
Distributed Memory Breadth-First Search Revisited:
Enabling Bottom-Up Search

Scott Beamer

EECS Department

University of California

Berkeley, California

Aydın Buluç

Computational Research Division

Laurence Berkeley National Laboratory

Berkeley, California

Krste Asanović David Patterson

EECS Department

University of California

Berkeley, California

Abstract—Breadth-first search (BFS) is a fundamental graph
primitive frequently used as a building block for many complex
graph algorithms. In the worst case, the complexity of BFS is
linear in the number of edges and vertices, and the conventional
top-down approach always takes as much time as the worst case.
A recently discovered bottom-up approach manages to cut down
the complexity all the way to the number of vertices in the best
case, which is typically at least an order of magnitude less than
the number of edges. The bottom-up approach is not always
advantageous, so it is combined with the top-down approach
to make the direction-optimizing algorithm which adaptively
switches from top-down to bottom-up as the frontier expands.
We present a scalable distributed-memory parallelization of this
challenging algorithm and show up to an order of magnitude
speedups compared to an earlier purely top-down code. Our
approach also uses a 2D decomposition of the graph that has
previously been shown to be superior to a 1D decomposition.
Using the default parameters of the Graph500 benchmark, our
new algorithm achieves a performance rate of over 240 billion
edges per second on 115 thousand cores of a Cray XE6, which
makes it over 7× faster than a conventional top-down algorithm
using the same set of optimizations and data distribution.

I. INTRODUCTION

Breadth-first search (BFS) is a fundamental graph traversal

technique that serves as a building block for many graph

algorithms. Parallel graph algorithms increasingly rely on

BFS as the alternative graph traversal approach, since depth-

first search is inherently sequential. The fastest parallel graph

algorithms often use BFS even for cases when the optimal

sequential algorithm for solving the same problem relies

on depth-first search, such as identifying strongly connected

components [1] [2].

Given a distinguished source vertex s, BFS systematically

explores the graph G to discover every vertex that is reachable

from s. In the worst case, BFS has to explore all of the edges in

the connected component in order to reach every vertex in the

connected component. A simple level-synchronous traversal

that explores all of the outgoing edges of the current frontier

(the set of vertices discovered in this level) is therefore consid-

ered optimal in the worst-case analysis. This level-synchronous

algorithm exposes lots of parallelism for low-diameter small-

world graphs [3]. Many real-world graphs, such as those

representing social interactions and brain anatomy [4], are

small-world.

This level-synchronous algorithm (henceforth called top-
down) is overly pessimistic and can be wasteful in practice,

because it always does as many operations as the worst-case.

Suppose that a vertex v is d hops away from the source and

is reachable by x vertices, x′ ≤ x of which are d − 1 hops

away from the source. In other words, each one of those x′

vertices can potentially be the parent of v. In theory, only

one of those x′ incoming edges of v needs to be explored,

but the top-down algorithm is unable to exploit this and does

x′−1 extra checks. By contrast, v would quickly find a parent

by checking its incoming edges if a significant number of

its neighbors are reachable in d − 1 of hops of the source.

The direction-optimizing BFS algorithm [5] uses this intuition

to significantly outperform the top-down algorithm because

it reduces the number of edge examinations by integrating a

bottom-up algorithm into its search.
Implementing this bottom-up search strategy on distributed

memory poses multiple challenges. First, the bottom-up ap-

proach needs fast frontier membership tests to find a neighbor

in the frontier, but the frontier is far too large to replicate in

each processor’s memory. Second, each vertex’s search for

a parent must be sequentialized in order to skip checking

unnecessary edges once a parent is found. If a vertex’s search

for a parent is fully parallelized, there is potential the search

will not terminate as soon as a parent is found, resulting

in redundant work that could nullify any performance gains.

We tackle the first challenge by adapting the two-dimensional

graph partitioning approach that reduces the amount of the

frontier that needs to be locally replicated for each processor.

We tackle the second challenge by using systolic shifts that

provide a good compromise between work and parallelism.

In this paper we introduce a distributed memory parallel

algorithm for bottom-up search.
The primary contributions of this article are:

• A novel distributed-memory parallel algorithm for the

bottom-up BFS using a two-dimensional decomposition.

• Demonstration of excellent weak scaling on up to 115,000

cores of a Cray XE6, and 6.5−7.9× performance increase

over the top-down algorithm.

• Careful analysis of the communication costs in our new

algorithm, which highlights the reduction in the amount

of data communicated compared to the top-down algo-

rithm.

The technical heart of our paper is Section IV where

we present the distributed memory parallelization of our 2D

bottom-up algorithm, its parallel complexity analysis, and

implementation detail. To yield a fast direction-optimizing

BFS implementation, our bottom-up implementation is com-

bined with an existing high-performance top-down implemen-

tation [6]. We provide a parallel complexity analysis of the

new algorithm in terms of the bandwidth and synchronization

(latency) costs in Section V. Section VI gives details about

our direction-optimizing approach that combines top-down and

bottom-up steps. Our extensive large scale experiments on

Cray XK6 and Cray XE6 machines are in Section VIII.

II. BREADTH-FIRST SEARCH

Before delving into the details of implementing our parallel

algorithm, we review sequential versions of the top-down and

bottom-up BFS algorithms. The level-synchronous top-down

BFS can be implemented sequentially using a queue, as shown

in Algorithm 1. The algorithm outputs an implicit “breadth-

first spanning tree” rooted at s by maintaining parents for each

vertex. The parent of a vertex v who is d hops away from the

root, can be any of the vertices that are both d− 1 hops away

from the root and have an outgoing edge to v. This algorithm’s

running time is proportional to Θ(n+m) where n = |V | is the

number of vertices and m = |E| is the number of edges of a

graph G = (V,E). This algorithm’s best-case and worst-case

performance are equal, since it will always examine all of the

connected-component the search started from.

The key insight the bottom-up approach leverages is that

most edge examinations are unsuccessful because the end-

points have already been visited. In the conventional top-

down approach, during each step, every vertex in the frontier

examines all of its neighbors and claims the unvisited ones as

children and adds them to the next frontier. On a low-diameter

graph when the frontier is at its largest, most neighbors of the

frontier have already been explored (many of which are within

the frontier), but the top-down approach must check every edge

in case the neighbor’s only legal parent is in the frontier. The

bottom-up approach passes this responsibility from the parents

to the children (Algorithm 2).

During each step of the bottom-up approach, every unvisited

vertex (parent[u] = −1) checks its neighbors to see if any of

them are in the frontier. If they are, they are a valid parent and

the neighbor examinations (line 6 – line 10) can end early. This

early termination sequentializes the inner loop in order to get

the savings from stopping as soon as a valid parent is found.

In general, the bottom-up approach is only advantageous when

the frontier constitutes a substantial fraction of the graph.

Thus, a high-performance BFS will use the top-down approach

for the beginning and end of the search and the bottom-up

approach for the middle steps when the frontier is at its largest.

Since the BFS for each step is done in whichever direction will

require the least work, it is a direction-optimizing BFS.

Algorithm 1 Sequential top-down BFS algorithm

Input: G(V,E), source vertex s
Output: parent [1..n], where parent [v] gives the parent of

v ∈ V in the BFS tree or −1 if it is unreachable from s
1: parent [:] ← −1, parent [s] ← s
2: frontier ← {s}, next ← φ
3: while frontier �= φ do
4: for each u in frontier do
5: for each neighbor v of u do
6: if parent [v] = −1 then
7: next ← next ∪{v}
8: parent [v] ← u

9: frontier ← next , next ← φ

Algorithm 2 Sequential bottom-up BFS algorithm

Input: G(V,E), source vertex s
Output: parent [1..n], where parent [v] gives the parent of

v ∈ V in the BFS tree or −1 if it is unreachable from s
1: parent [:] ← −1, parent [s] ← s
2: frontier ← {s}, next ← φ
3: while frontier �= φ do
4: for each u in V do
5: if parent [u] = −1 then
6: for each neighbor v of u do
7: if v in frontier then
8: next ← next ∪{u}
9: parent [u] ← v

10: break
11: frontier ← next , next ← φ

III. PARALLEL TOP-DOWN BFS

Data distribution plays a critical role in parallelizing BFS

on distributed-memory machines. The approach of partitioning

vertices to individual processors (along with their outgoing

edges) is the so-called 1D partitioning. By contrast, 2D par-

titioning assigns vertices to groups of processors (along with

their outgoing edges), which are further assigned to members

of the group. 2D checkerboard partitioning assumes the sparse

adjacency matrix of the graph is partitioned as follows:

A =

⎛
⎜⎝

A1,1 . . . A1,pc

...
. . .

...

Apr,1 . . . Apr,pc

⎞
⎟⎠ (1)

Processors are logically organized in a square p = pr × pc
mesh, indexed by their row and column indices. Submatrix

Aij is assigned to processor P (i, j). The nonzeros in the ith
row of the sparse adjacency matrix A represent the outgoing

edges of the ith vertex of G, and the nonzeros in the jth

column of A represent the incoming edges of the jth vertex.

Our top-down algorithm actually operates on the transpose of

this matrix in order to maintain the linear algebra abstraction,

but we will omit the transpose and assume that the input is

pre-transposed for the rest of this section.

Algorithm 3 Parallel 2D top-down BFS algorithm (adapted

from the linear algebraic algorithm [6])

Input: A: graph represented by a boolean sparse adjacency

matrix, s: source vertex id

Output: π: dense vector, where π[v] is the predecessor vertex

on the shortest path from s to v, or −1 if v is unreachable

1: π(:) ← −1, π(s) ← s
2: f(s) ← s � f is the current frontier

3: for all processors P (i, j) in parallel do
4: while f �= ∅ do
5: TRANSPOSEVECTOR(fij)

6: fi ← ALLGATHERV(fij , P (:, j))
7: ti ← ∅ � t is candidate parents

8: for each fi(u) �= 0 do � u is in the frontier

9: adj (u) ← INDICES(Aij(:, u))
10: ti ← ti ∪ PAIR(adj (u), u)

11: tij ← ALLTOALLV(ti, P (i, :))
12: for (v, u) in tij do
13: if πij(v) �= −1 then � Set parent if new

14: πij(v) ← u
15: fij(v) ← v
16: else � Remove if discovered before

17: tij ← tij \ (u, v)

The pseudocode for parallel top-down BFS algorithm with

2D partitioning is given in Algorithm 3 for completeness. Both

f and t are implemented as sparse vectors. For distributed

vectors, the syntax vij denotes the local n/p sized piece of

the vector owned by the P (i, j)th processor (not replicated).

The syntax vi denotes the hypothetical n/pr sized piece of

the vector collectively owned by all the processors along the

ith processor row P (i, :) (replicated). The algorithm has four

major steps:

• Expand: Construct the current frontier of vertices on

each processor by a collective allgather step along the

processor column (line 6).

• Local discovery: Inspect adjacencies of vertices in

the current frontier and locally merge them (line 8).

The operation is actually a sparse matrix-sparse vector

multiplication on a special semiring where each scalar

multiply returns the second operand and each scalar

addition returns the minimum.

• Fold: Exchange newly-discovered adjacencies using a

collective alltoallv step along the processor row (line 11).

This step optionally merges updates from multiple pro-

cessors to the same vertex using the first pair entry (the

discovered vertex id) as the key.

• Local update: Update distances/parents for unvisited

vertices (line 12). The new frontier is composed of any

entries that was not removed from the candidate parents.

In contrast to the 1D case, communication in the 2D algo-

rithm happens only along one processor dimension at a time.

If Expand happens along one processor dimension, then Fold
happens along the other processor dimension. Both 1D and 2D

algorithms can be enhanced by in-node multithreading, result-

ing in one MPI process per chip instead of one MPI process per

core, which will reduce the number of communicating parties.

Large scale experiments of 1D versus 2D show that the 2D

approach’s communication costs are lower than the respective

1D approach’s, with or without in-node multithreading [6].

The study also shows that in-node multithreading gives a

further performance boost by decreasing network contention.

IV. PARALLEL BOTTOM-UP BFS

Implementing a bottom-up BFS on a cluster with distributed

memory introduces some challenges that are not present in the

shared memory case. The speedup from the algorithm is de-

pendent on fast frontier membership tests and sequentializing

the inner loop. On a single compute node, the fast (constant

time) membership tests for the frontier can be efficiently

implemented with a bitmap that often fits in the last level of

cache. Sequentializing the inner loop is trivial since the outer

loop can still provide sufficient parallelism to achieve good

multicore performance.

A high-performance distributed implementation must have

fast frontier membership tests which requires it to be able

to determine if a vertex is in the frontier without crossing

the network. Holding the entire frontier in each processor’s

memory is clearly unscalable. Fortunately, the 2D decompo-

sition [6] [7] greatly aids this, since for each processor, only

a small subset of vertices can be the sources of a processor’s

incoming edges. This subset is small enough that it can fit in a

processor’s memory, and the frontier can be represented with

a dense vector for constant time access. The dense format

does not necessarily consume more memory than a sparse

vector, because it can be compressed by using a bitmap and

the frontier is typically a large fraction of the graph during the

bottom-up steps.

Although the 2D decomposition helps with providing fast

frontier checks, it complicates sequentializing the inner loop.

Since all of the edges for a given vertex are spread across

multiple processors, the examination of a vertex’s neighbors

will be done in parallel. If the inner loop is not sequentialized,

the bottom-up approach’s advantage of terminating the inner

loop early once a parent is found will be hard to maintain.

Unnecessary edges could be examined during the time it takes

for the termination message to propagate across the network.

To sequentialize the inner loop of checking if neighbors are

in the frontier, we propose partitioning the work temporally

(Figure 1). We break down the search step into pc sub-steps,

and during each sub-step, a given vertex’s edges will be exam-

ined by only one processor. During each sub-step, a processor

processes (1/pc)th of the vertices in that processor row. After

each sub-step, it passes on the responsibility for those vertices

to the processor to its right and accepts new vertices from

the processor to its left. This pairwise communication sends

which vertices have been completed (found parents), so the

next processor knows to skip over them. This has the effect

of the processor responsible for processing a vertex rotating

right along the row each sub-step. When a vertex finds a valid

from
pi,j-1

to
pi,j+2

c Ai,j Ai,j+1

c

Fig. 1. Sub-step for processors pi,j and pi,j+1. They initially use their
segment of completed (c) to filter which vertices to process from the shaded
region and update completed for each discovery. At the end of the sub-
step, the completed segments rotate to the right. The parent updates are also
transmitted at the end of the sub-step (not shown).

parent to become visited, its index along with its discovered

parent is queued up and sent to the processor responsible for

the corresponding segment of the parent array to update it.

Algorithm 4 Parallel 2D bottom-up BFS algorithm

Input: A: graph represented by a boolean sparse adjacency

matrix, s: source vertex id

Output: π: dense vector, where π[v] is the parent vertex on

the shortest path from s to v, or −1 if v is unreachable

1: f(:) ← 0, f(s) ← 1 � bitmap for frontier

2: c(:) ← 0, c(s) ← 1 � bitmap for completed

3: π(:) ← −1, π(s) ← s
4: while f(:) �= 0 do
5: for all processors P (i, j) in parallel do
6: TRANSPOSEVECTOR(fij)

7: fi ← ALLGATHERV(fij , P (:, j))
8: for s in 0 . . . pc − 1 do � pc sub-steps

9: t ← φ � t holds parent updates

10: for u in Vi,j+s do
11: if cij(u) = 0 then � u is unvisited

12: for each neighbor v of u do
13: if fi(v) = 1 then
14: tij ← tij ∪ {(u, v)}
15: cij(u) ← 1
16: break
17: fij(:) ← 0
18: wij ← SENDRECV(tij , P (i, j + s), P (i, j − s)))
19: for (u, v) in wij do
20: πij(u) ← v
21: fij(u) ← 1

22: cij ← SENDRECV(cij , P (i, j + 1), P (i, j − 1)))

The pseudocode for our parallel bottom-up BFS algorithm

with 2D partitioning is given in Algorithm 4 for completeness.

f (frontier) is implemented as a dense bitmap and π (parents)

is implemented as a dense vector of integers. c (completed)

is a dense bitmap and it represents which vertices have found

Operation Type Communications
Step

64-bit Words
Search

Transpose (Expand) p2p O(1) n
Gather Frontier (Expand) ag O(1) npr
Sending Edges (Fold) a2a O(1) 4m
Total O(1) 4m+ n(pr + 1)

TABLE I
TOP-DOWN COMMUNICATION COSTS

Operation Type Communications
Step

64-bit Words
Search

Transpose p2p O(1) sbn/64
Frontier Gather ag O(1) sbnpr/64
Parent Updates p2p O(pc) 2n
Rotate Completed p2p O(pc) sbnpc/64

Total O(pc) n(
sb(pr+pc+1)

64
+ 2)

TABLE II
BOTTOM-UP COMMUNICATION COSTS

parents and thus no longer need to search. The temporaries

t and w are simply queues of updates represented as pairs

of vertices of the form (child, parent). All processor column

indices are modulo pc (the number of processor columns).

For distributed vectors, the syntax fij denotes the local n/p
sized piece of the frontier owned by the P (i, j)th processor.

Likewise, the syntax Vi,j represents the vertices owned by the

P (i, j)th processor. The syntax fj denotes the hypothetical

n/pc sized piece of the frontier collectively owned by all the

processors along the jth processor column P (:, j). Each step

of the algorithm has four major operations:

• Gather frontier (per step) Each processor is given the

segment of the frontier corresponding to their incoming

edges (lines 6 and 7).

• Local discovery (per sub-step) Search for parents with

the information available locally (line 10 – line 16).

• Update parents (per sub-step) Send updates of children

that found parents and process updates for own segment

of parents (line 17 – line 21).

• Rotate along row (per sub-step) Send completed to right

neighbor and receive completed for the next sub-step

from left neighbor (line 22).

V. ANALYTIC MODEL OF COMMUNICATION

In addition to the savings in computation, the bottom-

up steps will also reduce the communication volume. We

summarize the communication costs in Table I and Table II,

where we assume that the bottom-up approach is used for only

sb steps of the search (out of d potential steps) on a graph with

m edges and n vertices, distributed on a pr×pc processor grid.

We first present a simple model that counts the number of

64-bit words sent and received during the entire search. We use

64-bit words as the unit because we use 64-bit words for vertex

identifiers to enable us to scale to graphs with greater than

232 vertices. When representing the compression provided by

bitmaps, we divide the number of elements by 64. To further

simplify the expressions, we assume (pc − 1)/(pc) ≈ 1 and

ignore transfers that send only a word (communicating sizes).

We calculate the data volume for the entire search, and assume

that every vertex and every edge is part of the connected

component.

The parallel 2D top-down approach transfers data for two

operations: gathering the frontier (expand) and sending edges

(fold). Every vertex is part of the frontier exactly once, so

communicating the frontier sends n words for the transpose

and npr words for the allgather along the column. Every edge

is examined once, however sending it requires sending both

endpoints (two words). Since the graph is undirected, each

edge is examined from both sides, which results in sending

4m words. In total, the number of words a search with the

top-down approach sends is approximately:

wt = 4m+ n(pr + 1)

Since the bottom-up approach is most useful when com-

bined with the top-down approach, we assume the bottom-

up approach is used for only sb steps of the search, but it

still processes the entire graph. There are three types of com-

munication that make up the bottom-up approach: gathering

the frontier, communicating completed vertices, and sending

parent updates. Gathering the frontier is the same combination

of a transpose and an allgather along a column like the top-

down approach except a dense bitmap is used instead of a

sparse vector. Since the bottom-up approach uses a dense data

structure and it sends the bitmap every step it is run, it sends

sbn(1 + pr)/64 words to gather the frontier. To rotate the

bitmaps for completed , it transfers the state of every vertex

once per sub-step, and since there are pc sub-steps, an entire

search sends sbnpc/64 words. Each parent update consists of

a pair of words (child, parent), so in total sending the parent

updates requires 2n words. All combined, the number of words

the bottom-up approach sends is approximately:

wb = n(
sb(pr + pc + 1)

64
+ 2)

To see the reduction in data volume, we take the ratio of

the number of words the top-down approach sends (wt) to the

number of words the bottom-up approach will send (wb), as

shown in Equation 2. We assume our 2D partitioning is square

(pr = pc) since that will send the least amount of data for both

approaches. Furthermore, we assume the degree of the target

graph is k = m/n.

wt

wb
=

pc + 4k + 1

sb(2pc + 1)/64 + 2
(2)

For a typical value of sb (3 or 4), by inspection the ratio will

always be greater than 1; implying the bottom-up approach

sends less data. Both approaches suffer when scaling up the

number of processors, since it increases the communication

volume. This is not unique to either approach presented,

and this leads to sub-linear speedups for distributed BFS

implementations. This ratio also demonstrates that the higher

the degree is, the larger the gain is for the bottom-up approach

relative to the top-down approach. Substituting typical values

(k = 16 and pc = 128), the bottom-up approach needs to take

sb ≈ 47.6 steps before it sends as much data as the top-down

approach. A typical sb for the low-diameter graphs examined

in this work is 3 or 4, so the bottom-up approach typically

moves an order of magnitude less data. This is intuitive, since

to first order, the amount of data the top-down approach sends

is proportional to the number of edges, while for the bottom-up

approach, it is proportional to the number of vertices.

The critical path of communication is also important to

consider. The bottom-up approach sends less data, but it could

be potentially bottlenecked by latency. Each step of the top-

down algorithm has a constant number of communication

rounds, but each step of the bottom-up approach has Θ(pc)
rounds which could be significant depending on the network

latencies.

The types of communication primitives used is another

important factor since primitives with more communicating

parties may have higher synchronization penalties. This is

summarized in Table I and Table II with the abbreviations:

p2p=point-to-point, ag=allgather, and a2a=all-to-all. The com-

munication primitives used by top-down involve more partic-

ipants, as it uses: point-to-point (transpose to set up expand),

allgather along columns (expand), and all-to-all along rows

(fold). The bottom-up approach uses point-to-point for all

communication except for the allgather along columns for

gathering the frontier.

VI. COMBINING BOTTOM-UP WITH TOP-DOWN

The bottom-up BFS has the potential to skip many edges

to accelerate the search as a whole, but it will not always be

more efficient than the top-down approach. Specifically, the

bottom-up approach is typically only more efficient when the

frontier is large because it increases the probability of finding a

valid parent. This leads to the direction-optimizing approach, a

hybrid design of the top-down approach powering the search at

the beginning and end, and the bottom-up approach processing

the majority of the edges during only a few steps in the

middle when the frontier is at or near its largest. We leverage

the insight gained from prior work [5] [8] to choose when

to switch between the two BFS techniques at a step (depth)

granularity.

We use the number of edges in the frontier (mf) to decide

when to switch from top-down to bottom-up and the number

of vertices in the frontier (nf) to know when to switch from

bottom-up back to top-down. Both the computation and the

communication costs per step of the top-down approach is

proportional to the number of edges in the frontier, hence

the steps when the frontier is the largest consume the ma-

jority of the runtime. Conversely, the bottom-up approach is

advantageous during these large steps, so using the number

of edges in the frontier is appropriate to determine when

the frontier is sufficiently large to switch to the bottom-up

approach. Using the heuristic as well as the tuning results

from prior work [5] [8], we switch from top-down to bottom-

up when:

mf >
m

10

This can be interpreted as once the frontier encompasses at

least one tenth of the edges, the bottom-up approach is likely

to be advantageous. Even though the probability of finding a

parent (and thus stopping early) may continue to be high as the

size of the frontier ramps down in later steps, there is sufficient

fixed overhead for a step of the bottom-up approach to make

it worthwhile to switch back to the top-down approach. Using

the results from prior work, where k is the degree, we switch

back to top-down when:

nf <
n

14k

The degree term in the denominator ensures that higher-degree

graphs switch back later to top-down since an abundance of

edges will continue to help the bottom-up approach.

The switch to bottom-up uses the number of edges in the

frontier while the switch back to top-down uses the number

of vertices in the frontier because the apex of the number of

edges in the frontier is often a step or two before the apex of

the number of vertices in the frontier. For scale-free graphs,

the high-degree vertices tend to be reached in the early steps

since their many edges make them close to much of the graph.

In the steps that follow the apex of the number of edges in

the frontier, the number of vertices in the frontier becomes

its largest as it contains the high-degree vertices’ many low-

degree neighbors. Since edges are the critical performance

predictor, the number of edges in the frontier is used to guide

the important switch to bottom-up. Although the number of

edges in the frontier could be used to detect when to switch

back top-down, it is unnecessary to compute since the number

of vertices in the frontier will suffice. Although the control

heuristic allows for arbitrary patterns of switches, for each

search on all of the graphs studied, the frontier size has the

same shape of continuously increasing and then continuously

decreasing [5] [8] [9].

To compute the number of edges in the frontier, we sum

the degrees of all the vertices in the frontier (volume). An

undirected edge with both endpoints in the frontier will be

counted twice by this method, but this is appropriate since the

top-down approach will check the edge from both sides too.

When loading in the graph, we calculate the degree for each

vertex and store that in a dense distributed vector. Thus, to

calculate the number of edges in the frontier, we take the dot

product of the degree vector with the frontier.

The transition between different BFS approaches is not only

a change in control, but it also requires some data structure

conversion. The bottom-up approach makes use of two bitmaps

(completed and frontier) that need to be generated and dis-

tributed. Generating completed can be simply accomplished

by setting bits to one whenever the corresponding index has

been visited (parent [i] �= −1). Converting the frontier is sim-

ilar, as it involves setting a bit in the bitmap frontier for every

index in the sparse frontier used by the top-down approach. For

the switch back to top-down, the bitmap frontier is converted

back to a sparse list. Another challenge of combining top-

down and bottom-up search is that top-down requires fast

Hopper Jaguar
Operator NERSC ORNL
Supercomputer Model Cray XE6 Cray XK6
Interconnect Cray Gemini Cray Gemini
Processor Model AMD Opteron 6172 AMD Opteron 6274
Processor Architecture Magny-Cours Interlagos
Processor Clockrate 2.1 GHz 2.2 GHz
Sockets/node 2 1
Cores/socket 12 16
L1 Cache/socket 12×64 KB 16×16 KB
L2 Cache/socket 12×512 KB 8×2 MB
L3 Cache/socket 2×6 MB 2×8 MB
Memory/node 32 GB 32 GB

TABLE III
SYSTEM SPECIFICATIONS

access to outgoing edges while bottom-up requires fast access

to incoming edges. We keep both AT and A in memory

to facilitate fast switching between search directions. The

alternative of transposing the matrix during execution proves

to be more time-consuming than the BFS. A symmetric data

structure that allows fast access to both rows (outgoing edges)

and columns (incoming edges) without increasing the memory

footprint would be beneficial and is considered in future work.

VII. EXPERIMENTAL SETTINGS

We run experiments on two major supercomputers: Hopper
and Jaguar (Table III). We benchmark flat (1 thread per

process) MPI versions of both the conventional top-down

algorithm and the direction-optimizing algorithm for any given

concurrency and setting. The additional benefits of using in-

node multithreaded has been demonstrated before [6], and its

benefits are orthogonal.

We use synthetic graphs based on the R-MAT random graph

model [10], as well as the largest publicly available real-

world graph that represents the structure of the Twitter social

network [11], which has 61.5 million vertices and 1.47 billion

edges. The Twitter graph is anonymized to respect privacy. R-

MAT is a recursive graph generator that creates networks with

skewed degree distributions and a very low graph diameter.

R-MAT graphs make for interesting test instances because

traversal load-balancing is non-trivial due to the skewed degree

distribution, the lack of good graph separators, and common

vertex relabeling strategies are also expected to have a minimal

effect on cache performance. We use undirected graphs for all

of our experiments.

We set the R-MAT parameters a, b, c, and d to

0.59, 0.19, 0.19, 0.05 respectively and set the degree to 16
unless otherwise stated. These parameters are identical to the

ones used for generating synthetic instances in the Graph500

BFS benchmark [12]. Like Graph500, to compactly describe

the size of a graph, we use the scale variable to indicate the

graph has 2scale vertices.

When reporting numbers, we use the performance rate

TEPS, which stands for Traversed Edges Per Second. Since

the bottom-up approach may skip many edges, we compute

the TEPS performance measure consistently by dividing the

30
(2916)

31
(5776)

32
(11664)

33
(23104)

34
(46656)

Scale
(Processors)

0

50

100

150

200
S

e
a

rc
h

 R
a

te
 (

G
T

E
P

S
)

Direction-optimizing

Top-down

Fig. 2. R-MAT weak scaling on Jaguar

number of input edges by the runtime. During preprocessing,

we prune duplicate edges and vertices with no edges from

the graph. For all of our timings, we do 16 to 64 BFS runs

from randomly selected distinct starting vertices and report the

harmonic mean.

Both of our implementations use the Combinatorial

BLAS [13] infrastructure so that their input graph data struc-

tures, processor grid topology, etc. are the same. Our baseline

comparisons are against a previously published top-down im-

plementation [6] that is further improved and tuned for Hopper.

We only run experiments on processor counts that are perfect

squares because the Combinatorial BLAS internally requires

a square processor grid. We use Cray’s MPI implementation,

which is based on MPICH2, and compile our code with GCC

C++ compiler version 4.6.2 with -O2 flag.

VIII. EXPERIMENTAL RESULTS

In this section, we first present results using the synthetically

generated R-MAT graphs on Jaguar. We then provide a com-

parison of Hopper to Jaguar and show that our algorithm scales

similarly on both architectures. Additionally, we examine the

impact of graph size and degree on performance. We present

results using the real-world Twitter dataset [11]. Finally, we

consider the potential for the performance advantage of our

algorithm to dramatically reduce the number of processors

required (cost).

Weak scaling results from Jaguar demonstrate the perfor-

mance improvement the direction-optimizing implementation

gets from the addition of the bottom-up approach (Figure 2).

At scale=30 the improvement is 6.5×, but as the graph and

system size grow, the ratio of improvements extends to 7.9×.

The same implementation also has great weak scaling

speedup on Hopper (Figure 3), and it reaches 243 GTEPS

at scale=35. At these cluster and problem sizes, there is no

slowdown in performance improvement, indicating a larger

2
12

2
13

2
14

2
15

2
16

Processors

0

50

100

150

200

250

S
e

a
rc

h
 R

a
te

 (
G

T
E

P
S

)

Hopper

Jaguar

Fig. 3. R-MAT weak scaling comparison between Jaguar and Hopper.
Jaguar starts with 2916 processors and Hopper starts with 3600 processors
for scale=30 and the number of processors doubles for each increase in scale.

2916 5776 11664 23104 46656

Processors

0

20

40

60

80

100

120

S
e
a
rc

h
 R

a
te

 (
G

T
E

P
S

)

Direction-optimizing (32)

Direction-optimizing (30)

Top-down (32)

Top-down (30)

Fig. 4. R-MAT strong scaling on Jaguar for graphs of scale=30 and scale=32

allotment on these systems could produce even faster search

rates on larger problems.

Strong scaling results from Jaguar show promising speedups

for the direction-optimizing approach, but it does have some

slowdown for a cluster sufficiently large relative to the graph.

This behavior is shown on two scales of graph (Figure 4). For

both BFS approaches (top-down and bottom-up), increasing

the cluster size does have the benefit of reducing the amount

of computation per processor, but it comes at the cost of

increased communication. The top-down approach does more

computation than the bottom-up approach, so this increase

in communication is offset by the decrease in computation,

producing a net speedup. The bottom-up approach derives

some benefit from a larger cluster, but after a certain point the

communication overhead hurts its overall performance. Even

30 31 32 33

Scale

50

60

70

80

90

100

110

120

130

140
S

e
a
rc

h
 R

a
te

 (
G

T
E

P
S

)

Fig. 5. R-MAT graph size scaled on Jaguar (23104 processors) with direction-
optimizing BFS

though it sends less data than the top-down approach, it also

has less computation to hide it with. In spite of this slowdown,

the direction-optimizing approach still maintains a consider-

able advantage over the purely top-down implementation.

Scaling the graph size for a fixed cluster size shows the

tradeoff between computation and communication for the

bottom-up approach more clearly. Figure 6 presents a break-

down of where the runtime is spent on the direction-optimizing

searches of Figure 5. The number of communication steps for

the bottom-up approach is only proportional to the square root

of the cluster size, so increasing the size of the input graph

will only increase the amount of data transmitted, but not how

many steps it is sent in. When the graph is too small, there is

little data to compute and little data to send during each sub-

step, so it is susceptible to load imbalance. The load imbalance

does not stem from the 2D decomposition itself (the number

of nonzeros in any Aij is not more than 5% higher than the

average), but it is typically due to variation in the number

of parents discovered per processor. A larger graph gets better

overall performance since there is more to do each sub-step so

more of the time is spent doing useful work. Another cause of

the load imbalance is the blocking nature of the send-recv calls

of the bottom-up steps. Even when the subgraphs distributed

to individual processors are perfectly load balanced, it does

not translate into a run-time load balance because depending

on the starting vertex, each processor might have more work

to do than its row-wise neighbor.

To study the sensitivity of the direction-optimizing ap-

proach’s performance to graph properties, we vary the degree

while keeping the number of edges constant (Figure 7). For

the top-down approach, this does not change the amount of

computation since it is proportional to the number of edges

and they are kept constant. For the bottom-up approach,

increasing the degree actually decreases the relative amount

of computation since it increases the probability of finding a

parent and stopping early. As a side effect, lower degree runs

scale better with increasing number of processors because they

30 31 32 33

Scale

0

20%

40%

60%

80%

 100%

Load Imbalance

BU Communication

BU Computation

TD Communication

TD Computation

Fig. 6. Breakdown of fraction of direction-optimizing BFS runtime on Jaguar
(23104 processors) on R-MAT graph size scaled (same runs as Figure 5). BU
stands for bottom-up and TD for top-down.

4
(32)

16
(30)

64
(28)

Degree
(Scale)

20

40

60

80

100

120

140

S
e
a
rc

h
 R

a
te

 (
G

T
E

P
S

)

11664 Processors

 5776 Processors

 2916 Processors

Fig. 7. R-MAT graph with 16B edges with direction-optimizing BFS on
Jaguar. Degree varied by changing number of vertices (scale).

do more computation since they are finding more parents. The

communication time decreases for increased degree since there

are fewer vertices to transmit. This decrease in communication

volume is shown by the model presented in Section V. Exam-

ining the results of Figure 7 reveals that the TEPS performance

rate approximately goes up proportional to the square root of

the increase in degree, i.e. the direction-optimizing algorithm

runs twice as fast on graphs with degree 4k versus graphs with

degree k when the number of edges is held constant.

As a sanity check, we run our implementations on the Twit-

ter dataset [11] to demonstrate it works well on other scale-

free low-diameter graphs (Figure 8). Because the real-world

2
7

2
8

2
9

2
10

2
11

2
12

2
13

Processors

0

5

10

15

20
S

e
a
rc

h
 R

a
te

 (
G

T
E

P
S

)

0.2 seconds

Direction-optimizing Top-down

Fig. 8. Twitter dataset [11] on Jaguar

graph is much smaller than the other graphs in this study,

and the direction-optimizing approach already takes only 0.08
seconds to do a full BFS on this graph with 1440 cores, its

performance does not increase any further by increasing core

counts. The direction-optimizing algorithm, however, provides

an economic response to the inverse question “how many core

are needed to traverse this data set in less than 0.2 seconds?”.

Our direction-optimizing approach provides a substantial

performance advantage over the top-down approach, but this

translates into a far larger cost advantage. Distributed BFS

algorithms have sub-linear speedups in general [6][7][14], so

for the top-down approach to match the direction-optimizing

approach’s performance will require a super-linear number of

cores. Under weak scaling (Figure 2), if the performance of

the top-down approach continues on the same trajectory, it

will require a scale=36 graph and approximately 185 thousand

cores to match the performance of the scale=30 point of the

direction-optimizing approach (a 60× increase in core count).

The core count reduction for strong scaling (Figure 4) up

to when the direction-optimizing approach peaks also gets

dramatic reductions of similar or greater magnitude. Due

to this substantial cost advantage, not using the direction-

optimizing approach on a low-diameter graph could be a very

expensive mistake.

IX. RELATED WORK

Parallel BFS is a widely studied kernel, both in theory

and in practice. Algorithmically, the parallelism for a graph

with m edges and D diameter is limited to O(m/D), so a

top-down level-synchronous approach (reviewed in Section II)

is most suitable for low-diameter graphs. For large diameter

graphs, the span (critical path) becomes too long and fre-

quent synchronizations limit the parallel performance. Ullman

and Yannakakis [15] present an alternative algorithm that is

more suitable for large diameter graphs. Their algorithm does

parallel path-limited searches from a subset of vertices and

combines the path-limited BFS trees by using an all-pairs

shortest-paths computation.

Agarwal et al. [16] provide a shared-memory paralleliza-

tion of the queue-based algorithm on multicore architectures.

Leiserson and Schardl [17] provides a bag implementation

to store the frontiers, relying on hyperobjects (reducers) in-

stead of atomics. By designing an “adaptive barrier,” Xia

and Prasanna [18] reduce synchronization costs of BFS on

multicore architectures. Hong et al. [9] use the “read-array”

approach to get better memory locality and they change BFS

approaches on a level granularity. The majority of these efforts

focus on minimizing cache traffic and avoiding expensive

atomic operations as much as possible.

On Graphical Processing Units (GPUs), Harish and

Narayanan [19] give the first implementations of various graph

algorithms, including BFS. Hong et al. [20] and Merrill et

al. [21] both focus on reducing thread divergence within a

warp.

On massively multithreaded systems, Bader and Mad-

duri [22] introduce a fine-grained implementation on the

Cray MTA-2 system using the level synchronous approach,

achieving good scaling on the 40 processor MTA-2. Mizell

and Maschhoff [23] improve and port this algorithm to the

Cray XMT, the successor to the MTA-2.

On distributed memory, scalable implementations use a two-

dimensional graph decomposition [6] [7] [14], and typically

rely on bulk-synchronous computation using MPI. Other dis-

tributed memory implementations include the threaded 1D

approach using active messages of Edmonds et al. [24], and

the partitioned global address space (PGAS) implementation

of Cong et al. [25]. Pierce et al. [26] investigate BFS imple-

mentations, among other graph algorithms, on semi-external

memory.

Checconi et al. [14] provide a distributed-memory paral-

lelization of BFS for BlueGene/P and BlueGene/Q architec-

tures. They use a very low-latency custom communication

layer instead of MPI, and specially optimize it for undirected

graphs as is the case for the Graph500 benchmark. Another

innovation of their work is to reduce communication by

maintaining a prefix sum of assigned vertices, hence avoiding

sending multiple parent updates for a single output vertex.

Satish et al. [27] reduce communication to improve perfor-

mance of BFS on a cluster of commodity processors. They

use a bit vector to communicate the edge traversals, which is

not only more compact than a sparse list when the frontier

is large, but it also squashes duplicates. They use software

pipelining to overlap communication and computation and are

even able to communicate information from multiple depths

simultaneously. Finally, they use the servers’ energy counters

to estimate the power consumption of their implementation.

X. CONCLUSION

We give a new distributed memory parallel direction-

optimizing BFS algorithm that combines the scalable two-

dimensional approach with top-down and novel bottom-up

search steps. We evaluate the new algorithm extensively with

real and synthetically generated graphs of various sizes and

degrees on tens of thousands of cores. The algorithm per-

forms approximately 7× faster than an already scalable top-

down only algorithm that uses the same data distribution and

management of parallelism. Furthermore, this performance

advantage allows the direction-optimizing approach to achieve

the same performance as the top-down approach with more

than an order of magnitude fewer processors. We believe that

the algorithm is amenable to further optimizations and tuning,

which we plan to pursue as future work.

ACKNOWLEDGMENTS

This research used resources of the National Energy Re-

search Scientific Computing Center, which is supported by

the Office of Science of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231. This research also used

resources of the Oak Ridge Leadership Computing Facility

located in the Oak Ridge National Laboratory, which is sup-

ported by the Office of Science of the Department of Energy

under Contract DE-AC05-00OR22725. The second author was

supported in part by the DARPA UHPC program under con-

tract HR0011-10-9-0008, and in part by the Director, Office of

Science, U.S. Department of Energy under Contract No. DE-

AC02-05CH11231. Research was also supported by Microsoft

(Award #024263) and Intel (Award #024894) funding and by

matching funding by U.C. Discovery (Award #DIG07-10227).

Additional support comes from Par Lab affiliates National

Instruments, Nokia, NVIDIA, Oracle, and Samsung.

REFERENCES

[1] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, Jun. 1972.

[2] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger,
“Finding strongly connected components in distributed graphs,” Journal
Parallel Distributed Computing, vol. 65, no. 8, pp. 901–910, Aug. 2005.

[3] D. J. Watts, “Networks, dynamics and the small-world phenomenon,”
American Journal of Sociology, vol. 105, no. 2, pp. 493–527, 1999.

[4] D. S. Bassett and E. Bullmore, “Small-world brain networks,” The
Neuroscientist, vol. 12, no. 6, pp. 512–23, 2006.

[5] S. Beamer, K. Asanović, and D. A. Patterson, “Direction-optimizing
breadth-first search,” Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
2012.

[6] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011.

[7] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and Ü. V. Çatalyürek, “A scalable distributed parallel breadth-first
search algorithm on BlueGene/L,” in Conference on High Performance
Computing (SC), 2005.

[8] S. Beamer, K. Asanović, and D. A. Patterson, “Searching for a parent
instead of fighting over children: A fast breadth-first search imple-
mentation for graph500,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2011-117, 2011.

[9] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” Parallel Architectures and
Compilation Techniques (PACT), 2011.

[10] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in International Conference on Data Mining (SDM).
Orlando, FL: SIAM, Apr. 2004.

[11] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” International World Wide Web Conference
(WWW), 2010.

[12] “Graph500 benchmark.” www.graph500.org.

[13] A. Buluç and J. Gilbert, “The Combinatorial BLAS: Design, implemen-
tation, and applications,” International Journal of High Performance
Computing Applications (IJHPCA), vol. 25, no. 4, pp. 496–509, 2011.

[14] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for graph
exploration on distributed-memory machines,” International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2012.

[15] J. D. Ullman and M. Yannakakis, “High-probability parallel transitive-
closure algorithms,” SIAM J. Comput., vol. 20, no. 1, pp. 100–125, 1991.

[16] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader, “Scalable graph
exploration on multicore processors,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
Nov. 2010.

[17] C. Leiserson and T. Schardl, “A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers),”
in Symposium on Parallelism in Algorithms and Architectures (SPAA),
Jun. 2010, pp. 303–314.

[18] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in International Conference on Parallel
and Distributed Computing Systems (PDCS), Nov. 2009.

[19] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in International Conference on High-Performance
Computing (HiPC), dec 2007, pp. 197–208.

[20] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2011.

[21] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” Principles and Practice of Parallel Programming (PPoPP),
2012.

[22] D. Bader and K. Madduri, “Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2,” in Proc.
35th International Conference on Parallel Processing (ICPP), Aug.
2006, pp. 523–530.

[23] D. Mizell and K. Maschhoff, “Early experiences with large-scale XMT
systems,” in Workshop on Multithreaded Architectures and Applications
(MTAAP), 2009.

[24] N. Edmonds, J. Willcock, T. Hoefler, and A. Lumsdaine, “Design of
a large-scale hybrid-parallel graph library,” in International Conference
on High Performance Computing, Student Research Symposium, Goa,
India, 2010.

[25] G. Cong, G. Almasi, and V. Saraswat, “Fast PGAS implementation
of distributed graph algorithms,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Nov.
2010.

[26] R. Pearce, M. Gokhale, and N. Amato, “Multithreaded asynchronous
graph traversal for in-memory and semi-external memory,” in Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2010, pp. 1–11.

[27] N. Satish, C. Kim, J. Chhugani, and P. Dubey, “Large-scale energy-
efficient graph traversal: A path to efficient data-intensive supercom-
puting,” International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

