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Abstract
Modern throughput processors such as GPUs achieve high

performance and efficiency by exploiting data parallelism in

application kernels expressed as threaded code. One draw-

back of this approach compared to conventional vector ar-

chitectures is redundant execution of instructions that are

common across multiple threads, resulting in energy inef-

ficiency due to excess instruction dispatch, register file ac-

cesses, and memory operations. This paper proposes to alle-

viate these overheads while retaining the threaded program-

ming model by automatically detecting the scalar operations

and factoring them out of the parallel code. We have devel-

oped a scalarizing compiler that employs convergence and

variance analyses to statically identify values and instruc-

tions that are invariant across multiple threads. Our com-

piler algorithms are effective at identifying convergent ex-

ecution even in programs with arbitrary control flow, iden-

tifying two-thirds of the opportunity captured by a dynamic

oracle. The compile-time analysis leads to a reduction in in-

structions dispatched by 29%, register file reads and writes

by 31%, memory address counts by 47%, and data access

counts by 38%.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code generation, Compilers, Op-

timization

General Terms Algorithms, Performance

Keywords CUDA, GPU, Scalarization

1. Introduction
Programming parallel systems is inherently challenging, and

over decades of research and development only a few mod-

els have attained broad success. Single-program multiple-
data (SPMD) accelerator languages like CUDA [19] and
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OpenCL [21] have proven to be accessible and productive.

These languages allow the programmer to write code for a

single thread and then use explicit data-parallel kernel invo-

cations to attain high performance. However, although the

SPMD accelerator model is simple for the programmer, it

can introduce many hidden overheads. For example, with a

conventional CUDA compiler, approximately 30% of thread

registers replicate data that is uniform across all threads exe-

cuting a kernel. Similarly, approximately 30% of all instruc-

tions are entirely redundant across the threads.

Redundancy across threads is the key inefficiency that

this paper addresses. We do so in the context of GPU single-
instruction multiple-thread (SIMT) architectures [17], which

fetch an instruction once but then execute it on many

threads simultaneously using parallel datapaths. For exam-

ple, NVIDIA’s GPUs have a 32-wide warp, and AMD’s

GPUs have a 64-wide wavefront. Emerging GPU architec-

tures have also added scalar execution resources alongside

the parallel datapaths [1].

Our primary contribution is a compiler algorithm to

scalarize both thread registers and instructions, such that

there is only one per warp (or wavefront) instead of one per

thread. Our compiler uses two interlinked analyses to en-

able scalarization. The first, convergence analysis statically

determines program points where the threads in a warp are

guaranteed to be converged (i.e. no thread is following a

divergent control-flow path). Convergence analysis is criti-

cal for scalarization, since the compiler can only scalarize

regions that it can prove to be convergent. The second is

variance analysis, which statically determines which pro-

gram variables are guaranteed to have the same (or thread-

invariant) value across the threads in a warp. In Section 3,

we construct an intuitive argument for something that was

not immediately apparent when we began our work: con-

vergence and variance information can be usefully analyzed

together in the same pass. In fact the two are inseparable in

our implementation. We present an algorithm that iteratively

analyzes and propagates convergence and variance informa-

tion over a kernel’s program dependence graph (PDG) [10].

Scalarization then uses this analysis to convert private thread

registers into scalar registers shared across the threads in a

warp, and also converts thread instructions into scalar in-

structions that execute one operation per warp instead of one

operation per thread. Using affine analysis, our compiler also



generates warp-sequential loads and stores when the threads

in a warp access sequential (unit-stride) data in memory. For

example, a single warp-sequential load instruction can fetch

a word from memory on behalf of each of the threads in the

warp, placing the result in the same-named private register

belonging to each thread.

Section 4 characterizes 23 benchmarks and finds that the

compiler is able to keep warps converged for 66% of the

total thread execution time on average. When augmented

with simple dynamic convergence preservation, convergent

execution can improve up to 97% of total execution time.

Scalarization reduces thread register usage by 20–33% on

average depending on warp size, making it possible to either

support more threads or reduce the register file size. Further-

more, 24–31% of dynamic instruction operands are scalars.

On average our compiler scalarizes 23–29% of dynamically

dispatched instructions, reduces memory address generation

counts by 37–47%, and eliminates data access counts by

30–38%. These savings can provide proportional energy and

performance gains.

Section 5 describes how compiler convergence analysis

and scalarization are generally applicable to a variety of ac-

celerator architectures. We also discuss how our compiler

analysis enables stackless temporal-SIMT, an architecture

with the potential to bridge the performance and efficiency

characteristics of MIMD (multiple-instruction, multiple-

data) and SIMT processors. With stackless SIMT, each

thread has a dedicated program counter (PC), allowing di-

verged threads to execute independently at full throughput as

they would on a multithreaded MIMD processor. This model

eliminates the need for divergence stacks, instead relying on

compiler-managed reconvergence. With temporal-SIMT the

threads in a warp execute temporally on a single lane, al-

lowing the architecture to amortize instruction overheads.

By simply configuring a range of the warp’s registers to be

shared scalars, scalar instructions can execute on the same

datapaths as regular thread instructions.

2. Background
This section provides an overview of SPMD accelerator

programming models, SIMT accelerator architectures, and

the basic principles of scalarization.

2.1 Accelerator Programming and Architectures
SPMD accelerator languages express data-parallel compu-

tation in the form of multithreaded kernels. Inside a kernel

the programmer writes code for a single thread, and a thread

typically processes a small amount of data. For example, a

thread might compute the color of a single pixel in a graphics

application. The programmer expresses parallel computation

with explicit data-parallel kernel invocations that direct a

group of threads to execute the kernel code. In CUDA these

thread groups are termed cooperative thread arrays (CTAs),

and a CTA may have up to 1024 threads.

Explicitly data-parallel languages map naturally to highly

multithreaded architectures, such as GPUs and other mul-

ticore accelerators. These throughput architectures leverage

parallelism spatially to execute computations at a high rate

across many datapaths and cores. They also leverage paral-

lelism temporally to saturate high-bandwidth memory sys-

tems. The interleaved execution of multiple threads essen-

tially hides hardware latencies from each individual thread.

This approach simplifies the programming model since the

code written for an individual thread can simply access data

and operate on it, without great concern for the access la-

tency.

SPMD programming models also implicitly expose lo-

cality that architectures leverage for efficiency. GPUs use a

SIMT architecture that executes an instruction on parallel

datapaths for many threads at the same time, for example

32 threads in warps, using NVIDIA terminology. A warp

may issue in a single cycle if the datapath width matches the

warp width, or it may be sequenced over several cycles on

a narrower datapath. Similar to single-instruction multiple-

data (SIMD) architectures, SIMT architectures use this or-

ganization to amortize the instruction fetch and other con-

trol overheads associated with executing instructions. SIMT

architectures also derive efficiency from data locality for the

common case when the threads in a warp access neighboring

data elements. To exploit this locality, SIMT architectures

use dynamic address coalescing to turn individual element

accesses into wide block accesses that the memory system

can process more efficiently, for example with only a single

cache tag check.

2.2 Overheads of SPMD
A SIMT architecture is able to substantially reduce the pro-

gram counter and instruction fetch overheads of multithread-

ing, but many hidden overheads of the SPMD programming

model remain. Writing kernel code for a single thread at a

time is simple for the programmer and improves productiv-

ity, but with a conventional compiler this model can create a

substantial amount of redundant work across threads.

Consider the simple FIR filter example shown in Fig-

ure 1(a) in which each thread computes one output element

by convolving a range of flen input elements with an array

of flen coefficients. The compiled code is shown in Fig-

ure 1(b). Each thread maintains both a loop iteration count

(r7) and a loop end count (r3) in registers and uses counter

increment (b20) and conditional branch instructions (b24)

to execute the loop. Thus, each thread executes a substantial

amount of bookkeeping overhead in addition to the actual

multiply-adds that perform useful work. Furthermore, most

of the bookkeeping overhead is entirely redundant across

threads. Each thread maintains identical loop counts, calcu-

lates the same branch conditions, replicates the same base

addresses, and performs similar address math to retrieve data

from structured arrays.



__global__ void fir(float* samples,
float* coeffs,
int flen,
float* results)

{
int idx = threadIdx.x;
float result = 0;
for (int i=0; i<flen; i++)

result += (coeffs[i] *
samples[idx+i]);

results[idx] = result;
}

(a)

b01 BB_1:
b02 mov r9, r1; # threadIdx.x
b03 ld.u64 r1, [4096]; # samples
b04 ld.u64 r2, [4104]; # coeffs
b05 ld.u32 r3, [4112]; # flen
b06 ld.u64 r4, [4120]; # results
b07 iset.s32.gt r5, r3, 0;
b08 mov r6, 0; # init result
b09 @r5 bra BB_3;
b10 BB_2:
b11 bra BB_5;
b12 BB_3:
b13 shl r5, r9, 2; # tidx * 4
b14 iadd r1, r1, r5; # sample addr gen
b15 mov r7, 0;
b16 BB_4:
b17 ld.f32 r5, [r2]; # load coeff
b18 ld.f32 r8, [r1]; # load sample
b19 fma.f32 r6, r5, r8, r6; # fp mul add
b20 iadd r7, r7, 1; # loop bookkeeping
b21 iadd r1, r1, 4; # samples bookkeeping
b22 iadd r2, r2, 4; # coeffs bookkeeping
b23 iset.s32.lt r5, r7, r3; # test loop break
b24 @r5 bra BB_4;
b25 BB_5:
b26 shl r5, r9, 2; # tidx * 4
b27 iadd r4, r4, r5; # result addr gen
b28 st.f32 [r4], r6; # store result
b29 exit;

(b)

c01 BB_1:
c02
c03 @s ld.u64 s1, [4096]; # samples
c04 @s ld.u64 s2, [4104]; # coeffs
c05 @s ld.u32 s3, [4112]; # flen
c06 @s ld.u64 s4, [4120]; # results
c07 @s iset.s32.gt s5, s3, 0;
c08 mov r6, 0; # init result
c09 @s @s5 bra BB_3;
c10 BB_2:
c11 @s bra BB_5;
c12 BB_3:
c13
c14
c15 @s mov s7, 0;
c16 BB_4:
c17 @s ld.f32 s5, [s2]; # load coeff
c18 ldwseq.f32 r8, [s1]; # load sample
c19 fma.f32 r6, s5, r8, r6; # fp mul add
c20 @s iadd s7, s7, 1; # loop bookkeeping
c21 @s iadd s1, s1, 4; # samples bookkeeping
c22 @s iadd s2, s2, 4; # coeffs bookkeeping
c23 @s iset.s32.lt s5, s7, s3; # test loop break
c24 @s @s5 bra BB_4;
c25 BB_5:
c26
c27
c28 stwseq.f32 [s4], r6; # store result
c29 exit;

(c)

Figure 1. Simplified FIR filter code example: (a) kernel code, (b) conventional compiler output, (c) scalarizing compiler

output. In the scalarized code, register specifiers which begin with s are scalar registers and @s is used to annotate scalar

instructions. Register numbers are preserved between the conventional code and the scalarized code for clarity.

In addition to bookkeeping overheads, a SPMD program

often has redundancy in the actual data operands accessed

and computation performed by individual threads. The ker-

nel code executed by each thread can be viewed as one it-

eration of an inner loop. A single-threaded encoding of the

kernel often has “outer loop” data that could be accessed or

computed once and then used many times. However in the

SPMD program encoding, factoring out this redundant work

is not as straightforward for a programmer or compiler. For

example, in Figure 1, each thread loads the same coefficients

redundantly (b17, b22) and replicates their storage in private

registers (r5). As another example, a straightforward SPMD

coding of matrix-multiply has each thread compute the dot-

product of a shared vector (a row of the first matrix) with a

private vector (a column of the second matrix). In this formu-

lation, the load operations of the shared vector are redundant

across all threads.

2.3 Scalarization
Redundancy across threads is the key inefficiency that

scalarization targets. Figure 1(c) shows the scalarized ver-

sion of the program in Figure 1(a). The compiler analysis

required to generate this code will be described in detail in

Section 3.

The compiler statically maps replicated operands to

shared scalar registers. If we consider a single 32-thread

warp executing the example in Figure 1, the convention-

ally compiled code would use 9 registers per thread. The

scalarized code in comparison uses 2 private registers per

thread and 6 shared registers per warp, 76% fewer regis-

ters per warp (70 vs. 288). In terms of dynamic register

operands accessed, the conventionally compiled code reads

11 operands and writes 7 operands per thread per loop it-

eration. The scalarized code in comparison reads 2 private

and 9 scalar operands per iteration and writes 2 private and

5 scalar operands per iteration. Since the scalar reads and

writes only need to be performed once per warp, a 32-thread

warp would read 79% fewer source operands (73 vs. 352)

and write 69% fewer destination operands in total (69 vs.

224).

The compiler also converts redundant instructions to

scalar instructions. As described above, while conventional

SIMT architectures factor out instruction fetch overheads

across a warp, each thread still executes each operation. In

Figure 1, the conventionally compiled code executes 8 op-

erations per thread per loop iteration. The scalarized code

executes only 7 scalar (including warp-sequential) opera-

tions and 1 regular thread operation per iteration. Since the

scalar operations only execute once per warp, a 32-thread

warp would execute 85% fewer operations with the scalar-

ized code (39 vs. 256).

The compiler also generates warp-sequential loads and

stores for the input and output data that is accessed with

unit-stride addressing across threads, as further described in

Section 3.5. These accesses are coalesced statically by the

compiler, eliminating the need for dynamic coalescing. In

the conventionally compiled code, a total of 64 unique ad-

dresses are generated per warp per loop iteration, compared

to only 2 addresses per warp for the scalarized code.

2.4 Divergence Management
A SIMT architecture executes instructions at warp granular-

ity for efficiency, but it must also implement the indepen-

dent thread execution semantics of the SPMD programming



model. GPUs achieve this by maintaining a divergence stack
for each warp, and by using active masks to disable inactive

threads as the warp executes instructions. When the threads

in a warp execute branch instructions, their execution is said

to diverge if they branch in different directions. When diver-

gence occurs, a warp is split into two subsets of threads, one

for branch taken and one for branch not taken. One subset

remains active and the warp’s current active mask is updated

to reflect that subset. For the other subset, an active mask is

pushed onto the divergence stack. The warp continues exe-

cuting the first subset of threads until it reaches the recon-
vergence point, for example the join point after an if-then-

else clause. Then, the warp switches to the deferred subset

of threads that are pending on the divergence stack. Once the

second subset also reaches the reconvergence point, the warp

active mask is restored to the original set of threads and re-

convergence is achieved. Divergence and reconvergence nest

hierarchically through these stack push and pop operations.

The divergence stack may be a hardware or software

mechanism, or a combination. NVIDIA GPUs implement

the stack in hardware, but the compiler is responsible for

manipulating it in order to correctly implement independent

thread execution semantics [17]. AMD GPUs use a software

approach with explicit management of thread active masks.

The scalar unit introduced in AMD’s recent Graphics Core

Next architecture primarily executes instructions to manage

control flow and divergence [1]. Intel’s MIC accelerator sim-

ilarly handles divergence with software-managed predica-

tion [11].

3. Compiler Foundation for Scalarization
To identify redundancy across multiple threads, the compiler

must prove that a variable has a uniform value across all of

the threads in a group. This process requires two key analy-

ses. First, convergence analysis proves that the threads are in

a converged state, meaning that all of the threads in the group

are in the same point in the control-flow graph at the same

time. This analysis builds on the CUDA kernel invocation

model in which threads are launched in an initial convergent

state. It also assumes convergence at syncthreads() (i.e.

barrier synchronization) calls, which are in effect program-

mer supplied assertions that threads are converged.

Second, variance analysis determines which variables

in the converged threads have the same (uniform) value

across all threads. This analysis builds on the semantics that

kernel function call arguments are thread-invariant. Vari-

ance across threads originates with use of thread indices

(e.g. threadIdx.x in CUDA) and with volatile and atomic

memory accesses. Our compiler uses data-flow and control-

dependence analysis to determine which variables are not

dependent on thread-specific values. Such variables can be

converted safely from per-thread variables to per-warp scalar

variables.

We implement the algorithms in the context of a pro-

duction CUDA compiler, based on the LLVM infrastruc-

ture [15]. Our compiler algorithms are agnostic to the di-

vergent execution models described in Section 2.4, and are

generally applicable to SIMT architectures with scalar exe-

cution resources.

3.1 Convergence Analysis
A program point is considered convergent if and only if a

thread-group barrier placed at that point can never fail. This

property implies that either all threads in the group will ar-

rive at the barrier, or none of the threads will. Note that re-

convergence points found by an immediate post-dominator

scheme may not be considered convergent, since our defi-

nition of convergent implies that all threads are fully con-

verged rather than a subset being partially converged. Con-

vergence may be defined with respect to a particular group

size such as CTAs or warps.

To perform convergence analysis, we leverage two data

structures common to compilers. First, the control flow

graph (CFG) represents the program as a graph of basic

blocks (BBs) connected via control flow (branch, jump)

edges [24]. Instructions unrelated to control are encapsulated

within the basic blocks. Figure 2(a) shows an example CFG

containing conditional branch points, loops, and merges.

Second, we leverage a standard global data-flow represen-

tation such as static single assignment form (SSA) [8] and

the control dependence (CD) graph [10, 28] to identify ba-

sic blocks that are obviously convergent and determine a

starting point for convergence analysis. Ferrante, et al. [10]

define control dependence as follows:

Definition: If X and Y are basic blocks in a CFG, Y

is control dependent on X (written X ≺ Y ) iff
1. there exists a directed path P from X to Y with any

Z in P (excluding X and Y) post-dominated by Y

and

2. X is not post-dominated by Y.

Figure 2(b) shows the control-dependence relations in the

CFG from Figure 2(a).

N1

N2

N2'
N3

N3'

N8

N8'
N4

N4'

N5

N5'
N6

N7
(a) Control flow graph

N1 N2 N2'

N3 N3'

N8

N8'

N4

N4'

N5

N5'

N6 N7

(b) Control dependence graph

Figure 2. Example control flow and dependence graphs.



The simplest approach to convergence analysis is to use

the control flow structure of the kernel. Entry and exit blocks

of a single-entry-single-exit (SESE) region have the same

convergence properties. If the entry of an SESE region R is

convergent then so is its exit. We then use the notion of re-

gions and its characterization as described in [3], where two

blocks of a CFG are in the same region if both nodes have

identical control-dependence predecessors. Such nodes are

termed control-equivalent. Since all threads of a warp (and

a thread block) are convergent at the entry block to the ker-

nel, all blocks that are control-equivalent to the entry block

must be convergent since they execute under the same con-

trol condition. Because the entry block where all threads in

the kernel start has no control-dependence predecessor, all

basic blocks with no control dependence predecessors are

marked as convergent. Using this simple notion of conver-

gence, it is easy to see from Figure 2(b) that blocks N1, N2,

N2′, N6, and N7 have no predecessors and therefore must

be convergent.

3.2 Combined Convergence and Variance Analysis
Leveraging variance analysis [26], we extend the simple

convergence analysis above to identify when basic blocks

across the threads are guaranteed to depend on the same con-

dition. The key insight is that a basic block is convergent if

and only if it is transitively control dependent only on con-

vergent blocks whose branch condition is thread-invariant

(written T inv(block) below) and that the entry block of the

kernel is always convergent. Any result of a thread-invariant

instruction is uniform and is a candidate for scalarization.

∀b b ≺ x : convergent(b) ∧ T inv(b) ⇒ convergent(x)

Alternatively, a basic block is divergent if it is transitively

control dependent on a divergent block or it is transitively

control dependent on a block with a thread-variant branch

condition (written Tvariant(block)).

∃b b ≺ x : divergent(b) ∨ Tvariant(b) ⇒ divergent(x)

Our algorithm exploits the latter characterization to mark

blocks as divergent after initially assuming, optimistically,

that all blocks are convergent. This approach fits well with

our combined variance and convergence analysis which

starts with optimistic assumptions about thread-variance.

Figure 3 describes our optimistic algorithm for variance

and convergence analysis. The first step performs initializa-

tions as follows (Figure 3(a)):

1. Optimistically mark every basic block of the kernel as

convergent.

2. Optimistically mark every instruction as thread-invariant.

3. Initialize a worklist of instructions with those that read

the thread id register, perform an atomic action on shared

memory, or access volatile memory.

worklist ← ∅
for bb ∈ blocks(kernel) do

Conv(bb) ← True
for instr ∈ instructions(bb) do

Invariant(instr) ← True
if instr reads thread id then

worklist ← worklist ∪ {instr}
end if
if instr is an atomic instruction then

worklist ← worklist ∪ {instr}
end if
if instr accesses volatile memory then

worklist ← worklist ∪ {instr}
end if

end for
end for

(a) Initialization.

while worklist �= ∅ do
instr ← POP (worklist)
Invariant(instr) ← False
for s ∈ DataF lowSucc(instr) do

if Invariant(s) = True then
worklist ← worklist ∪ {s}

end if
end for
if instr is a conditional branch instruction then

for bb ∈ IteratedControlDependenceSucc(instr) do
if bb doesn′t have a syncthreads() call then

if Conv(bb) = True then
Conv(bb) ← False
for i ∈ instructions(bb) do

worklist ← worklist ∪ {i}
end for

end if
end if

end for
end if

end while
(b) Analysis and propagation.

Figure 3. Combined convergence and variance analysis.

The worklist always consists of currently known thread-

variant instructions and is seeded with those instructions

that cannot be proven to be thread-invariant. The second

step performs a fixed-point loop in which each step removes

an instruction from the worklist and performs the following

actions until the worklist is empty (Figure 3(b)):

1. Mark the chosen instruction, i, as thread-variant, and

2. Add every thread-invariant data-flow successor instruc-

tion of i in the SSA graph to the worklist.

3. If instruction i is a conditional branch instruction, prop-

agate divergence to all convergent blocks that are itera-

tively control dependent on i but do not contain a bar-

rier instruction. Add every instruction in blocks that are

newly marked as divergent to the worklist.

When the algorithm terminates, any blocks that are marked

convergent must be so; and any instructions not visited and

marked as thread invariant must be so as well.



3.3 Analysis Example
To illustrate the algorithm, we use the flowgraph in Fig-

ure 2(a). This example assumes that the branch condition

in the basic block N4′ is thread-variant. The corresponding

control dependencies are reflected in Figure 2(b) with dotted

lines. Note that the IteratedControlDependenceSucc of

instructions in N4′ is {N4′, N4}. The algorithm in Figure 3

will propagate divergence to the targets of these control de-

pendencies transitively, illustrated in Figure 2(b) by marking

dark divergent blocks N4′ and N4.

After the algorithm terminates, all the blocks which are

not marked as divergent (light colored in Figure 2) are con-

vergent. Block N5 is inferred as convergent simply because

N5 is control independent of N4′ (in the control depen-

dence graph), which means that all diverged threads must

pass through N5.

3.4 Convergence of Warps that Exit Early
In many CUDA applications, threads in a CTA may exit

early based on tests that check for the thread id. In the fol-

lowing, all threads with threadIdx.x greater than 3 return

and wait at the kernel exit for the rest of the warp to arrive.

__global__ void f() {

if (threadIdx.x <= 3) {

S1; } }

The compiler can safely assume that S1 is convergent since

the remaining threads are at the exit, and any scalar registers

which are otherwise holding thread-invariant values are safe

to initialize in statement S1. We extended our convergence

analysis algorithm to not propagate divergence information

across control-dependent successors of conditionals if the

exit block of the kernel is control dependent on the variant

condition.

3.5 Affine Analysis
Affine analysis is used to determine if thread-variant address

operands of load and store instructions can be converted to

warp-sequential load and store instructions. Warp-sequential

instructions access memory with a unit-stride address across

successive threads. For example, given a load instruction:

ld.type Rx, [addr]

the compiler leverages both variance and scalar evolution

analyses to determine if addr can be expressed as a simple

linear expression of the following form:

base + bitwidth(type)*threadIdx.x

Such load instructions can be transformed into a warp-

sequential instruction:

ldwseq.type Rx, [base]

in which register Rx in each thread of the warp is written

with the respective value in the loaded vector corresponding

to the thread’s index.

4. Implementation and Evaluation
We evaluate our compiler using CUDA benchmarks from

Rodinia [4] and Parboil [27]. Benchmarks in these two suites

cover compute-intensive scientific domains including bioin-

formatics, image processing, medical imaging, graph algo-

rithms, data mining, physical simulation, and pattern recog-

nition. We reduced the input dataset sizes in some cases

to make simulation time manageable. We also modified the

source code to change texture references into global memory

references, since our target abstract architecture lacks texture

caches.

The modified CUDA LLVM compiler first generates

PTX instructions annotated with convergence information

for each basic block, and variance and affine information for

all registers. The PTX source code is processed by our back-

end compiler to target the RISC-like machine ISA shown in

Figure 1. The convergence, variance, and affine information

is used by the backend compiler to map invariant values to

scalar registers, and to mark redundant instructions as scalar

instructions. Instruction scheduling and register allocation

are also performed in the backend.

We run the compiled code on our in-house simulator to

get a detailed breakdown of instructions issued, operations

executed, register reads and writes, memory address counts

and data access counts. Our simulator runs one kernel (i.e.

one grid invocation) at a time. We execute PTX source code

on Ocelot [9] to obtain reference memory dumps before and

after each kernel launch. The initial memory dump is used

to populate the initial memory state of the simulator, and

the post-kernel launch memory dump is used to verify the

kernel execution. Each benchmark’s composite kernel runs

are summed together for all results presented in this paper.

4.1 Convergence Analysis Results
The quality of convergence analysis is critical for scalariza-

tion, as the compiler can only scalarize regions that it can

prove are convergent. Convergence analysis is also impor-

tant for managing reconvergence in a stackless SIMT archi-

tecture later discussed in Section 5.2. Figure 4 shows the ef-

fectiveness of our compiler analyses. The benchmarks on the

X-axis are sorted left-to-right in decreasing effectiveness of

compiler convergence analysis. The Y-axis represents the to-

tal instructions dynamically dispatched for execution by the

microarchitecture. For each benchmark, the left bar shows

the breakdown of instructions proven convergent by differ-

ent variants of the compiler. The right bar shows the fraction

of instructions that could be proven convergent by a dynamic

oracle. The fraction of the bars labeled Diverged cannot be

proven convergent at compile time.

Simple convergence analysis, which only looks at the

shape of the control flow graph, can only keep thread exe-

cution convergent 32% of the time on average. By coupling

convergence analysis with variance analysis, the compiler is

able to determine cases where branch conditions are invari-
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Figure 4. Effectiveness of convergence analysis with warp size of 4 threads. The X-axis is sorted by the effectiveness of

convergence analysis done by the compiler. CA =Convergence Analysis, VA=Variance Analysis.

ant across threads, increasing convergent execution to 57%.

The exit optimization further increases convergence to 66%.

We also show results for dynamic convergence preservation,

a simple hardware mechanism that prevents warps from di-

verging when threads dynamically branch in the same direc-

tion (note that this mechanism does not imply a hardware

divergence stack). Figure 4 shows that this hardware and

software approach improves convergent execution to 97%

on average with warp size of 4 threads. With a wider warp

size, convergence identified by the compiler will remain the

same, while convergence imposed by dynamic convergence

preservation will tend to decrease because the likelihood of

a warp to diverge increases with more threads.

We also performed a limit study where we use oracle

knowledge to maximize convergence. Optimal alignment of

convergent blocks and instructions can be reduced to the

Multiple Longest Common Sequence (MLCS) problem [18].

We reduced the complexity of our MLCS implementation

by leveraging the compiler’s convergence analysis and only

analyzing divergent regions. Oracle convergence analysis

based on the dynamic instruction trace shows that the best

possible schedule can keep thread execution convergent 97%

of the time on average. Overall, oracular analysis is no better

than the combination of our convergence/variance analysis

with dynamic convergence preservation.

4.2 Scalarization Results
Figure 5(a) shows the breakdown of static instructions into

scalarized and unscalarized (labeled thread), normalized to

a baseline without scalarization (left bar in each group). On

average, the compiler scalarizes 29% of static instructions.

The total static instruction count increases by 2%, primarily

due to instructions generated to calculate the base address

of warp-sequential memory operations. Figure 5(b) shows

the breakdown of register accesses into the same categories,

relative to the same baseline (left bar in each group), for

warp sizes of 4, 8, 16, and 32. Scalarization reduces total

register requirements by 20% with a warp size of 4, and up

to 33% with a warp size of 32, as wider warp sizes amortize

more redundancy from scalarized operations.

Figure 6 shows how scalarization affects dynamic in-

struction, register, and memory activity counts. In each

graph, the left bar in each benchmark group is the baseline

without scalarization, while the remaining bars show warp

widths of 4, 8, 16, and 32 threads. We differentiate between

the number of issued instructions (Figure 6(a)) and executed

thread operations (Figure 6(b)), and each of these counts are

broken down by source: scalars, statically converged warps,

warps converged through dynamic convergence preserva-

tion, or diverged threads. Note that only one instruction is

“issued” for all the threads in a warp when it is converged.

“Operations executed” counts the total number of individual

thread operations, regardless of convergence. Scalarization

is subject to the effectiveness of convergence analysis (Fig-

ure 4), which is why benchmarks towards the left of Figure 6

have more scalar and statically converged warp instructions,

and the benchmarks towards the right have more dynami-

cally converged warp instructions.

In general, wider warp sizes decrease the instruction and

operation counts because an instruction only issues once for

all threads in a converged warp, and because scalar opera-

tions are only issued and executed once per warp. However,

the number of diverged thread instructions increases with

wider warps mainly because the likelihood of divergence in-

creases with larger groupings of threads. This effect is ap-

parent for nw, hotspot, lbm, and stencil. Still, since each

converged warp instruction represents 4–32× more opera-

tions than a diverged thread instruction (following the warp

size), the total operation count is always lower with scalar-

ization than without. The savings range from 23–29% de-

pending on warp size.

As expected, the other statistics of register read counts,

register write counts, memory address lookups, and memory

data accesses (Figures 6(c)-(f)) have roughly the same shape

as the executed thread operations. With a warp size of 4, reg-

ister reads and writes are reduced by 24%, memory address
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Figure 5. Static Scalarization Metrics – Each group shows results for warp sizes of 4, 8, 16, and 32.

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

D d t 2 t d l l

(a
) I

ns
tr

uc
tio

ns
 is

su
ed

 
 

Baseline without scalarization (warpsize of 4) Scalar Converged warp (static) Converged warp (dynamic) Diverged thread 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

D d t 2 t d l l

(b
) O

ps
 e

xe
cu

te
d 

 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

(c
) R

eg
 r

ea
ds

 
 

Baseline without scalarization Scalar Thread 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

D d 1 t 2 t d l l

(d
) R

eg
 w

ri
te

s 
 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

D d 1 t 2 t d l l

(e
) M

em
 a

dd
r'

s 
 

Baseline without scalarization Scalar Warp-sequential Thread 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

mm 
nn

 

lav
aM

D 

ga
uss

ian
 

bfs
 

ba
ck

pro
p 

str
eam

clu
ste

r lud
 

sra
d-v

1 fft 

sra
d-v

2 
mri-

q 
cu

tcp
 

nw
 

ho
tsp

ot lbm
 

cfd
 

ste
nc

il 

leu
ko

cy
te 

pa
thf

ind
er 

he
art

wall
 

spm
v 

km
ean

s 

av
era

ge
 

(f)
 M

em
 d

at
a 

 

Figure 6. Dynamic Scalarization Metrics – Each group shows results for warp sizes of 4, 8, 16, and 32.



counts going to the innermost cache are reduced by 37%, and

the number of memory data elements accessed is reduced

by 30%. With wider warp sizes, scalar register accesses and

scalar memory operations are more effectively amortized,

and warp-sequential memory address activity similarly de-

creases (though the data counts stay constant). With a warp

size of 32, register reads and writes are reduced by 31%,

memory address counts are reduced by 47%, and data ac-

cess counts go down by 38%.

5. Architecture Implications of Scalarization
Compile-time convergence analysis and scalarization can

improve efficiency and performance in various contexts. The

algorithms in our paper apply to existing processors, and

they may also enable new hardware microarchitectures.

5.1 Scalarization in SIMT Microarchitectures
Figure 7 shows a range of SIMT microarchitectures ex-

tended with scalarization support. The same instruction-set

architecture that we target in Section 3 applies to all of these

microarchitectures, as do the microarchitecture-neutral re-

sults in Section 4. Figure 7(a) shows a traditional SIMT mi-

croarchitecture extended with a scalar unit on the left. A

warp is mapped across the SIMT lanes with one thread per

lane. In contrast to the wide SIMT unit, the scalar unit has

a 1-wide datapath with a scalar register file and resources

to execute scalar instructions. Scalarization reduces overall

register file capacity by eliminating redundant operand stor-

age, or alternatively allows a register file of a given size to

map more threads. Scalar instructions improve performance

as they allow regular SIMT instructions to execute in paral-

lel, and they reduce energy by eliminating replicated work.

Figure 7(b) shows an alternative microarchitecture which ex-

ecutes scalar instructions on a single lane instead of a sepa-

rate unit, thus avoiding the area overhead when scalarization

is not used. This architecture still reduces energy by only ac-

tivating one lane when executing scalar instructions, but it

would not reduce register pressure or improve performance.

Scalarization may also help enable new microarchitec-

tures with better divergent-thread performance. In spatial-

SIMT GPUs, divergence can be a performance bottleneck

since throughput and efficiency are halved each time the

threads in a warp diverge [2]. With complete divergence,

only one of the warp’s threads executes instructions at a time.

A potential solution is a temporal-SIMT microarchitecture,

as shown in Figure 7(c). In temporal-SIMT lanes fetch and

execute instructions independently. A warp is mapped to a

single lane, and the threads in a converged warp dispatch

an instruction one after the other over successive cycles. In

this way the temporal-SIMT lane amortizes instruction over-

heads similar to a 1-lane vector machine [25]. When threads

are diverged, on the other hand, instructions simply dispatch

for a single cycle and the independent lanes essentially op-

erate as a traditional multithreaded MIMD processor.
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Figure 7. SIMT microarchitectures with scalarization sup-

port

Temporal-SIMT is a particularly good match for efficient

scalarization. As shown in Figure 7(c), the register file map-

pings are configured to allocate a set of scalar registers for

each warp. No physical partitioning of the register file is nec-

essary (as in Figure 7(a)), and no register file slots are wasted

(as in Figure 7(b)). Regular thread instructions can directly

source operands from scalar registers instead of their usual

private registers. The register file is only read once as the first

thread dispatches, and the scalar operand is then held in a

pipeline register as other threads dispatch. When a scalar in-

struction executes on a temporal-SIMT architecture, it sim-

ply dispatches once for the warp instead once per thread.

Note that there will be no additional ports added to the reg-

ister file or the instruction cache if the microarchitecture con-

tinues to issue one instruction per cycle. Scalarization on a

temporal-SIMT architecture will improve both performance

and energy, while requiring only minimal hardware modifi-

cation and no separate scalar execution resources.

5.2 Stackless SIMT
The divergence stacks used in current GPUs (Section 2.4)

have several drawbacks. First, as mentioned above, execu-

tion efficiency drops each time the threads in a warp di-

verge. The warp itself executes all of its composite thread

code paths serially, so no parallelism is possible between di-

verged threads in the same warp. Secondly, in current SIMT

compilers, achieving correct execution in the presence of un-

structured control flow is a major challenge [29]. Finally, the

divergence stack creates a pitfall where the SPMD model

can break down: since the “threads” in a warp do not truly

execute asynchronously. Threads can only synchronize at



warp (or CTA) granularity, and threads in the same warp are

only able to communicate when their execution is conver-

gent [20].

These drawbacks of SIMT could all be addressed by map-

ping SPMD kernels to a future stackless temporal-SIMT ar-

chitecture. Similar to MIMD, such an architecture would

provision a hardware PC per thread and allow diverged

threads to truly execute independently. Compiler conver-

gence analysis is an important enabler for this form of stack-

less SIMT since, without a stack, hardware has no way to

reconverge diverged warps. To enable compiler-managed
reconvergence, the architecture can provide a syncwarp in-

struction that acts as a barrier for currently executing threads.

The compiler simply places a syncwarp in blocks it identi-

fies as convergent, and as long as all threads make progress,

the warp will eventually reconverge at this instruction. How-

ever, placing a syncwarp in every convergent block incurs

an overhead that is often not necessary. We can place these

synchronization operations only at those convergent blocks

that have at least one divergent predecessor, thus ensuring

that scalar registers are only written in convergent blocks

guarded by syncwarp instructions. In the example shown in

Figure 2(a), node N5 must be guarded by a syncwarp.

6. Related Work
Our convergence analysis is based on the variance analysis

described by Stratton et al. [26]. Their work identifies data

accesses that are thread-invariant or will give the same value

across the threads of a CTA. Their basic variance analysis

was used to optimize CUDA programs when compiled to

multicore CPUs. We extend their basic variance analysis al-

gorithm to track not just thread-variant data, but also control

divergence. We make optimistic assumptions about conver-

gence and thread-invariant data and then track thread-variant

information and divergent information together.

Coutinho et al. [7] describe what they call “divergence

analysis,” which is also an extension of the approach of [26].

Their analysis finds divergent values, by first converting SSA

information into gated single assignment [22], and then re-

placing control-flow merges with a predicate select operator.

Their end algorithm is relatively simple because it can use

data-flow analysis to propagate divergence information, but

it requires a change of representation. However their diver-

gent values are similar to thread-variant values as described

in [26].

Collange [5] presents work with goals similar to ours, but

uses an approach like that described in [7]. Collange does not

use a gated representation but instead performs a symbolic

analysis on a lattice of tags, which encodes and tracks align-

ment of various instruction operands. Coutinho et al. [7] and

Collange [5] do not perform convergence analysis, which is

important for exploiting scalar code generation.

Karrenberg and Hack [13] describe an analysis based on

a data-flow lattice approach which is similar to our affine

analysis. However, their analysis is geared towards vector-

ization, rather than scalarization. Also, their analysis does

not use control dependence information, which is useful in

our case to perform convergence analysis.

The ISPC language includes explicit uniform data types

that allow a program to indicate scalar values in source

code [23]. While this approach may be well matched to

tightly coupled SIMD architectures, our approach relieves

the programmer from this burden and uses the compiler to

discover uniform values that a programmer may not be able

to specify. Furthermore ISPC does not have any explicit

notion of convergence.

Kerr et al. [14] implement a thread-invariant expression

elimination pass, also based on [26]. The focus of their

optimization pass is different than ours; they use common

subexpression elimination on invariants after vectorization,

whereas we allocate invariants to scalar register.

Lee et al. [16] explore a range of vector, vector-thread,

and SIMT architectures, comparing area and energy effi-

ciency on regular and irregular codes. While the architec-

tures they explore overlap with some of the scalar-SIMT ar-

chitectures we describe in Section 5, their work does not

examine efficiency optimizations enabled by convergence

analysis.

Collange proposes a stackless SIMT architecture which

implements reconvergence in hardware by comparing thread

PCs every cycle [6]. This approach is different and less effi-

cient than ours in which the compiler uses a syncwarp in-

struction to reconverge diverged warps. Intel’s Sandy Bridge

GPU [12] maintains a PC per thread, but threads do not truly

execute independently. Instead, the compiler must sequence

through all code paths, and PC comparators are used to mask

inactive threads.

7. Conclusions
This paper presented new compiler algorithms for thread

convergence and variable variance analysis that elides re-

dundant instructions and register accesses in threaded code

through a technique called scalarization. Our compiler algo-

rithms are extremely effective at identifying convergent exe-

cution even in programs with arbitrary control flow, identify-

ing two thirds of the instructions captured by a dynamic ora-

cle. Simple hardware mechanisms can boost this to 100%.

The compile-time analysis leads to a reduction in opera-

tions executed and register accesses of 23–31% depending

on warp size.

Compiler convergence analysis and scalarization may

enable alternative hardware architectures such as stack-

less temporal-SIMT. We anticipate additional optimizations,

such as scalarizing across subsets of warps, will provide

even greater benefits. We plan to further quantify the bene-

fits of scalarization on various microarchitectures, including

ones that dynamically scalarize instructions and operands

without compiler guidance.
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