Smoothed Analysis of Balancing Networks*

Tobias Friedrich!?, Thomas Sauerwald! and Dan Vilenchik®

! International Computer Science Institute, Berkeley, CA, USA
2 Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
3 Computer Science Division, University of California, Berkeley, CA, USA

Abstract In a load balancing network each processor has an initial col-
lection of unit-size jobs, tokens, and in each round, pairs of processors
connected by balancers split their load as evenly as possible. An excess
token (if any) is placed according to some predefined rule. As it turns out,
this rule crucially effects the performance of the network. In this work we
propose a model that studies this effect. We suggest a model bridging the
uniformly-random assignment rule, and the arbitrary one (in the spirit
of smoothed-analysis) by starting from an arbitrary assignment of bal-
ancer directions, then flipping each assignment with probability « inde-
pendently. For a large class of balancing networks our result implies that
after O(log n) rounds the discrepancy is whp O((1/2—«) log n+log logn).
This matches and generalizes the known bounds for & = 0 and oo = 1/2.

1 Introduction

In this work we are concerned with two topics whose name contains the word
“smooth”, but in totally different meaning. The first is balancing (smoothing)
networks, the second is smoothed analysis. Let us start by introducing these two
topics, and then introduce our contribution — interrelating the two.

1.1 Balancing (smoothing) networks

In the standard abstraction of smoothing (balancing) networks [2], processors
are modeled as the vertices of a graph and connection between them as edges.
Each process has an initial collection of unit-size jobs (which we call tokens).
Tokens are routed through the network by transmitting tokens along the edges
according to some local rule. The quality of such network is measured by the
maximum difference between the number of tokens at any two vertices (after the
balancing operations have ended).

The local scheme of communication we study is a balancer gate: the number
of tokens is split as evenly possible between the communicating vertices with the
excess token (if such remains) routed to the vertex towards which the balancer
points. More formally, the balancing network consists of n vertices vy, va, ..., vy,

* Tobias Friedrich and Thomas Sauerwald were partially supported by postdoctoral
fellowships from the German Academic Exchange Service (DAAD).

INPUT OUTPUT

0000
0001 I
0010
0011 I
0100
0101 I
0110
0111 I
1000
1001 I
1010
1011 I
1100
1101 I
1110
1111 I

Figure 1: The network CCCys.

and m matchings (either perfect or not) My, Ms, ..., M,,. We associate with
every matching edge a balancer gate (that is we think of the edges as directed
edges). At the beginning of the first iteration, z; tokens are placed in vertex
v;, and at every iteration r = 1,...,m, the vertices of the network perform a
balancing operation according to the matching M, (that is, vertices v; and v,
interact if (v;,v;) € M,).

One motivation for considering smoothing networks comes from the server-
client world. Each token represents a client request for some service; the service
is provided by the servers residing at the vertices. Routing tokens through the
network must ensure that all servers receive approximately the same number of
tokens, no matter how unbalanced the initial number of tokens is (cf. [2]). More
generally, smoothing networks are attractive for multiprocessor coordination and
load balancing applications where low-contention is a requirement; these include
producers-consumers [10] and distributed numerical computations [3]. Together
with counting networks, smoothing networks have been studied quite extensively
since introduced in the seminal paper of Aspnes et al. [2].

Herlihy and Tirthapura [11, 12] initiated the study of the CCC network (cube-
connected-cycles, see Figure 1) as a smoothing network. For the special case of
the CCC, sticking to previous conventions, we adopt a “topographical” view of
the network, thus calling the vertices wires, and looking at the left-most side of
the network as the “input” and the right-most as the “output”. In the CCC, two
wires at layer ¢ are connected by a balancer if the respective bit strings of the
wires differ exactly in bit £. In Mavronicolas and Sauerwald [15] it was observed
that the CCC is isomorphic to the well-known block network [2, 6]. Therefore,
we refer to the CCC-network throughout this paper, though many results in the
area are actually stated for the block network. The CCC is a canonical network
in the sense that it has the smallest possible depth of logn (smaller depth cannot
ensure any discrepancy independent of the initial one). Moreover, it has been

used in more advanced constructions such as the periodic (counting) network
(2, 6].

As it turns out, the initial setting of the balancers’ directions is crucial.
Two popular options are an arbitrary orientation or a uniformly random one.
A maximal discrepancy of logn was established for the CCC,, for an arbitrary
initial orientation [12]. For a random initial orientation of the CCC,,, [11] show
a discrepancy of 2.36v/logn’ for the CCC,, (this holds whp® over the random
initialization), which was improved by [15] to loglogn + O(1) (and a matching
lower bound).

Results for more general networks have been derived in Rabani, Sinclair,
and Wanka [16] for arbitrary orientations. For expander graphs, they show an
O(log n)-discrepancy after O(logn)-rounds. This was recently strengthened as-
suming the orientations are set randomly and in addition the matchings them-
selves are chosen randomly [9]. Specifically, for expander graphs constant dis-
crepancy can be achieved whp within O(logn (loglogn)3) rounds.

1.2 Smoothed analysis

Let us now turn to the second meaning of “smoothed”. Smoothed analysis comes
to bridge between the random instance, which typically has a very specific “un-
realistic” structure, and the completely arbitrary instance, which in many cases
reflects just the worst case scenario, and thus over-pessimistic in general. In the
smoothed analysis paradigm, first an adversary generates an input instance, then
this instance is randomly perturbed.

The smoothed analysis paradigm was introduced by Spielman and Teng in
2001 [18] to help explain why the simplex algorithm for linear programming
works well in practice but not in (worst-case) theory. They considered instances
formed by taking an arbitrary constraint matrix and perturbing it by adding
independent Gaussian noise with variance € to each entry. They showed that, in
this case, the shadow-vertex pivot rule succeeds in expected polynomial time. In-
dependently, Bohman, Frieze, and Martin [4] studied the issue of Hamiltonicity
in a dense graph when random edges are added. In the context of graph opti-
mization problems we can also mention [8, 13], in the context of k-SAT [5, 7],
and in various other problems [1, 14, 17, 19].

In our setting we study the following question: what if the balancers were
not set completely adversarially but also not in a completely random fashion.
Besides the mathematical and analytical challenge that such a problem poses,
in real network applications one may not always assume that the random source
is unbiased, or in some cases one will not be able to quantitatively measure the
amount of randomness involved in the network generation. Still it is desirable
to have an estimate of the typical behavior of the network. Although we do not
claim that our smoothed-analysis model captures all possible behaviors, it does
give a rigorous and tight characterization of the tradeoff between the quality of

! Writing whp we mean with probability tending to 1 as n goes to infinity.

load balancing and the randomness involved in setting the balancers’ directions,
under rather natural probabilistic assumptions.

As far as we know, no smoothed analysis framework was suggested to a
networking related problem. Formally, we suggest the following framework.

1.3 The Model

Our model is similar (and, as we will shortly explain, a generalization of) the
periodic balancing circuits studied in [16]. It will be helpful for the reader to bear
in mind the following legend: we use superscripts (in round brackets) to denote a
time stamp, and subscripts to denote an index. In subscripts, we use the vertices
of the graph as indices (thus assuming some ordering of the vertex set). For
example, Aq(f)v stands for the (u,v)-entry in matrix A® which corresponds to
time/round 1.

Let MM ... M be an arbitrary sequence of T' (not necessarily perfect)
matchings. With each matching M® we associate a matrix P(®) with ngg =1/2
if v and v are matched in M(i), PSB = 1 if w is not matched in M(i)7 and ngg =0
otherwise.

In round i, every two vertices matched in M (¥ perform a balancing operation.
That is, the sum of the number of tokens in both vertices is split evenly between
the two, with the remaining token (if exists) placed in the vertex pointed by the
matching edge.

Remark 1 In periodic balancing networks (see [16] for example) an ordered
set of d (usually perfect) matchings is fixed. Every round of balancing is a suc-
cessive application of the d matchings. Our model is a (slight) generalization of
the latter.

Let us now turn to the smoothed-analysis part. Given a balancing network
consisting of a set T" of directed matchings, an a-perturbation of the network
is a flip of direction for every edge with probability a independently of all other
edges.

Setting o = 0 gives the completely “adversarial model”, and o = 1/2 is the
complete random case.

Remark 2 For our results, it suffices to consider o € [0,1/2]. The case o > 1/2
can be reduced to the case o < 1/2 by flipping the initial orientation of all
balancers and taking 1 — « instead of . It is easy to see that both distributions
are identical.

1.4 Our Contribution

For a load vector x, its discrepancy is defined to be max,, , [x, — X,|. We use e,
to denote the unit vector whose all entries are 0 except the u*”. For a matrix A,
A(A) stands for the second largest eigenvalue of A (in absolute value). Unless
stated otherwise, ||z|| stands for the ¢3-norm of the vector z.

Theorem 1 Let G be some balancing network with matchings MM ... M),
For any two time stamps t1,ta satisfying t1 < to < T, and any input vector with
initial discrepancy K, the discrepancy at time step to in a-perturbed G is whp
at most

(tz—tl)—i-g(%—a)tl—i-/ll—i-/lg,

where

Ay = ma 4Jlogn S Spegenco (en —e0) (T PO))
4o =\ (T2, PO) VITK.

Before we proceed let us motivate the result stated in Theorem 1. There are
two factors that effect the discrepancy: the fact that tokens are indivisible (and
therefore the balancing operation may not be “perfect”, plus the direction of the
balancer — which wire gets the extra token), and how many balancing rounds are
there. On the one hand, the more rounds there are the more balancing operations
are carried, and the smoother the output is. On the other hand, the longer the
process runs, its susceptibility to rounding errors and arbitrary placement of
excess tokens increases. This is however only a seemingly tension, as indeed the
more rounds there are, the smoother the output is. Nevertheless, in the analysis
(at least as we carry it), this tension plays part. Specifically, optimizing over
these two contesting tendencies is reflected in the choice of t; and to. A5 is the
contribution resulting from the number of balancing rounds being bounded, and
A1, along with the first two terms, account for the indivisibly of the tokens. In
the cases that will interest us, ¢1, t> will be chosen so that A7, Ay will be low-order
terms compared to the first two terms.

Our Theorem 1 also implies the following results:

e For the aforementioned periodic setting Theorem 1 implies the following:
after O (log(Kn)/v) rounds (v = (1 — A(P))~!), P is the matrix of one
period, K the initial discrepancy) the discrepancy is whp at most

0 (d log(Kn) (l —a) n dloglogn) .
v 2 v

Setting @ = 0 (and assuming K is polynomial in n) we get the result of
[16], and for a@ = 1/2 we get the result of [9]. (The restriction on K being
polynomial can be lifted but at the price of more cumbersome expressions
in Theorem 1. Arguably, the interesting cases are anyway when the total
number of tokens, and in particular K, is polynomial). Complete details in
the full version.

e For the CCC,,, after logn rounds the discrepancy is whp at most

3(2 —a)logn +loglogn + O(1).

Let us now turn to the lower bound.

Theorem 2 Consider a CCC,, with the all-up orientation of the balancers and
assume that the number of tokens at each wire is uniformly distributed over
{0,1,...,n—1} (independently at each wire). The discrepancy of the a-perturbed
network is whp at least

max{(1 — a)logn — 2loglogn, (1 + o(1))(loglogn)/2}.

Theorem 2 is proven in Section 2, preceding the proof of Theorem 1 (Section
3), serving as a good introduction to the more complicated proof of Theorem 1.
Two more points to note regarding the lower bound:

e For o = 0, our lower bound matches the experimental findings of [11], which
examined CCCaye4, all balancers pointing up, and the input is a random num-
ber between 1 and 100, 000. Their observed average discrepancy was roughly
(logm)/2.

e The input distribution that we use for the lower bound is arguably more
natural than the tailored and somewhat artificial ones used in previous lower
bound proofs [12, 15].

Finally, we state a somewhat more technical result that we obtain, which lies
in the heart of the proof of the lower bound and sheds light on the mechanics
of the CCC in the average case input. In what follows, for a balancer b, we let
Odd(b) be an indicator function which is 1 if b had an excess token. By B; we
denote the set of balancers that effect wire ¢ (that is, there is a simple path in
the network going from an input wire, through such a balancer, and ending up
at wire 7).

Lemma 3 Consider a CCC,, network with any fixed orientation of the balancers.
Assume a uniformly distributed input over {0,1,...,n—1}. Fvery balancer b in
layer £, 1 < ¢ <logn, satisfies the following properties:

e Pr[Odd(b) =1] =1/2, and
o for every i, {Odd(b) | b € B;} is a set of independent random variables.

For lack of space, the proof of this lemma, as well as other technical details that
are missing throughout the paper, can be found in the full version of the paper.
Let us just remark that the lemma holding under such strict conditions is rather
surprising. First, it is valid regardless of the given orientation. Secondly, and
somewhat counter-intuitively, the Odd’s of the balancers that effect the same
output wire are independent.

2 Lower Bound - Proof of Theorem 2

The proof outline is the following. Given an input vector x (uniformly distributed
over the range {0,...,n — 1}), we shall calculate the expected divergence from

the average load 1 = ||x||1/n. The expectation is taken over both the smoothing
operation and the input. After establishing the “right” order of divergence (in
expectation) we shall prove a concentration result. One of the main keys to
estimating the expectation is Lemma 3 saying that if the input is uniformly
distributed as above, then for every balancer b, Pr[Odd(b) =1] = 1/2 (the
probability is taken only over the input).

Before proceeding with the proof, let us introduce some further notation. Let
y1 be the number of tokens exiting on the top output wire of the network. For
any balancer b, ¥(b) is an indicator random variable which takes the value —1/2
if the balancer b was perturbed, and 1/2 otherwise. B(¥) is the set of balancers
in layer £, and b ~» y; stands for “there is a path of consecutive layers from
balancer b to the output of wire 1”.

Using the “standard” backward (recursive) unfolding (see also [11, 15] for a
concrete derivation for the CCC,,) we obtain that,

logn
yr=p+» 2705 N 0dd(b) - w(b).
=1 beB(£) Ab~yr

The latter already implies that the discrepancy of the entire network is at least

logn
pi—u=Y 27 ST 0dd(b) - W (b)
(=1 bel

because there is at least one wire whose output has at most p tokens (a further
improvement of a factor of 2 will be obtained by considering additionally the
bottom output wire and prove that on this wire only a small number of tokens
exit). Write y; — pu = E;O:gln Sy, defining for each layer 1 < £ < logn,

Spi=27"m N " 0dd(b) - ¥ (b). (1)
beB;Ab~yq

2.1 Proof of (% — a)logn — 2loglogn

We now turn to bounding the expected value of S;. Using the following facts: (a)
the Odd(b) and ¥(b) are independent (b) Lemma 3 which gives E [Odd(b)] = 1/2
(c) the simple fact that E [¥(b)] = 3 — a (d) the fact that in layer ¢ there are
2lo8m=£ halancers which affect output wire 1 (this is simply by the structure of

the CCC,,), we get

E[S)] = 9~ logn+¢t Z % (1 -2a)
be By Ab~y,
— 9—logn+t glogn—¢ % . (

N[

This in turn gives that

Ely1 —ul=E

logn
Z 5’4] = % (% — a) log n.
(=1

Our next goal is to claim that typically the discrepancy behaves like the ex-
pectation; in other words, a concentration result. Specifically, we apply Hoeffd-
ings bound to each layer S, separately. It is applicable as the random variables
2~ logn+L . Odd(b) - ¥(b) are independent for balancers within the same layer
(such balancers concern disjoint sets of input wires, and the input was chosen
independently for each wire). For the bound to be useful we need the range of
values for the random variables to be small. Thus, in the probabilistic argument,
we shall be concerned only with the first logn —loglogn layers (the last loglogn
layers we shall bound deterministically). We use the following Hoeffding bound:

Lemma 4 (Hoeffdings Bound) Let Z1,Zs,...,Z, be a sequence of indepen-
dent random variables with Z; € [a;,b;] for each i. Then for any number e > 0,

n n 262
Pri>iZi —ED L, Z][>] <2-exp <_Z” (b; — a,)z) :
i=1\Y1 7

We plug in,
Zy = 2_10g"+é-0dd(b)-![/(b), c— 2(é—logn-',-loglogn)/27 (bi_ai)2 _ (2€—logn)2 ,
and the sum is over 2!°2"~¢ balancers in layer £. Therefore,

—1

<n

2¢—logn

¢—log n+loglogn
Pr [|S€ - E [Sg” > 2(Z—logn+loglogn)/2} < 26Xp (_2 2 >

In turn, with probability at least 1 —logn/n (take the union bound over at most
logn S¢ terms):

log n—loglogn log n—loglogn
1 (1 {—logn+loglogn)/2
Se> 1 (3 —) (logn —loglogn) — E 2()2,
(=1 (=1

The second term is just a geometric series with quotient /2, and therefore can
1
be bounded by m < 4.

For the last log log n layers, we have that for every £, | Sy| cannot exceed %, and
therefore their contribution, in absolute value is at most %log logn. Wrapping
it up, whp

logn

Y — p= Z Se> 1 (3 —a) (logn —loglogn) — 4 — 4 loglogn.
=1

The same calculation implies that the number of tokens at the bottom-most
output wire deviates from p in the same way (just in the opposite direction).

Hence, the discrepancy is whp lower bounded by (using the union bound over
the top and bottom wire, and not claiming independence)

Y1 — Yn = (% —a) logn — 8 — (% —a)loglogn > (% —a) logn — 2loglogn.

2.2 Proof of (1 + o(1)) loglogn/2

The proof here goes along similar lines to Section 2.1, only that now we choose
the set of balancers we apply it to more carefully. By the structure of the CCC,,
the last x layers form the parallel cascade of n/2% independent CCC subnetworks
each of which has 2% wires (by independent we mean that the set of balancers
is disjoint).

We call a subnetwork good if after an a-perturbation of the all-up initial
orientation, all the balancers were not flipped (that is, still point up).

The first observation that we make is that whp (for a suitable choice of z, to
be determined shortly) at least one subnetwork is good. Let us prove this fact.

The number of balancers effecting the top (or bottom) wire in one of the
subnetworks is Y_,_; 2¢ < 22F1. In total, there are no more than 227+ effecting
both wires. The probability that none of these balancers was flipped is (using
our assumption a < 1/2) (1 —)2"" > 272", Choosing = = loglogn — 1, this
probability is at least n~1/2; there are at least n/logn such subnetworks, thus
the probability that none is good is at most

(1 - n_1/2)n/ A o(1).

Fix one good subnetwork and let p’ be the average load at the input to that
subnetwork. Repeating the arguments from Section 2.1 (with a = 0, logn re-
scaled to z = loglogn — 4, and now using the second item in Lemma 3 which
guarantees that the probability of Odd(-) = 1 is still 1/2, for any orientation of
the balancers) gives that in the top output wire of the subnetwork there are whyp
at least u’ + (loglogn)/4 — O(logloglogn) tokens, while on the bottom output
wire there are whp at most p' — (loglogn)/4 4+ O(logloglogn) tokens. Using the
union bound, the discrepancy is whp at least their difference, that is at least
(loglogn)/2 — O(logloglogn).

3 Upper Bound - Proof of Theorem 1

We shall derive our bound by measuring the difference between the number of
tokens at any vertex and the average load (as we did in the proof of the lower
bound for the CCC,,). Specifically we shall bound max; |y£t) — ul, yft) being the
number of tokens at vertex i at time t (we use y(!) = (y;);ev for the vector of
loads). There are two contributions to the divergence from p (which we analyze
separately):

e The divergence of the idealized process from p due to its finiteness.
e The divergence of the actual process from the idealized process due to indi-
visibility.

The idea to compare the actual process to an idealized one was suggested in
[16] and was analyzed using well-known convergence results of Markov chains.
Though we were inspired by the basic setup from [16] and the probabilistic

10

analysis from [9], our setting differs in a crucial point: when dealing with the
case 0 < a < 1/2, we get a delicate mixture of the deterministic and the random
model. The random variables in our analysis are not symmetric anymore which
leads to additional technicalities.

Formally, let £®) be the load vector of the idealized process at time ¢, then
by the triangle inequality (1 is the all-one vector)

Iy = p1lloe < [y® = €D o + 169 = 1] e

Proposition 5 Let G be some balancing mnetwork with matchings
MO M) Then,

o 160 = pfloe < A2,
e whp over the a-perturbation operation, ||y® — M| < (ta — t1) +
3(3— o)t + Ar.

Theorem 1 then follows. The proof of the first item in Proposition 5 is a rather
standard spectral argument (details in the full version). Let us outline the proof
of the second item:

3.1 Proof of Proposition 5: Bounding ||[y® — £¢® ||,

The proof of this part resembles in nature the proof of Theorem 2. Assuming

an ordering of G’s vertices, for a balancer b in round ¢, b = (u,v), u < v, we

set @SZJ = 1 if the initial direction (before the perturbation) is u — v and —1

otherwise (in the lower bound we considered the all-up orientation thus we had
no use of these random variables). As in Section 2, for a balancer b in round ¢,
the random variable Wét) is —1/2 if the balancer is perturbed and 1/2 otherwise.
Finally, recall that Odd(b) = 1 if there is an excess token, and 0 otherwise. Using
these notation we define a rounding vector p*), which accounts for the rounding
errors in step t. Formally,

pq(f) _ {Odd(y&t_l) + ngt_l)) . ij . @(f)v if u and v are matched in M®),

0 otherwise.

Now we can write the actual process as follows:
y = yOpt-1 4 5O (2)

Let Méf/ln be the set of balancers at time ¢ with no excess token, and M(()td)d the
ones with. Also, let e; be the vector whose entries are 0 except the i*” which is

1. We can rewrite p(*) as follows:

t) —) p)
p() = Z(“v”)eMc()zz g/u,v 'gpu,v : (ei - ej).

11

<
8 2 =<
o
~
~
~
b S~
S 15t ~<
> e 3~
g o0 Ssa
. ~
% (:‘\’0, \‘\\
@ 10 RS TN S <
Q ~ *
@ ~ e,
k) RIRAAL 2
\\

) 5 oo ..
« Coq
5 Tl TTheeses
>
« Seo-d

0

0 0.1 0.2 0.3 0.4 0.5

parameter a

Figure 2: Discrepancy for various a-values of CCCys0 with random input from [0, 2%°].
The dotted line describes the experimental results, the broken lines are our theo-
retical lower and upper bounds.

Unfolding equation (2), similarly to [16], yields then

t
y(® = yOPL 4 5™ pOplivia, (3)

=1

Observe that y(OPLY is just £®) (as £ = y(), and therefore
t i f t % % i
y(t) - g(t) = Zi:l R Zi:l Z(u,v)eMéﬁz %52) Q(L)v ' (eu B ev) Pl

In tU.I'Il7
i i i1, i1,
(y(t) _ é‘(t))v — E f 1 E (w,w) ,C()ZL !p1(L7’)U . @g))v . (P'[u,,v 4 — P'Eu,v t]) . (4)

Our next task is to bound equation (4) to receive the desired term from
Proposition 5. We do that similar in spirit to the way we went around in Sec-
tion 2.1. We break this sum into its first ¢; summands (whose expected sum we
calculate and to which we apply a large-deviation-bound). The remaining (¢t —t1)
terms are bounded deterministically. The remainder of the proof can be found
in the full version of this paper.

4 Experimental Result

We examined experimentally how well a CCCy30 balances a random input from
[0,239], for different o values between 0 and 1/2. Figure 2 presents the average
discrepancy over 100 runs, together with the following slightly better bounds on
the expected discrepancy A in the random-input case:

e A< (2 —a)-(logn— [loglogn]) + [loglogn] + 4,
o A>max{(1/2—a)logn, 1/2(1— 1) ([loglogn] —1)}.

12

Bibliography

1]

2]
3]
[4]

[5]

[6]
[7]
8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]
18]

[19]

D. Arthur and S. Vassilvitskii. Worst-case and smoothed analysis of the icp al-
gorithm, with an application to the k-means method. In 47th IEEE Symp. on
Found. of Comp. Science (FOCS’06), pages 153-164, 2006.

J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. of the ACM, 41(5):
1020-1048, 1994.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, 1997.

T. Bohman, A. Frieze, and R. Martin. How many random edges make a dense
graph hamiltonian? Random Structures and Algorithms, 22(1):33-42, 2003.

A. Coja-Oghlan, U. Feige, A. Frieze, M. Krivelevich, and D. Vilenchik. On
smoothed k-CNF formulas and the walksat algorithm. In 20th ACM-SIAM Symp.
on Discrete Algorithms (SODA’09), 2009.

M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting
network. J. of the ACM, 36(4):738-757, 1989.

U. Feige. Refuting smoothed 3CNF formulas. In 48th IEEE Symp. on Found. of
Comp. Science (FOCS’07), pages 407-417, 2007.

A. Flaxman and A. Frieze. The diameter of randomly perturbed digraphs and
some applications. Random Structures and Algorithms, 30:484-504, 2007.

T. Friedrich and T. Sauerwald. Near-perfect load balancing by random-
ized rounding. In 41st Annual ACM Symposium on Theory of Com-
puting (STOC’09), 2009. To appear, available from http://www.mpi-
inf.mpg.de/~tfried /paper/2009STOC.pdf.

M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

M. Herlihy and S. Tirthapura. Randomized smoothing networks. J. Parallel and
Distributed Computing, 66(5):626-632, 2006.

M. Herlihy and S. Tirthapura. Self-stabilizing smoothing and counting networks.
Distributed Computing, 18(5):345-357, 2006.

M. Krivelevich, B. Sudakov, and P. Tetali. On smoothed analysis in dense graphs
and formulas. Random Structures and Algorithms, 29(2):180-193, 2006.

B. Manthey and R. Reischuk. Smoothed analysis of binary search trees. Theoret.
Computer Sci., 378(3):292-315, 2007.

M. Mavronicolas and T. Sauerwald. The impact of randomization in smoothing
networks. In 27th Annual ACM Principles of Distributed Computing (PODC’08),
pages 345-354, 2008.

Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov chains and the
analysis of iterative load balancing schemes. In 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’98), pages 694-705, 1998.

H. Roglin and B. Vocking. Smoothed analysis of integer programming. Math.
Program., 110(1):21-56, 2007.

D. Spielman and S. Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. of the ACM, 51(3):385-463, 2004.
R. Vershynin. Beyond hirsch conjecture: Walks on random polytopes and
smoothed complexity of the simplex method. In 47th IEEE Symp. on Found.
of Comp. Science (FOCS’06), pages 133-142, 2006.

