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Three Waves of Artificial Neural Networks

" 1950s/60s: Perceptrons (1 layer)
= 1980s/90s: Backpropagation, (2-3 layers)

" 2010s: Deep Neural Networks (3+ layers)

(Note, all ideas were developed much earlier than
eventual popularity)



Single-Layer Perceptrons, 1950s-60s

* Single-layer perceptrons
explored for image processing
[Rosenblatt]

" Only a linearly separable

classifier

— Unable to capture interesting functions,
e.g. XOR

= Al field moved from statistical
to symbolic approaches in
"70s-"80s

“[Cprnell University Li




Multi-Layer Perceptrons and BackProp

" [nfluential PDP books published in 1986 Fﬂ.H.ALLEL_D}S’I."F'iI.BLU:TI;Et;:
. PROCESSING™ | '
*" Two-layer backprop trained networks foun i,
to work surprisingly well at many hard taskis
" Experts complained that results were
unexplainable
" Training was extremely slow, so rush to

L L ! ] "
build custom machines
AND THE POP BESE 82CH GRODE



RAP Machine built for fast training of
“big dumb” neural networks for speech
recognition
Ring of TMS320C30 floating-point DSPs
— Each DSP providing 32MFLOPS (32-bit FP)
— Four DSPs/board, up to 10 boards connected

at once (>1GFLOP/s peak, 640MB DRAM)
— Neural net training rate of >100MCUPS
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200x! (million connection updates per second) on
s [ 10 boards
— FPGA ring connection used for systolic all-all
o  SPARC2Workatin § commupication during train!ng/inference
- = Fggt, flexible, but expensive
O'30 I123 ‘256 384 512 640 768 896 1,024 1,152 1,280 — ~$100 000 each
Layer Size (units) '

Fig.3 RAP Performance for uniform layer size, one hidden layer.



Realization Group, ICSI, 1989 g

New naive grad student joins Morgan’s group to build
custom ANN VLSI for speech training

0j = 1/(1 +¢™)

This is a cool ANN
architecture for which
we need custom silicon!

Output
Neurons

-\, Unary-encoded inputs to
-1 avoid multiply, 12-bit weights

inputs

Training rule: Awij = —()c(oj - dj) 0; 7~ &/



HiPNeT-1: (Highly Pipelined Network Trainer, 1990)

Krste Asanovic, Brian Kingsbury, Nelson Morgan, John Wawrzynek
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= Custom architecture for neural algorith\m
= |gnores pipeline RAW hazards (net trains around them)
* Predicted 200MCUPS in 16mm? of 2um CMOS running at 20MHz

=




The first few chips...

= MOSIS had a “TinyChip~ program
— $500 to fab a 2.2mmx2.2mm chip in 2um CMOS

Sigmoid JTAG Multiplier
unit | | latches (Brian)
(Pawan i (Krste)
Sinha)
. 24b Redfile

, : Adder (Bertrand)
8-bit datapath (Krste)] (Brian)




Meanwhile, back at the speech ranch...

There’s this even cooler
ANN architecture for
which we need custom
silicon!

And it doesn’t look
much like the last one.
Can you build a
different chip?

-\

Time for a programmable architecture... g
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SPERT VLIW/SIMD Engine

DI

VLIW Instruction

Memory
Control

Mult Shift Add Limit Add1l Add2
Mult Shift Add Limit Scalar Unit
Mult Shift Add Limit
Mult Shift Add Limit
" - Y Similar architecture later

_ — adopted by many embedded
Mult Shift Add Limit . .

DSPs, especially for video and

Mult Shift Add Limit games.
Mult Shift Add Limit

Vector Unit
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1. 2um CMOS, 2 metal layers

61,521 transistors, 8x4 mm?2, 400mW @5V, 50MHz
72-bit VLIW instruction word

16x32b register file, 24bx8b->32b multiplier, 32b ALU/shifter/clipper
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CNS-1: Connectionist Network Supercomputer
(ICSI/UCB 1992-95)

Four Torrent
Module Boards

Mesh Network
Connections

Quad Torrent Module /

To Host Workstation

To Realworld 1/O

)

Torrent
Processor
Hoops

Hydrant /O
Hoop

S
To Disk Subsystem
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We abandoned SPERT VLIW

VLIW means no upward compatibility
— we wanted same ISA for CNS-1 to reuse software effort

VLIW scalar compiler was complex

— Simple VLIW hardware + complex VLIW compiler harder than complex
RISC architecture + standard compiler

Assembly code was tough to write
— soon discovered this when writing test code and key loops

VLIW format too rigid

— hard to fit some operations into statically scheduled instruction slots
(misaligned vector loads/stores, scatter/gathers)

VLIW had too large an instruction-cache footprint
— loop prologue/epilogue code plus unrolled loop body

Software, software, software,....

14



TO: First Vector Microprocessor (1995)

= Vector supercomputers (e.g., Crays) very successful in
scientific computing, clean programming model

Add a vector coprocessor to a standard MIPS RISC scalar
processor, all on one chip, for neural net training

15



System Design Choices

= \Which standard RISC?

— Considered SPARC, HP PA, PowerPC, and Alpha
— Chose MIPS because: simplest, good software tools, Unix desktop
workstations for development, and a 64-bit extension path

" Buy or build a MIPS core?

— Commercial MIPS R3000 chips had coprocessor interface
— No MIPS soft cores (no Verilog or synthesis tools yet)

— Decided to roll our own
* Vector coprocessor would have played havoc with caches
e Coprocessor interface too inefficient
e Commercial chip plus glue logic would blow our size and power budgets (to
fit inside workstation)
e Couldn’t simulate whole system in our environment

16



Brian, Krste, and a
Torrent wafer
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SPERT TO Vector Microprocessor (1995)
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Layer size

= Boards shipped to 9 international sites

= Used as production research platform for nine years
— last time powered up for work in 2004! 18



TetraSpert (1997): faster training

sRAM || srRaM || srRam |[ sRAaMm
SPARC T0 T0 T0 T0

station | | I I
Sbus 1000
%)
o
= 800 |
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 g p
Output Output 9 3000HU
Hidden Hidden 000 00§%00 00009 S 600 | -
Input Input E n
XER) TEE eoeoeo Pattern 1 eoee ecee ecoe % — 2~ 2000 HU
Pattlern2 ©®e°se csoe oo 4 - ) o
Pattern 1 Pattern 2 Pattern 3 s P ., -
Patten3  ©° o A7~ 1000 HU
£
(a) (b) £ 200 |
o
z
Figure 2: Pattern Parallel (a) and Network Parallel (b) distribution strategies. 0 :
: 1 2 3 4 5 6 7 8 9

nodes
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Siemens SYNAPSE-1 (1992-5)
= Systolic matrix-multiply engine (16b*16b)
" Four levels of program control (680005 + microcode)
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What Happened to ‘90s Neurocomputers?

= Very small market

* Neural networks faded in popularity
— some kept working on them

" Moore’s Law scaling favored general-purpose processors
= |n 1996, Intel introduced MMX

Although the multimedia extensions implemented to date provide only a limited
boost to the performance of general-purpose processors on fixed-point matrix code,
they signal an intent by commercial microprocessor manufacturers to perform well on
these types of code. As commercial design teams incorporate multimedia-style ker-
nels into the workloads they consider during the design of new microprocessors, we
can expect performance to increase rapidly also for ANN algorithms. The continu-
ing tremendous investment placed in high-volume microprocessors ensures that these
devices will use the most advanced fabrication technologies and the most aggressive
circuit design styles yielding the highest clock rates. Given these trends, there will be

Appears in The Handbook of Brain Theory and Neural N gyeat]y reduced interest in future special-purpose neurocomputers.
(M.A. Al'bib, Ed.), Cambridge, MA: The MIT Press, 200=: {C) TIIC IVIT T TITSS Z‘I

Programmable Neurocomj

Krste Asanovic
MIT Laboratory for Computer Sci
200 Technology Square
Cambridge, MA 02139
krste@mit.edu

http://mitpress.mit.edu



Performance vs. VAX-11/780
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General-Purpose GPUs (GP-GPUs)

In 2006, Nvidia introduced GeForce 8800 GPU supporting a new
programming language: CUDA

— “Compute Unified Device Architecture”
— Subsequently, broader industry pushing for OpenCL, a vendor-neutral version of
same ideas.

|dea: Take advantage of GPU computational performance and
memory bandwidth to accelerate some kernels for general-
purpose computing

Attached processor model: Host CPU issues data-parallel

kernels to GP-GPU for execution

Over time, became the fastest standard way of performing

neural network training 24



Extensive Efforts in Custom Al Chips

» T




“Let’s fill a reticle with reduced-precision vector
processing, add high-bandwidth local memory,
and attach multiple to a server to accelerate
neural network training.”

~100 Al Hardware Startup Pitches

26



RISC-V

(pronounced “risk-five”)

llllll

Why are outsiders complaining about
changes to RISC-V in Berkeley classes?

27



</ What is RISC-V?

RISC

= A high-quality, license-free, royalty-free RISC ISA
specification originally from UC Berkeley

= Standard maintained by non-profit RISC-V Foundation

= Suitable for all types of computing system,
microcontrollers to supercomputers

= Numerous proprietary and open-source cores

= Experiencing rapid uptake in industry and academia

= Supported by growing shared software ecosystem

= A work in progress...



</ RISC-V Timeline
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RISC-V Foundation Growth History

August 2015 to April 2018
140
120
100 Update: ~120 companies and
80 organizations in October 2018
60
40
20
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2015 9915 . Q2 3

2016 2016 a0, 2»:3?6 al o

Q4
2017 2017 Q1
m Platinum Gold

2018
m Silver ®Auditor = Individual 3 1
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</ RISC-V Vector Extension Overview

RISC
V] Vector length CSR sets number of
elements active in each instruction
v31[0] v31[1] v31[MVL-1] vetype3l
32
vector
] v1[0] vl[1] v1[MVL-1] vetypel
registers [ vo[0] vO[1] vO[MVL-1] vetypeO

Maximum vector length (MVL’)/

depends on implementation,
number of vector registers used,

and type of each element.

16 bits vetype/vreg

Vetype sets type of element
in each vector register (e.g.,
32-bit integer, 16-bit floating-
point)



</ RISC-V 2-D Vector Extension

RISC

# Matrix multi P |y v2[0][O] | v2[O][1] vO[0][MVL-1]
v2[1][0] | v2[1][1] vO[1][MVL-1]

vfmadd.p vO,v1l,v2,v0 |5
vz1{.']v['.(‘;,;.\i- vz1{.']v['.;v;.\i- e ———
v1[0][0] J viOI[1] THOTHIVA vOIOIT0] T vO[OI[1] OO MVLT]
v1[1][O] | v1[1][1] M ik VO[1]T0] | VOI1]T1] VO[L][MVL-1]

vl vO
v1l[MVM-1][0] | vi1[MVM-1][1] v1[MVM-1][MVN-1] VO[MVM-1][0] | VO[MVM-1][1] VO[MVM-1][MVL-1]

= \Vector registers configured as 2D matrices
= Single instructions for matrix multiply/ convolutions




RISC-V for Al Accelerators

= RISC-V designed originally as basis for custom accelerators

= Simplify software by using one simple base ISA on all cores

— Where you need high-performance Unix-capable core to run operating system,
build a superscalar Oo0 core

— Where wanted VLIW for microcode scheduling, build wide in-order superscalar

— Where wanted low-precision SIMD, use standard vector extensions

— Where want to take advantage of 2D optimizations (e.g., systolic matrix
multiply, convolution), use 2D vector extensions (in progress)

— Secret-sauce weight compression/number format? add custom extensions!

— Where need interrupt-responsive I/0 management core, build embedded core

b RISC

= Same memory model, synchronization primitives, compiler
tool flow (C-struct packing), debug, tracing,...

34
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