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Abstract

Adjectives like good, great, and excellent are

similar in meaning, but differ in intensity. In-

tensity order information is very useful for

language learners as well as in several NLP

tasks, but is missing in most lexical resources

(dictionaries, WordNet, and thesauri). In this

paper, we present a primarily unsupervised

approach that uses semantics from Web-scale

data (e.g., phrases like good but not excel-
lent) to rank words by assigning them posi-

tions on a continuous scale. We rely on Mixed

Integer Linear Programming to jointly deter-

mine the ranks, such that individual decisions

benefit from global information. When rank-

ing English adjectives, our global algorithm

achieves substantial improvements over pre-

vious work on both pairwise and rank corre-

lation metrics (specifically, 70% pairwise ac-

curacy as compared to only 56% by previous

work). Moreover, our approach can incorpo-

rate external synonymy information (increas-

ing its pairwise accuracy to 78%) and extends

easily to new languages. We also make our

code and data freely available.1

1 Introduction

Current lexical resources such as dictionaries and

thesauri do not provide information about the in-

tensity order of words. For example, both WordNet

(Miller, 1995) and Roget’s 21st Century Thesaurus

(thesaurus.com) present acceptable, great, and su-
perb as synonyms of the adjective good. However,

a native speaker knows that these words represent

varying intensity and can in fact generally be ranked

by intensity as acceptable < good < great < superb.

Similarly, warm < hot < scorching are identified as

synonyms in these resources. Ranking information,

1http://demelo.org/gdm/intensity/

however, is crucial because it allows us to differen-

tiate e.g. between various intensities of an emotion,

and is hence very useful for humans when learning a

language or judging product reviews, as well as for

automatic text understanding and generation tasks

such as sentiment and subjectivity analysis, recog-

nizing textual entailment, question answering, sum-

marization, and coreference and discourse analysis.

In this work, we attempt to automatically rank

sets of related words by intensity, focusing in par-

ticular on adjectives. This is made possible by the

vast amounts of world knowledge that are now avail-

able. We use lexico-semantic information extracted

from a Web-scale corpus in conjunction with an al-

gorithm based on a Mixed Integer Linear Program

(MILP). Linguistic analyses have identified phrases

such as good but not great or hot and almost scorch-
ing in a text corpus as sources of evidence about the

relative intensities of words. However, pure infor-

mation extraction approaches often fail to provide

enough coverage for real-world downstream appli-

cations (Tandon and de Melo, 2010), unless some

form of advanced inference is used (Snow et al.,

2006; Suchanek et al., 2009).

In our work, we address this sparsity problem by

relying on Web-scale data and using an MILP model

that extends the pairwise scores to a more com-

plete joint ranking of words on a continuous scale,

while maintaining global constraints such as transi-

tivity and giving more weight to the order of word

pairs with higher corpus evidence scores. Instead

of considering intensity ranking as a pairwise deci-

sion process, we thus exploit the fact that individual
decisions may benefit from global information, e.g.

about how two words relate to some third word.

Previous work (Sheinman and Tokunaga, 2009;

Schulam and Fellbaum, 2010; Sheinman et al.,

2012) has also used lexico-semantic patterns to or-
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der adjectives. They mainly evaluate their algorithm

on a set of pairwise decisions, but also present a par-

titioning approach that attempts to form scales by

placing each adjective to the left or right of pivot

words. Unfortunately, this approach often fails be-

cause many pairs lack order-based evidence even on

the Web, as explained in more detail in Section 3.

In contrast, our MILP jointly uses information

from all relevant word pairs and captures com-

plex interactions and inferences to produce inten-

sity scales. We can thus obtain an order between

two adjectives even when there is no explicit evi-

dence in the corpus (using evidence for related pairs

and transitive inference). Our global MILP is flex-

ible and can also incorporate additional synonymy

information if available (which helps the MILP find

an even better ranking solution). Our approach also

extends easily to new languages. We describe two

approaches for this multilingual extension: pattern

projection and cross-lingual MILPs.

We evaluate our predicted intensity rankings us-

ing both pairwise classification accuracy and rank-

ing correlation coefficients, achieving strong results,

significantly better than the previous approach by

Sheinman & Tokunaga (32% relative error reduc-

tion) and quite close to human-level performance.

2 Method

In this section, we describe each step of our ap-

proach to ordering adjectives on a single, relative

scale. Our method can also be applied to other word

classes and to languages other than English.

2.1 Web-based Scoring Model
2.1.1 Intensity Scales

Near-synonyms may differ in intensity, e.g. joy
vs. euphoria, or drizzle vs. rain. This is particu-

larly true of adjectives, which can represent different

degrees of a given quality or attribute such as size

or age. Many adjectives are gradable and thus al-

low for grading adverbial modifiers to express such

intensity degrees, e.g., a house can be very big or

extremely big. Often, however, completely differ-

ent adjectives refer to varying degrees on the same

scale, e.g., huge, gigantic, gargantuan. Even adjec-

tives like enormous (or superb, impossible) that are

considered non-gradable from a syntactic perspec-

tive can be placed on a such a scale.

Weak-Strong Patterns Strong-Weak Patterns
� (,) but not � not � (,) just �
� (,) if not � not � (,) but just �

� (,) although not � not � (,) still �
� (,) though not � not � (,) but still �

� (,) (and/or) even � not � (,) although still �
� (,) (and/or) almost � not � (,) though still �

not only � but � � (,) or very �
not just � but �

Table 1: Ranking patterns used in this work. Among the

patterns represented by the regular expressions above, we

use only those that capture less than or equal to five words

(to fit in the Google n-grams, see Section 2.1.2). Articles

(a, an, the) are allowed to appear before the wildcards

wherever possible.

2.1.2 Intensity Patterns
Linguistic studies have found lexical patterns like

‘� but not �’ (e.g. good but not great) to reveal order

information between a pair of adjectives (Sheinman

and Tokunaga, 2009). We assume that we have two

sets of lexical patterns that allow us to infer the most

likely ordering between two words when encoun-

tered in a corpus. A first pattern set, Pws, contains

patterns that reflect a weak-strong order between a

pair of word (the first word is weaker than the sec-

ond), and a second pattern set, Psw, captures the

strong-weak order. See Table 1 for the adjective pat-

terns that we used in this work (and see Section 4.1

for implementation details regarding our pattern col-

lection). Many of these patterns also apply to other

parts of speech (e.g. ‘drizzle but not rain’, ‘running

or even sprinting’), with significant discrimination

on the Web in the right direction.

2.1.3 Pairwise Scores
Given an input set of words to be placed on a

scale, we first collect evidence of their intensity or-

der by using the above-mentioned intensity patterns

and a large, Web-scale text corpus.

Previous work on information extraction from

limited-sized raw text corpora revealed that cover-

age is often limited (Hearst, 1992; Hatzivassiloglou

and McKeown, 1993). Some studies (Chklovski

and Pantel, 2004; Sheinman and Tokunaga, 2009)

used hit counts from an online search engine, but

this is unstable and irreproducible (Kilgarriff, 2007).

To avoid these issues, we use the largest available
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(good, great) (great, good) (small, minute)
good , but not great → 24492.0 not great , just good → 248.0 small , almost minute → 97.0

good , if not great → 1912.0 great or very good → 89.0 small , even minute → 41.0

good , though not great → 504.0 not great but still good → 47.0

good , or even great → 338.0

not just good but great → 181.0

good , almost great → 156.0

Table 2: Some examples from the Web-scale corpus of useful intensity-based phrases on adjective pairs.

static corpus of counts, the Google n-grams corpus

(Brants and Franz, 2006), which contains English

n-grams (n = 1 to 5) and their observed frequency

counts, generated from nearly 1 trillion word tokens

and 95 billion sentences.

We consider each pair of words (a1, a2) in the in-

put set in turn. For each pattern p in the two pattern

sets (weak-strong Pws and strong-weak Psw), we in-

sert the word pair into the pattern as p(a1, a2) to get

a phrasal query like “big but not huge”. This is done

by replacing the two wildcards in the pattern by the

two words in order. Finally, we scan the Web n-

grams corpus in a batch approach similar to Bansal

and Klein (2011) and collect frequencies of all our

phrase queries. Table 2 depicts some examples of

useful intensity-based phrase queries and their fre-

quencies in the Web-scale corpus. We also collect

frequencies for the input word unigrams and the pat-

terns for normalization purposes. Given a word pair

(a1, a2) and a corpus count function cnt, we define

W1 =
1

P1

∑
p1∈Pws

cnt(p1(a1, a2))

S1 =
1

P2

∑
p2∈Psw

cnt(p2(a1, a2))

W2 =
1

P1

∑
p1∈Pws

cnt(p1(a2, a1))

S2 =
1

P2

∑
p2∈Psw

cnt(p2(a2, a1)) (1)

with

P1 =
∑

p1∈Pws

cnt(p1)

P2 =
∑

p2∈Psw

cnt(p2), (2)

such that the final overall weak-strong score is

score(a1, a2) =
(W1 − S1)− (W2 − S2)

cnt(a1) · cnt(a2) . (3)

Here W1 and S1 represent Web evidence of a1
and a2 being in the weak-strong and strong-weak

relation, respectively. W2 and S2 fit the reverse

pair (a2, a1) in the patterns and hence represent

the strong-weak and weak-strong relations, respec-

tively, in the opposite direction. Hence, overall,

(W1 − S1) − (W2 − S2) represents the total weak-

strong score of the pair (a1, a2), i.e. the score of a1
being on the left of a2 on a relative intensity scale,

such that score(a1, a2) = −score(a2, a1). The raw

frequencies in the score are divided by counts of the

patterns and by individual word unigram counts to

obtain a pointwise mutual information (PMI) style

normalization and hence avoid any bias in the score

due to high-frequency patterns or word unigrams.2

2.2 Global Ordering with an MILP
2.2.1 Objective and Constraints

Given pairwise scores, we now aim at producing a

global ranking of the input words that is much more

informative than the original pairwise scores. Joint

inference from multiple word pairs allows us to ben-

efit from global information: Due to the sparsity of

the pattern evidence, determining how two adjec-

tives relate to each other can sometimes e.g. only

be inferred by observing how each of them relate to

some third adjective.

We assume that we are given N input words A =
a1, . . . , aN that we wish to place on a linear scale,

say [0, 1]. Thus each word ai is to be assigned a

position xi ∈ [0, 1] based on the pairwise weak-

strong weights score(ai, aj). A positive value for

2In preliminary experiments on a development set, we also

evaluated other intuitive forms of normalization.
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Figure 1: The input weak-strong data may contain one

or more cycles, e.g. due to noisy patterns, so the final

ranking will have to choose which input scores to honor

and which to remove.

score(ai, aj) means that ai is supposedly weaker

than aj and hence we would like to obtain xi < xj .
A negative value for score(ai, aj) means that ai is

assumed to be stronger than aj , so we would want

to obtain xi > xj . Therefore, intuitively, our goal

corresponds to maximizing the objective

∑
i,j

sgn(xj − xi) · score(ai, aj) (4)

Note that it is important to use the signum func-

tion sgn() here, because we only care about the rel-

ative order of xi and xj . Maximizing
∑

ij(xj −xi) ·
score(ai, aj) would lead to all words being placed

at the edges of the scale, because the highest scores

would dominate over all other ones. We do include

the score magnitudes in the objective, because they

help resolve contradictions in the pairwise scores

(e.g., see Figure 1). This is discussed in more de-

tail in Section 2.2.2.

In order to maximize this non-differentiable ob-

jective, we use Mixed Integer Linear Programming

(MILP), a variant of linear programming in which

some but not all of the variables are constrained to

be integers. Using an MILP formalization, we can

find a globally optimal solution in the joint deci-

sion space, and unlike previous work, we jointly ex-

ploit global information rather than just individual

local (pairwise) scores. To encode the objective in a

MILP, we need to introduce additional variables dij ,
wij , sij to capture the effect of the signum function,

as explained below.

We additionally also enable our MILP to make

use of any external equivalence (synonymy) infor-

mation E ⊆ {1, . . . , N} × {1, . . . , N} that may be

available. In this context, two words are considered

synonymous if they are close enough in meaning to

be placed on (almost) the same position in the inten-

sity scale. If (i, j) ∈ E, we can safely assume that

ai, aj have near-equivalent intensity, so we should

encourage xi, xj to remain close to each other. The

MILP is defined as follows:

maximize∑
(i,j) �∈E

(wij − sij) · score(ai, aj)

−
∑

(i,j)∈E
(wij + sij) C

subject to
dij = xj − xi ∀i, j ∈ {1, . . . , N}
dij − wijC ≤ 0 ∀i, j ∈ {1, . . . , N}
dij + (1− wij)C > 0 ∀i, j ∈ {1, . . . , N}
dij + sijC ≥ 0 ∀i, j ∈ {1, . . . , N}
dij − (1− sij)C < 0 ∀i, j ∈ {1, . . . , N}
xi ∈ [0, 1] ∀i ∈ {1, . . . , N}
wij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}
sij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}

The difference variables dij simply capture differ-

ences between xi, xj . C is any very large constant

greater than
∑

i,j |score(ai, aj)|; the exact value is

irrelevant. The indicator variables wij and sij are

jointly used to determine the value of the signum

function sgn(dij) = sgn(xj − xi). Variables wij

become 1 if and only if dij > 0 and hence serve

as indicator variables for weak-strong relationships

in the output. Variables sij become 1 if and only if

dij < 0 and hence serve as indicator variables for

a strong-weak relationship in the output. The ob-

jective encourages wij = 1 for score(ai, aj) > 0
and sij = 1 for score(ai, aj) < 0.3 When equiva-

lence (synonymy) information is available, then for

(i, j) ∈ E both sij = 0 and wij = 0 are encouraged.

2.2.2 Discussion
Our MILP uses intensity evidence of all input

pairs together and assimilates all the scores via

global transitivity constraints to determine the posi-

tions of the input words on a continuous real-valued

scale. Hence, our approach addresses drawbacks

3In order to avoid numeric instability issues due to very

small score(ai, aj) values after frequency normalization, in

practice we have found it necessary to rescale them by a fac-

tor of 1 over the smallest |score(ai, aj)| > 0.
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Figure 2: Equivalence Information: Knowing that am, a2
are synonyms gives the MILP an indication of where to

place an on the scale with respect to a1, a2, a3

of local or divide-and-conquer approaches, where

adjectives are scored with respect to selected pivot

words, and hence many adjectives that lack pairwise

evidence with the pivots are not properly classified,

although they may have order evidence with some

third adjective that could help establish the ranking.

Optional synonymy information can further help, as

shown in Figure 2.

Moreover, our MILP also gives higher weight

to pairs with higher scores, which is useful when

breaking global constraint cycles as in the simple

example in Figure 1. If we need to break a con-

straint violating triangle or cycle, we would have to

make arbitrary choices if we were ranking based on

sgn(score(a, b)) alone. Instead, we can choose a

better ranking based on the magnitude of the pair-

wise scores. A stronger score between an adjective

pair doesn’t necessarily mean that they should be

further apart in the ranking. It means that these two

words are attested together on the Web with respect

to the intensity patterns more than with other candi-

date words. Therefore, we try to respect the order of

such word pairs more in the final ranking when we

are breaking constraint-violating cycles.

3 Related Work

Hatzivassiloglou and McKeown (1993) presented

the first step towards automatic identification of ad-

jective scales, thoroughly discussing the background

of adjective semantics and a means of discovering

clusters of adjectives that belong on the same scale,

thus providing one way of creating the input for our

ranking algorithm.

Inkpen and Hirst (2006) study near-synonyms and

nuances of meaning differentiation (such as stylistic,

attitudinal, etc.). They attempt to automatically ac-

quire a knowledge base of near-synonym differences

via an unsupervised decision-list algorithm. How-

ever, their method depends on a special dictionary

of synonym differences to learn the extraction pat-

terns, while we use only a raw Web-scale corpus.

Mohammad et al. (2013) proposed a method of

identifying whether two adjectives are antonymous.

This problem is related but distinct, because the de-

gree of antonymy does not necessarily determine

their position on an intensity scale. Antonyms (e.g.,

little, big) are not necessarily on the extreme ends of

scales.

Sheinman and Tokunaga (2009) and Sheinman et

al. (2012) present the most closely related previous

work on adjective intensities. They collect lexico-

semantic patterns via bootstrapping from seed adjec-

tive pairs to obtain pairwise intensities, albeit using

search engine ‘hits’, which are unstable and prob-

lematic (Kilgarriff, 2007). While their approach

is primarily evaluated in terms of a local pairwise

classification task, they also suggest the possibil-

ity of ordering adjectives on a scale using a pivot-

based partitioning approach. Although intuitive in

theory, the extracted pairwise scores are frequently

too sparse for this to work. Thus, many adjec-

tives have no score with a particular headword. In

our experiments, we reimplemented this approach

and show that our MILP method improves over it

by allowing individual pairwise decisions to benefit

more from global information. Schulam and Fell-

baum (2010) apply the approach of Sheinman and

Tokunaga (2009) to German adjectives. Our method

extends easily to various foreign languages as de-

scribed in Section 5.

Another related task is the extraction of lexico-

syntactic and lexico-semantic intensity-order pat-

terns from large text corpora (Hearst, 1992;

Chklovski and Pantel, 2004; Tandon and de Melo,

2010). Sheinman and Tokunaga (2009) follows

Davidov and Rappoport (2008) to automatically

bootstrap adjective scaling patterns using seed ad-

jectives and Web hits. These methods thus can be

used to provide the input patterns for our algorithm.

VerbOcean by Chklovski and Pantel (2004) ex-

tracts various fine-grained semantic relations (in-

cluding the stronger-than relation) between pairs of

verbs, using lexico-syntactic patterns over the Web.
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Our approach of jointly ranking a set of words using

pairwise evidence is also applicable to the VerbO-

cean pairs, and should help address similar sparsity

issues of local pairwise decisions. Such scales will

again be quite useful for language learners and lan-

guage understanding tools.

de Marneffe et al. (2010) infer yes-or-no answers

to questions with responses involving scalar adjec-

tives in a dialogue corpus. They correlate adjectives

with ratings in a movie review corpus to find that

good appears in lower-rated reviews than excellent.
Finally, there has been a lot of work on measuring

the general sentiment polarity of words (Hatzivas-

siloglou and McKeown, 1997; Hatzivassiloglou and

Wiebe, 2000; Turney and Littman, 2003; Liu and

Seneff, 2009; Taboada et al., 2011; Yessenalina and

Cardie, 2011; Pang and Lee, 2008). Our work in-

stead aims at producing a large, unrestricted number

of individual intensity scales for different qualities

and hence can help in fine-grained sentiment analy-

sis with respect to very particular content aspects.

4 Experiments

4.1 Data

Input Clusters In order to obtain input clusters for

evaluation, we started out with the satellite cluster or

‘dumbbell’ structure of adjectives in WordNet 3.0,

which consists of two direct antonyms as the poles

and a number of other satellite adjectives that are se-

mantically similar to each of the poles (Gross and

Miller, 1990). For each antonymy pair, we deter-

mined an extended dumbbell set by looking up syn-

onyms and words in related (satellite adjective and

‘see-also’) synonym sets. We cut such an extended

dumbbell into two antonymous halves and treated

each of these halves as a potential input adjective

cluster.

Most of these WordNet clusters are noisy for the

purpose of our task, i.e. they contain adjectives that

appear unrelatable on a single scale due to polysemy

and semantic drift, e.g. violent with respect to super-
natural and affected. Motivated by Sheinman and

Tokunaga (2009), we split such hard-to-relate ad-

jectives into smaller scale-specific subgroups using

the corpus evidence4. For this, we consider an undi-

4Note that we do not use the WordNet dataset of Sheinman

and Tokunaga (2009) for evaluation, as it does not provide full
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Figure 4: The histogram of cluster sizes in the test set.

rected edge between each pair of adjectives that has

a non-zero intensity score (based on the Web-scale

scoring procedure described in Section 2.1.3). The

resulting graph is then partitioned into connected

components such that any adjectives in a subgraph

are at least indirectly connected via some path and

thus much more likely to belong to the same inten-

sity scale. While this does break up partitions when-

ever there is no corpus evidence connecting them,

ordering the adjectives within each such partition re-

mains a challenging task. This is because the Web

evidence will still not necessarily directly relate all

adjectives (in a partition) to each other. Addition-

ally, the Web evidence may still indicate the wrong

direction. Figure 3 shows the size distribution of the

resulting partitions.

Patterns To construct our intensity pattern set, we

started with a couple of common rankable adjective

seed pairs such as (good, great) and (hot, boiling)

and used the Web-scale n-grams corpus (Brants and

Franz, 2006) to collect the few most frequent pat-

terns between and around these seed-pairs (in both

directions). Among these, we manually chose a

scales. Instead, their annotators only made pairwise compar-

isons with select words, using a 5-way classification scheme

(neutral, mild, very mild, intense, very intense).
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small set of intuitive patterns that are linguistically

useful for ordering adjectives, several of which had

not been discovered in previous work. These are

shown in Table 1. Note that we only collected pat-

terns that were not ambiguous in the two orders, for

example the pattern ’� , not �’ is ambiguous be-

cause it can be used as both ’good, not great’ and

’great, not good’. Alternatively, one can easily also

use fully-automatic bootstrapping techniques based

on seed word pairs (Hearst, 1992; Chklovski and

Pantel, 2004; Yang and Su, 2007; Turney, 2008;

Davidov and Rappoport, 2008). However, our semi-

automatic approach is a simple and fast process that

extracts a small set of high-quality and very gen-

eral adjective-scaling patterns. This process can

quickly be repeated from scratch in any other lan-

guage. Moreover, as described in Section 5.1, the

English patterns can also be projected automatically

to patterns in other languages.

Development and Test Sets Section 2.1 describes

the method for collecting the intensity scores for ad-

jective pairs, using Web-scale n-grams (Brants and

Franz, 2006). We relied on a small development

set to test the MILP structure and the pairwise score

setup. For this, we manually chose 5 representative

adjective clusters from the full set of clusters.

The final test set, distinct from this development

set, consists of 569 word pairs in 88 clusters, each

annotated by two native speakers of English. Both

the gold test data (and our code) are freely avail-

able.5 To arrive at this data, we randomly drew 30

clusters each for cluster sizes 3, 4, and 5+ from the

histogram of partitioned adjective clusters in Fig-

ure 3. While labeling a cluster, annotators could ex-

clude words that they deemed unsuitable to fit on

a single shared intensity scale with the rest of the

cluster. Fortunately, the partitioning described ear-

lier had already separated most such cases into dis-

tinct clusters. The annotators ordered the remaining

words on a scale. Words that seemed indistinguish-

able in strength could share positions in their anno-

tation.

As our goal is to compare scale formation algo-

rithms, we did not include trivial clusters of size 2.

On such trivial clusters, the Web evidence alone de-

termines the output and hence all algorithms, includ-

5http://demelo.org/gdm/intensity/

ing the baseline, obtain the same pairwise accuracy

(defined below) of 93.3% on a separate set of 30 ran-

dom clusters of size 2.

Figure 4 shows the distribution of cluster sizes in

our main gold set. The inter-annotator agreement in

terms of Cohen’s κ (Cohen, 1960) on the pairwise

classification task with 3 labels (weaker, stronger,

or equal/unknown) was 0.64. In terms of pairwise

accuracy, the agreement was 78.0%.

4.2 Metrics

In order to thoroughly evaluate the performance of

our adjective ordering procedure, we rely on both

pairwise and ranking-correlation evaluation metrics.

Consider a set of input words A = {a1, a2, . . . , an}
and two rankings for this set – a gold-standard rank-

ing rG(A) and a predicted ranking rP (A).

4.2.1 Pairwise Accuracy
For a pair of words ai, aj , we may consider the

classification task of choosing one of three labels (<,

>, =?) for the case of ai being weaker, stronger, and

equal (or unknown) in intensity, respectively, com-

pared to a2:

L(a1, a2) =

⎧⎨
⎩

< if r(ai) < r(aj)
> if r(ai) > r(aj)
=? if r(ai) = r(aj)

For each pair (a1, a2), we compute gold-standard

labels LG(a1, a2) and predicted labels LP (a1, a2) as

above, and then the pairwise accuracy PW (A) for

a particular ordering on A is simply the fraction of

pairs that are correctly classified, i.e. for which the

predicted label is same as the gold-standard label:

PW (A) =

∑
i<j

1{LG(ai, aj) = LP (ai, aj)}
∑
i<j

1

4.2.2 Ranking Correlation Coefficients
Our second type of evaluation assesses the

rank correlation between two ranking permutations

(gold-standard and predicted). Many studies use

Kendall’s tau (Kendall, 1938), which measures the

total number of pairwise inversions, while others

prefer Spearman’s rho (Spearman, 1904), which

measures the L1 distance between ranks.
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Kendall’s tau correlation coefficient We use the

τb version of Kendall’s correlation metric, as it in-

corporates a correction for ties (Kruskal, 1958; Dou

et al., 2008):

τb =
P −Q√

(P +Q+X0) · (P +Q+ Y0)

where P is the number of concordant pairs, Q is

the number of discordant pairs, X0 is the number

of pairs tied in the first ranking, Y0 is the number of

pairs tied in the second ranking. Given the two rank-

ings of an adjective set A, the gold-standard ranking

rG(A) and the predicted ranking rP (A), two words

ai, aj are:

• concordant iff both rankings have the same strict

order of the two elements, i.e., rG(ai) > rG(aj)
and rP (ai) > rP (aj), or rG(ai) < rG(aj) and

rP (ai) < rP (aj).
• discordant iff the two rankings have an inverted

strict order of the two elements, i.e., rG(ai) >
rG(aj) and rP (ai) < rP (aj), or rG(ai) <
rG(aj) and rP (ai) > rP (aj).

• tied iff rG(ai) = rG(aj) or rP (ai) = rP (aj).

Spearman’s rho correlation coefficient For two

n-sized ranked lists {xi} and {yi}, the Spearman

correlation coefficient is defined as the Pearson cor-

relation coefficient between the ranks of variables:

ρ =

∑
i
(xi − x̄) · (yi − ȳ)

√∑
i
(xi − x̄)2 ·∑

i
(yi − ȳ)2

Here, x̄ and ȳ denote the means of the values in the

respective lists. We use the standard procedure for

handling ties correctly. Tied values are assigned the

average of all ranks of items sharing the same value

in the ranked list sorted in ascending order of the

values.

Handling Inversions While annotating, we some-

times observed that the ordering itself was very clear

but the annotators disagreed about which end of a

particular scale was to count as the strong one, e.g.

when transitioning from soft to hard or from alpha
to beta. We thus also report average absolute values

of both correlation coefficients, as these properly ac-

count for anticorrelations. Our test set only contains

clusters of size 3 or larger, so there is no need to

account for inversions in clusters of size 2.

4.3 Results
In Table 3, we use the evaluation metrics mentioned

above to compare several different approaches.

Web Baseline The first baseline simply reflects

the original pairwise Web-based intensity scores.

We classify (with one of 3 labels) a given pair of

adjectives using the Web-based intensity scores (as

described in Section 2.1.3) as follows:

Lbaseline(a1, a2) =

⎧⎨
⎩

< if score(ai, aj) > 0
> if score(ai, aj) < 0
=? if score(ai, aj) = 0

Since score(ai, aj) represents the weak-strong

score of the two adjectives, a more positive value

means a higher likelihood of ai being weaker (<, on

the left) in intensity than aj .
In Table 3, we observe that the (micro-averaged)

pairwise accuracy, as defined earlier, for the origi-

nal Web baseline is 48.2%, while the ranking mea-

sures are undefined because the individual pairs do

not lead to a coherent scale.

Divide-and-Conquer The divide-and-conquer

baseline recursively splits a set of words into three

subgroups, placed to the left (weaker), on the same

position (no evidence), or to the right (stronger) of a

given randomly chosen pivot word.

While this approach shows only a minor improve-

ment in terms of the pairwise accuracy (50.6%), its

main benefit is that one obtains well-defined inten-

sity scales rather than just a collection of pairwise

scores.

Sheinman and Tokunaga The approach by

Sheinman and Tokunaga (2009) involves a simi-

lar divide-and-conquer based partitioning in the first

phase, except that their method makes use of syn-

onymy information from WordNet and uses all syn-

onyms in WordNet’s synset for the headword as

neutral pivot elements (if the headword is not in

WordNet, then the word with the maximal unigram

frequency is chosen). In the second phase, their

method performs pairwise comparisons within the

more intense and less intense subgroups. We reim-

plement their approach here, using the Google N-

Grams dataset instead of online Web search engine

hits. We observe a small improvement over the Web

baseline in terms of pairwise accuracy. Note that the
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Method Pairwise Accuracy Avg. τ Avg. |τ | Avg. ρ Avg. |ρ|
Web Baseline 48.2% N/A N/A N/A N/A

Divide-and-Conquer 50.6% 0.45 0.53 0.52 0.62

Sheinman and Tokunaga (2009) 55.5% N/A N/A N/A N/A

MILP 69.6% 0.57 0.65 0.64 0.73

MILP with synonymy 78.2% 0.57 0.66 0.67 0.80

Inter-Annotator Agreement 78.0% 0.67 0.76 0.75 0.86

Table 3: Main test results

Predicted Class
Weaker Tie Stronger

True Class
Weaker 117 127 15

Tie 5 42 15

Stronger 11 122 115

Table 4: Confusion matrix (Web baseline)

rank correlation measure scores are undefined for

their approach. This is because in some cases their

method placed all words on the same position in the

scale, which these measures cannot handle even in

their tie-corrected versions. Overall, the Sheinman

and Tokunaga approach does not aggregate informa-

tion sufficiently well at the global level and often

fails to make use of transitive inference.

MILP Our MILP exploits the same pairwise

scores to induce significantly more accurate pair-

wise labels with 69.6% accuracy, a 41% relative

error reduction over the Web baseline, 38% over

Divide-and-Conquer, and 32% over Sheinman and

Tokunaga (2009). We further see that our MILP

method is able to exploit external synonymy (equiv-

alence) information (using synonyms marked by the

annotators). The accuracy of the pairwise scores as

well as the quality of the overall ranking increase

even further to 78.2%, approaching the human inter-

annotator agreement. In terms of average correlation

coefficients, we observe similar improvement trends

from the MILP, but of different magnitudes, because

these averages give small clusters the same weight

as larger ones.

4.4 Analysis

Confusion Matrices For a given approach, we

can study the confusion matrix obtained by cross-

tabulating the gold classification with the predicted

Predicted Class
Weaker Tie Stronger

True Class
Weaker 177 29 53

Tie 9 24 29

Stronger 15 38 195

Table 5: Confusion matrix (MILP)

classification of every unique pair of adjectives in

the ground truth data. Table 4 shows the confusion

matrix for the Web baseline. We observe that due to

the sparsity of pairwise intensity order evidence, the

baseline method predicts too many ties.

Table 5 provides the confusion matrix for the

MILP (without external equivalence information)

for comparison. Although the middle column still

shows that the MILP predicts more ties than humans

annotators, we find that a clear majority of all unique

pairs are now correctly placed along the diagonal.

This confirms that our MILP successfully infers new

ordering decisions, although it uses the same input

(corpus evidence) as the baseline. The remaining

ties are mostly just the result of pairs for which there

simply is no evidence at all in the input Web counts.

Note that this problem could for instance be circum-

vented by relying on a crowdsourcing approach: A

few dispersed tie-breakers are enough to allow our

MILP to correct many other predictions.

Predicted Examples Finally, in Table 6, we pro-

vide a selection of real results obtained by our algo-

rithm. For instance, it correctly inferred that terri-
fying is more intense than creepy or scary, although

the Web pattern counts did not provide any explicit

information about these words pairs. In some cases,

however, the Web evidence did not suffice to draw

the right conclusions, or it was misleading due to is-

sues like polysemy (as for the word funny).
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Accuracy Prediction Gold Standard

Good
hard

< painful

< hopeless

hard

< painful

< hopeless

full

< stuffed

< (overflowing,

overloaded)

full

< stuffed

< overflowing

< overloaded

unusual

< uncommon

< rare

< exceptional

< extraordinary

uncommon

< unusual

< rare

< extraordinary

< exceptional

Average creepy

< scary

< sinister

< frightening

< terrifying

creepy

< (scary, frightening)

< terrifying

< sinister

Bad (awake, conscious)

< alive

< aware

alive

< awake

< (aware, conscious)

strange

< (unusual, weird)

< (funny, eerie)

(strange, funny)

< unusual

< weird

< eerie

Table 6: Some examples (of bad, average and good accu-

racy) of our MILP predictions (without synonymy infor-

mation) and the corresponding gold-standard annotation.

While we show results on gold-standard chains

here for evaluation purposes, in practice one can also

recombine two [0, 1] chains for a pair of antonymic

clusters to form a single scale from [−1, 1] that visu-

alizes the full spectrum of available adjectives along

a dimension, from adjacent all the way to removed,

or from black to glaring.

5 Extension to Multilingual Ordering

Our method for globally ordering words on a scale

can easily be applied to languages other than En-

glish. The entire process is language-independent

as long as the required resources are available and a

small number of patterns are chosen. For morpho-

logically rich languages, the information extraction

step of course may require additional morphologi-

cal analysis tools for stemming and aggregating fre-

quencies across different forms.

Alternatively, a cross-lingual projection approach

is possible at multiple levels, utilizing information

from the English data and ranking. As the first step,

the set of words in the target language that we wish

to rank can be projected from the English word set if

necessary – e.g., as shown in de Melo and Weikum

(2009). Next, we outline two projection methods for

the ordering step. The first method is based on pro-

jection of the English intensity-ordering patterns to

the new language, and then using the same MILP

as described in Section 2.2. In the second method,

we also change the MILP and add cross-lingual con-

straints to better inform the target language’s ad-

jective ranking. A detailed empirical evaluation of

these approaches remains future work.

5.1 Cross-Lingual Pattern Projection

Instead of creating new patterns, in many cases

we obtain quite adequate intensity patterns by us-

ing cross-lingual projection. We simply take sev-

eral adjective pairs, instantiate the English patterns

with them, and obtain new patterns using a machine

translation system. Filling the wildcards in a pat-

tern, say ‘� but not �’, with good/excellent results in

‘good but not excellent’. This phrase is then trans-

lated into the target language using the translation

system, say into German ‘gut aber nicht ausgezeich-

net’. Finally, put back the wildcards in the place of

the translations of the adjective words, here gut and

ausgezeichnet, to get the corresponding German pat-

tern ‘� aber nicht �’. Table 7 shows various German

intensity patterns that we obtain by projecting from

the English patterns as described. The process is re-

peated with multiple adjective pairs in case different

variants are returned, e.g. due to morphology. Most

of these translations deliver useful results.

Now that we have the target language adjectives

and the ranking patterns, we can compute the pair-

wise intensity scores using large-scale data in that

language. We can use the Google n-grams cor-

pora for 10 European languages (Brants and Franz,

2009), and also for Chinese (LDC2010T02) and

Japanese (LDC2009T08). For other languages, one

can use available large raw-text corpora or Web

crawling tools.

5.2 Crosslingual MILP

To improve the rankings for lesser-resourced lan-

guages, we can further use a joint MILP approach

for the new language we want to transfer this pro-

cess to. Additional constraints between the English
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Weak-Strong Patterns Strong-Weak Patterns
English German English German

� but not � � aber nicht � not � just � nicht � gerade �

� if not � � wenn nicht � not � but just � nicht � aber nur �

� and almost � � und fast � not � though still � nicht � aber immer noch �

not just � but � nicht nur � sondern � � or very � � oder sehr �

Table 7: Examples of German intensity patterns projected (translated) directly from the English patterns.

words and their corresponding target language trans-

lations, in combination with the English ranking in-

formation, allow the algorithm to obtain better rank-

ings for the target words whenever the non-English

target language corpus does not provide sufficient

intensity order evidence.

In this case, the input set A contains words

in multiple languages. The Web intensity scores

score(ai, aj) should be set to zero when comparing

words across languages. We instead link them using

a translation table T ⊆ {1, . . . , N} × {1, . . . , N}
from a translation dictionary or phrase table. Here,

(i, j) ∈ T signifies that ai is a translation of aj . We

do not require a bijective relationship between them

(i.e., translations needn’t be unique). The objective

function is augmented by adding the new term∑
(i,j)∈T

(w′
ij + s′ij)CT (5)

for a constant CT > 0 that determines how much

weight we assign to translations as opposed to the

corpus count scores. The MILP is extended by

adding the following extra constraints.

dij − w′
ijCT < −dmax ∀i, j ∈ {1, . . . , N}

dij + (1− w′
ij)CT ≥ −dmax ∀i, j ∈ {1, . . . , N}

dij + s′ijCT > dmax ∀i, j ∈ {1, . . . , N}
dij − (1− s′ij)CT ≤ dmax ∀i, j ∈ {1, . . . , N}
w′
ij ∈ {0, 1} ∀i, j ∈ T

s′ij ∈ {0, 1} ∀i, j ∈ T

The variables di,j , as before, encode distances be-

tween positions of words on the scale, but now also

include cross-lingual pairs of words in different lan-

guages. The new constraints encourage translational

equivalents to remain close to each other, preferably

within a desired (but not strictly enforced) maximum

distance dmax. The new variables w′
ij , s

′
ij are sim-

ilar to wij , sij in the standard MILP. However, the

w′
ij become 1 if and only if dij ≥ −dmax and the s′ij

become 1 if and only if dij ≤ dmax. If both w′
ij and

s′ij are 1, then the two words have a small distance

−dmax ≤ dij ≤ dmax. The augmented objective

function explicitly encourages this for translational

equivalents. Overall, this approach thus allows evi-

dence from a language with more Web evidence to

improve the process of adjective ordering in lesser-

resourced languages.

6 Conclusion

In this work, we have presented an approach to the

challenging and little-studied task of ranking words

in terms of their intensity on a continuous scale. We

address the issue of sparsity of the intensity order ev-

idence in two ways. First, pairwise intensity scores

are computed using linguistically intuitive patterns

in a very large, Web-scale corpus. Next, a Mixed

Integer Linear Program (MILP) expands on this fur-

ther by inferring new relative relationships. Instead

of making ordering decisions about word pairs in-

dependently, our MILP considers the joint decision

space and factors in e.g. how two adjectives relate

to some third adjective, thus enforcing global con-

straints such as transitivity.

Our approach is general enough to allow addi-

tional evidence such as synonymy in the MILP,

and can straightforwardly be applied to other word

classes (such as verbs), and to other languages

(monolingually as well as cross-lingually). The

overall results across multiple metrics are substan-

tially better than previous approaches, and fairly

close to human agreement on this challenging task.
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