases rounded to range +8.
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Figure 6: Histogram of 16b weights of trained net-
work. Weights rounded to range £8.
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Figure 7: Altering Bias Scaling. Weights in range +2.

with bias values in the range +4-416 give results com-
parable to 32b floating-point.

The results so far have used full precision for the
output values. A series of simulations were performed
reducing the precision of the output values. Figure 9
shows results for a network with 25b weights of range
42 with biases of range 4+4, and for a network with 16b
weights of range +2 with biases of range +8. These
scalings gave the best results for each weight precision
in the previous experiments. Qutput precisions of 1,
2,4, 8, and 16 and 25 bits were measured.

The results show that 16b weights and biases with
8b outputs give essentially the same scores as using
32b floating-point values throughout. Using less than
4 bits for the output precision gives noticeably poorer
performance for both 16b and 25b networks.

Initial experiments revealed that truncating inter-
mediary weight values to the reduced precision pro-
duced much poorer results than using rounding. In
Figure 10 truncation and rounding results are plotted
for various weight precisions. All weights and biases
were rounded in the range £2 and outputs were kept
at full precision. Note that there are more lower pre-
cision data points for the rounding curve, and more
higher precision data points for the truncation curve.
It can be seen that use of truncation reduces perfor-
mance by an amount corresponding to roughly 6 bits
of precision when compared to rounding. This demon-
strates the sensitivity of the back-propagation algo-
rithm to the quality of the arithmetic employed. Ex-
amination of the trained weight histograms revealed
that the truncated weight networks were in a very dif-
ferent region of weight space than the floating point
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Figure 8: Altering Bias Scaling. Weights in range +4.
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Figure 9: Varying Output Precision. 25b and 16b
weight networks.
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Figure 10: Truncation versus Rounding.

network. This can be explained by noting that trun-
cation adds an overall negative bias to the gradient
descent causing the network to follow a very different
learning trajectory, reaching a poorer local minimum.
All other results in this paper were obtained using
rounding to reduce the precision of intermediary val-
ues.

5 Conclusions

We have shown that in the back-propagation training
of a large, real-world neural net application it is possi-
ble to achieve essentially the same performance using
16b fixed-point weights and 8b fixed-point outputs in-
stead of 32b floating-point values. This agrees with
other researcher’s findings with smaller networks and
training sets [BH88]. Lower weight precisions gave
significantly poorer results.

Achieving this performance required careful atten-
tion to the properties of short word length arith-
metic. Truncation was shown to give very poor re-
sults; rounding should be used to reduce the precision
of intermediary results. Scaling bias values separately
from weight values provides a noticeable increase in
performance for short word length weights.
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