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a b s t r a c t

Future chip multiprocessors (CMPs) may have hundreds to thousands of threads competing to access

shared resources, and will require quality-of-service (QoS) support to improve system utilization. This

paper introduces Globally-Synchronized Frames (GSF), a framework for providing guaranteed QoS in

on-chip networks in terms of minimum bandwidth and maximum delay bound. The GSF framework

can be easily integrated in a conventional virtual channel (VC) router without significantly increasing

the hardware complexity. We exploit a fast on-chip barrier network to efficiently implement GSF.

Performance guarantees are verified by analysis and simulation. According to our simulations, all

concurrent flows receive their guaranteed minimum share of bandwidth in compliance with a given

bandwidth allocation. The average throughput degradation of GSF on an 8 × 8 mesh network is within

10% compared to the conventional best-effort VC router.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Advances in fabrication technology allow the integration of
many processors on a chip to form a chip multiprocessor (CMP),
possibly in the form of a complex system-on-a-chip (SoC) with
custom application accelerators. These platforms will be required
to support a variety of complex application workloads, with
possibly hundreds to thousands of concurrent activities competing
for shared platform resources. Without effective quality-of-
service (QoS) support, the gap between best-case and worst-case
throughput will continue to grow, requiring overprovisioning and
hence poor utilization of platform resources [13–15,18].

We believe that future integrated platforms must implement
robust QoS support providing both performance isolation and
differentiated services. Performance isolation is the property that
a minimum level of performance is guaranteed regardless of
how other concurrent activities access the same shared resources
(e.g., preventing denial-of-service on a chip [23]). Differentiated
services is the ability to allocate each resource flexibly among
competing tasks.

Robust QoS support is only possible if all shared resources are
managed together, as guaranteed service level for an application
is determined by the weakest guarantee from any of its shared
resources. For example, allocating a portion of off-chip memory
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bandwidth at a memory controller is ineffective if the on-chip

network does not guarantee adequate bandwidth to transport

memory requests and responses. Even in a case where the on-

chip network is not a bandwidth bottleneck, tree saturation [28]

can produce a tree of waiting packets that fan out from a hotspot

resource, thereby penalizing remote nodes in delivering requests

to the arbitration point for the hotspot resource.

In this paper, we present a new scheme, Globally-Synchronized

Frames (GSF), to implement QoS for multi-hop on-chip networks.

GSF provides minimum bandwidth guarantees as well as bounded

network delay without significantly increasing the complexity of

the on-chip router. In a GSF system, time is coarsely quantized

into ‘‘frames’’ and the system only tracks a few frames into the

future to reduce time management costs. Each QoS packet from a

source is tagged with a frame number indicating the desired time

of future delivery to the destination. At any point of time, packets

in the earliest extant frame are routed with highest priority but

sources are prevented from inserting new packets into this frame.

GSF exploits fast on-chip communication by using a global barrier

network to determine when all packets in the earliest frame have

been delivered, and then advances all sources and routers to the

next frame. The next oldest frame now attains highest priority

and does not admit any new packets, while resources from the

previously oldest frame are recycled to form the new futuremost

frame.

The system can switch frames at a rate that sustains any desired

set of differentiated bandwidth flows with a bounded maximum
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Fig. 1. Fairness problem in a simple three-node network with round-robin arbitration.

(a) Network configuration:

8 × 8 2D mesh.

(b) Round-robin scheduling with

dimension-ordered routing.

(c) Round-robin scheduling with

minimal-adaptive routing.

Fig. 2. Fairness problem in an 8 × 8 mesh network.

latency, provided that the pattern of injected packets in each
frame does not oversubscribe the capacity of any network link.
Note that bandwidth and latency are decoupled in this system,
as multiple frames can be pipelined through the system giving a
maximum latency of several frame switching times. The scheme
does not maintain any per-flow information in the routers, which
reduces router complexity and also avoids penalizing short-lived
flows with a long route configuration step. The scheme supports
bursty traffic, and allows best-effort traffic to be simultaneously
supported with little loss of network utilization.

2. Background

2.1. Fairness problems in best-effort on-chip networks

Best-effort on-chip routers do not differentiate flows. (A flow
is loosely defined as a distinct sequence of packets between a sin-
gle source and a single destination.) Instead, most of them imple-
ment some variants of locally-fair round-robin arbitration [6,16]
to provide fair service for input ports in allocating buffers and
switching bandwidth.

However, local fairness does not imply global fairness. Fig. 1
illustrates such an example with locally-fair round-robin arbitra-
tion. This is a simple three-node network with four flows (whose
sources are labeled 1 through 4) all having a shared destination
(labeled ‘‘Dest’’). Assuming the channel rate of Cch [packets/s], the
throughput of Flow 4 is half of the channel rate because it wins the
congested output link with a probability of one half. The through-
put of Flow 3 is a quarter of Cch because it has to go through
arbitration twice and has a probability of one half to win each ar-
bitration, and so on. With round-robin arbitration, the degree of
uneven bandwidth distribution increases exponentially with the
network diameter.

Detailed network simulation with a realistic setup shows this
phenomenon as well. In Fig. 2, all nodes generate traffic toward a
hotspot shared resource located at (7, 7) (indicated by arrow), and
the bar graph shows accepted throughput per node by the hotspot
resource. In Fig. 2(b), locally-fair round-robin scheduling leads to
globally-unfair bandwidth usage, penalizing remote nodes. The
minimal-adaptive routing [6] shown in Fig. 2(c) does not resolve

this problem, either. Hence, QoS support in on-chip networks is

highly desirable for fair service across competing nodes.

2.2. Solution space for QoS support in on-chip networks

We divide the solution space for QoS into four quadrants

according to two orthogonal criteria: scheduling granularity

and extent of QoS. The first criterion is scheduling granularity.

Each scheduling point could take either a (sorted) priority-

based approach or a frame-based approach [27]. Priority-based

schedulers [1,5–8,12,17,26,33] typically have per-flow queues.

Competing requests’ priorities are computed based on their

classes, arrival time and the requesting flow’s bandwidth share

(e.g., virtual finish time in Fair Queueing [7]), and then compared to

determine which request to service next. In contrast, frame-based

schedulers [2,10,11,22,25,30,31] group a fixednumber of time slots

into a frame and control bandwidth allocation by giving a certain

number of time slots per frame to each requester. The frame-based

scheduler has per-frame queues instead of per-flow queues and

services requests with the lowest frame number (i.e., earliest time)

first.

The second criterion to classify possible approaches to QoS is

the extent of QoS. The extent of a QoSmechanism determines both

how much of the system is covered by the QoS mechanism and

what type of QoS guarantees are made between end-points. In

component-wise QoS approaches [2,7,8,11,12,17,22,25,30,31,33], a

QoSmechanism is containedwithin each scheduling node, andQoS

guarantees are made at a node level. Then a flow-level end-to-end

QoS is guaranteed by construction. Alternatively, the operations

of a QoS mechanism can be defined between end-points across

multiple components, and its QoS properties described as such—

we call this class of approaches end-to-endQoS [1,3,5,6,26,28]. One

good example is age-based arbitration [1,5,6,26], where a router

relies on a source-tagged global timestamp to calculate the priority

of each packet.

Fig. 3 illustrates the four quadrants of solution space for QoS ac-

cording to the two criteria. Generally, frame-based schedulers use

much less hardware than priority-based schedulers while increas-

ing delay bound. Likewise, end-to-end approaches can simplify
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Fig. 3. Four quadrants of the solution space for QoS in the multi-hop on-chip

networks.

the hardware compared to component-wise approaches while po-
tentially sacrificing modularity. Among the four quadrants, frame-
based, end-to-end approaches are a promising yet less explored
direction toward efficient and robust QoS in an on-chip environ-
ment.

3. Globally-Synchronized Frames (GSF)

This section presents the design of GSF starting from an
idealized deadline-based arbitration scheme. We then transform
this scheme step-by-step into an implementable GSF queueing and
scheduling algorithm.

3.1. Global deadline-based arbitration for bandwidth guarantees

GSF was originally inspired by deadline-based arbitration,
which is a generalization of age-based arbitration [1,5,6,26]. In age-
based arbitration, each packet carries a global timestamp, issued
when the packet enters the network, and each arbiter (router)
forwards the packet with the earliest timestamp first. Instead of
using the timestamp, we allow each source to assign a deadline
other than the current time. Our premise is that we can achieve a
desired flow property, including guaranteedminimumbandwidth,
by controlling deadline assignment, at least in an idealized setup.

One way to provide bandwidth guarantees is to assign the
deadline for the n-th packet of Flow i (dni ) as follows:

dni (ρi) = MAX[current_time, dn−1
i ] + Lni /(ρiC)

where ρi is the guaranteed minimum bandwidth of Flow i
represented as a fraction of channel bandwidth C (0 ≤ ρi ≤ 1)
and Lni is the length of the n-th packet of Flow i. This formula
directly follows from what is known as the virtual finish time in

Fair Queueing-variant algorithms [7,33]. The deadline specifies the
time when a packet’s last bit would arrive at the destination if the
channel were infinitely divisible and shared by multiple packets
simultaneously transmitting according to their guaranteed shares
(ρ’s), providedwe ignore the network traversal delay (or zero-load
latency).

Fig. 4 shows per-flow throughput in the simple three-node
network in Fig. 1 to compare three arbitration schemes: (a)
round-robin, (b) age-based and (c) deadline-based with the
deadline assignment for bandwidth guarantees presented above.
For simulation, we assume each input port has a perfect priority
(sorting) queue with infinite capacity. Dotted vertical lines
indicate minimum injection rate causing congestion. In locally-
fair round-robin arbitration in (a), the throughput of a flow
decreases exponentially as the number of hops increases. Age-
based arbitration in (b), where deadline is assigned as network
injection time, gives fair bandwidth allocation among all flows.
With deadline-based arbitration in (c), we achieve bandwidth
distribution proportional to the ratio of ρ’s in face of congestion.

Although deadline-based arbitration provides minimum band-
width guarantees to flows, there are several issues that make this
scheme infeasible to implement. First, the scheme is based on per-
fect priority queues with infinite capacity. Second, there is a large
overhead for sending and storing the deadline along with the pay-
load data. Baseline GSF addresses these issues.

3.2. Baseline GSF

To make deadline-based arbitration practical, Baseline GSF
adopts a frame-based approach [34] to approximate the ideal
deadline-based arbitration. Fig. 5 shows a step-by-step transfor-
mation toward such an approximate implementation. Fig. 5(a)
shows an ideal implementation of deadline-based arbitration in-
troduced in Section 3.1. We first group all data entries having a
range of deadlines (whose interval is F ) to form a frame. Frame
k is associated with packets whose deadline is in the range of
[kF + 1, (k + 1)F ]. The frame number k is used as a coarse-grain
deadline and assigned to a frame buffer as shown in Fig. 5(b). By
introducing frames, we enforce an ordering across frames but not
within a frame because the service order within a frame is simply
FIFO. The Baseline GSF arbitration is shown in Fig. 5(c), where we

(a) Round-robin (RR) arbitration. (b) Age-based arbitration. (c) Deadline-based arbitration.

Fig. 4. Per-flow accepted throughput with three arbitration schemes.

Fig. 5. Step-by-step transformation toward Baseline GSF.
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Table 1
Variables and parameters used in GSF.

Variable Range Description

Global parameters and variables*

W 2 · · · ∞ Active frame window size

HF 0 · · · (W − 1) Current head frame

F 1 · · · ∞ Frame size in flits

B 1 · · · ∞ Frame buffer depth in flits

C (0, 1] Channel bandwidth in flits/cycle

LMAX 1 · · · ∞ Maximum packet length in flits

epoch** 0 · · · ∞ Current epoch number

ek 1 · · · eMAX Interval of k-th epoch

eMAX 1 · · · ∞ Maximum epoch interval

T epoch 0 · · · eMAX Epoch timer

Per-flow variables

ρ 0 · · · 1 Fraction of bandwidth allocated to Flow i (normalized to C)

Ri 0 · · · F Flit slots reserved for Flow i in a single frame

IFi 0 · · · (W − 1) Current injection frame of Flow i

Ci −LMAX · · · Ri Available credit tokens for Flow i to inject flits to IFi
* Global variable with a subscript i denotes a local copy of the variable maintained by Flow i.
** Not implemented in hardware.

have a finite active frame window having W frames (i.e., Frame
k through (k + W − 1)) and each active frame has a dedicated
frame buffer (FIFO) whose depth is B flits. The head pointer indi-
cates which frame buffer is currently bound to the earliest frame
(frame buffer j in the figure), which we call the head frame. Note
that Baseline GSF in Fig. 5(c) asymptotically reduces to the ideal
deadline-based arbitration in Fig. 5(a) asW → ∞ and F → 1.

Here is a brief sketch of how the GSF network operates. For
each active frame, every flow is allowed to inject a certain number
of flits, denoted by Ri for Flow i. As a flow consumes its flit
allocation for each frame, the flow’s frame number is incremented
and it begins injecting flits into the next future frame, up to the
maximum number of active frames (W ) in the system. Unlike
simple frame-based bandwidth allocation schemes (e.g., Stop-and-
Go [10]), we allowW frames to overlap at any given time to service
simultaneously up to WRi flits from Flow i arriving in burst. The
frame window size (W ) is chosen to accommodate bursty traffic
while preventing an aggressive flow from injecting toomuch traffic
into the network.

Once a packet is injected into the network, it traverses the
network using only the frame buffers of the frame it belongs
to. Therefore, there is no possibility of a lower-priority packet
blocking a higher-priority packet. Combined with earliest-frame-
first scheduling for bandwidth allocation, the head frame is
guaranteed to drain in a finite amount of time because only a finite
sum of packets can be injected into a single frame by all flows. The
drainedhead framebuffers across the entire network are reclaimed
and allocated to a newer frame synchronously, which is called an
(active) frame window shift.

We define an epoch as the period of time between adjacent
frame window shifts, and the interval of the k-th epoch (i.e., the
period of time when frame k is the head frame) is denoted by ek.
We also define eMAX ≡ max∀k ek. Table 1 summarizes variables and
parameters used in the GSF algorithm. Amore detailed description
of each network component’s operation is given as follows.

Packet injection process:Algorithm1describes a packet injection
algorithm used by the Baseline GSF network. Flow i can inject
packets into the active frame pointed to by IFi as long as it has
a positive credit balance for the frame (Ci > 0). The flow can
go overdrawn, which allows it to send a packet whose size is
larger than Ri. This is our design decision to maximize the network
throughput at the cost of an increase in the fairness observation
window size [20]. If the flowhas used up all reserved slots in Frame
IFi, it can use reserved slots further in the future by incrementing
IFi by one (modW ) until it hits the tail of the active frame window
(Lines 5–13). Once the flow uses up all reserved slots in the active

frame window, it must stall waiting for a frame window shift to
open a new future frame.

Switching bandwidth and buffer allocation: Frame buffer allo-
cation is simple because every packet is assigned a frame at the
source, which determines the frame buffer to be used by the packet
at each node. In allocating switching bandwidth, we give the high-
est priority to the earliest frame.

Frame window shifting algorithm: Algorithm 2 shows an
algorithm used to shift the active frame window. Source injection
control combined with earliest-frame first scheduling yields a
finite drain time for the head frame, bounded by eMAX. Therefore,
we shift the active frame window at every eMAX cycles by default.
The frame window shifting algorithm does not allow a flow to
inject a new packet into the head frame (Lines 4–7) to keep eMAX

tight. Every flowmaintains a local copy (T
epoch

i ) of the global epoch

timer (T epoch) and decrements it at every clock tick (Lines 9–10).

Once T
epoch

i reaches zero, all the flows synchronously increment
the head frame pointer HFi (mod W ) to reclaim the frame buffer
associated with the earliest frame.

The Baseline GSF network provides the following guaranteed
bandwidth to Flow i if none of the physical channels along the path
are overbooked (i.e., the sum of requested bandwidth for a channel
does not exceed its bandwidth):

Guaranteed bandwidthi = Ri/e
MAX.

Although Baseline GSF provides guaranteed services in terms
of bandwidth and bounded network delay (See Appendix A for
a sketch of proof), there are several drawbacks to the scheme.
First, frame buffers are underutilized, which degrades overall
throughput. Second, it is difficult to bound eMAX tightly, which
directly impacts the guaranteed bandwidth. Even with a tight
bound, it is too conservative to wait for eMAX cycles every epoch
because the head frame usually drains much faster. To address
these issues without breaking QoS guarantees, we propose two
optimization techniques: carpool lane sharing and early reclamation
of empty head frames.

3.3. Carpool lane sharing: improving buffer utilization

Guaranteed bandwidth in Baseline GSF does not depend on the
active frame window size (W ). The multiple overlapping frames
only help claim unused bandwidth to improve network utilization
by supporting more bursty traffic. Therefore, as long as we provide
a dedicated frame buffer for the head frame at each router, we do
not compromise the bandwidth guarantees.
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We propose carpool lane sharing to relax the overly restrictive
mapping between frames and frame buffers. Now we reserve
only one frame buffer to service the head frame (like a carpool
lane), called the head frame buffer, but allow all active frames,
including the head frame, to use all the other frame buffers. That
is, any packet can occupy any frame buffer, except that the head
frame buffers are reserved only for packets in the head frame.
Each packet carries a �log2 W	-bit frame number (mod W ) in
its head flit, and the router services the earliest frame first in
bandwidth and buffer allocation. Note that, with carpool lane
sharing, a router no longer needs to have per-framebuffers since all
frame buffers except the head frame buffer are shared by all frames
opportunistically. In a minimal setup, a router may have only two
frame buffers—one reserved for the head frame and the other
freely used by all frames. According to our evaluation, carpool lane
sharing significantly improves buffer utilization, hence increasing
the overall throughput.

3.4. Early frame reclamation: increasing frame reclamation rate

One important factor affecting the overall throughput in theGSF
network is the frame window shift rate. According to our analysis,
only a small fraction of ek’s ever come close to eMAX. This implies
that the head frame buffer is often lying idle waiting for the timer
to expire in each epoch.

Therefore,we propose to use a global barrier network to reclaim
the empty head frame as quickly as possible. Instead of waiting for
eMAX cycles every epoch, we check whether there is any packet in
the source or network buffers that belongs to the head frame. If not,
we retire the head frame immediately and allocate its associated
buffers to the new futuremost frame. Note early reclamation does
not break the original bandwidth guarantees, because we always
see a net increase, or at worst no change, in available flit injection
slots. The barrier network is only a small fraction of the cost of the
primary data network, as it uses a single wire communication tree
and minimal logic.

4. Hardware implementation

Implementing GSF requires relatively minor modifications in a
conventional virtual channel (VC) router. Fig. 6 shows a proposed
GSF router architecture. Newly added blocks are highlighted while
existing blocks are shown in gray. Various aspects and design
issues in the GSF router follow.

Baseline VC router.We assume a three-stage pipelined VC router
with lookahead routing [9] and credit-based flow control as our
baseline. The three stages are next-hop routing computation (NRC)
in parallel with virtual channel allocation (VA), switch allocation
(SA) and switch traversal (ST).

Fig. 6. GSF router architecture for 2D mesh network.

Added blocks. Each router node keeps a local copy of the global
head frame (HF ) variable. This variable increments (mod W ) at
every frame window shift triggered by the global barrier network.
Each VC has a storage to maintain the frame number (mod W ) of
the packet it is servicing. The frame number at each VC is compared
against HF to detect any packet belonging to the head frame. Then
the global barrier network gather this information to determine
when to shift the frame window.

Next-hop routing computation (NRC). To reduce the burden of
the VA stage, which is likely to be the critical path of the router
pipeline, we precalculate the packet priority at this stage. The
packet priority can be obtained by (frame_num − HF) (mod
W ). The lowest number has the highest priority in VC and SW
allocation. When calculating the routing request matrix, NRC logic
is responsible for masking requests to VC0 from non-head frames,
because VC0 is reserved for the head frame only. Then VC and SW
allocators service a request with the highest priority.

Global barrier network. One way to achieve barrier synchroniza-
tion is to use a fully-pipelined dimension-wise aggregation net-
work [28]. In this network, assuming a 2D mesh, the center node
of each column first collects the status of its peers in the same col-
umn. Then, it forwards the information to the center node of its row
where the global decision ismade. A broadcast network, which op-
erates in reverse of the aggregation network, informs all nodes to
rotate their head frame pointers (HF ). For k-ary n-cube (or mesh)
network, the latency of the synchronization will be 2n� k−1

2
	 cy-

cles assuming one-cycle per-hop latency. Alternatively, we can im-
plement a barrier network using combinational logic which might
take multiple fast clock cycles to settle.
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Fig. 7. Default network parameters.

5. Credit token allocation

To specify requested bandwidth, one can use either a relative
measure (e.g., 10% of link bandwidth) as in [24] or an absolute
measure (e.g., 100 MB/s). If a relative measure ρi is given, Ri can
be set to be ρiF . If an absolute measure BW (in flits/cycle) is used,
Ri can be set to be (BW ∗ eMAX). eMAX is a function of traffic pattern,
bandwidth reservation, frame size, flow control overhead, global
synchronization latency, and so on, and it is non-trivial to obtain a
tight bound analytically. Hence, we rely on simulation to estimate
a tight bound. That is, we keep the largest eMAX observed for a given
traffic pattern and bandwidth reservation, and add a safety margin
to estimate the true eMAX. Note that a tight estimate of eMAX is not
required to achieve high network utilization since GSF employs
early frame reclamation.

Fair allocation of channel bandwidth is one important special
case. If a channel is shared by n flows, the degree of congestion
for this channel is n and each flow passing this channel receives
1/n of the service bandwidth. The reserved bandwidth for a flow is
determined by the most congested channel (i.e., with the highest
degree of congestion) on its path. Fig. 8 illustrates such bandwidth
allocation for transpose traffic, where each source located at
Node (xi, yi) generates traffic toward Node (yi, xi). Assuming x–y
dimension-ordered routing, Fig. 8 shows a congestion map with
each channel annotatedwith its degree of congestion. For example,
for Flow 3 (F3) which generates traffic from Node 3 (s3 = 3) to
Node 12 (d3 = 12), the bottleneck channel is the one from Node
1 to Node 0 with the degree of congestion of three. Therefore, the
flow’s bandwidth reservation equals to one-third of the channel
bandwidth (ρ3 = 0.333). Note that different flows may have
different bandwidth reservations. Algorithm 3 formalizes this to
calculate Ri for each flow when bandwidth is fairly allocated.

6. Evaluation

We implemented a cycle-accurate simulator for 8× 8 2Dmesh
network based on the booksim simulator [29]. Each run executes
0.5 million cycles unless the simulation output saturates early,
with 50 thousand cycles spent in warming up. The parameters in
Fig. 7 are used by default.

Seven traffic patterns are used where the destination of each
source at Node (i, j) is determined as follows: hotspot (7, 7),
transpose (j, i), nearest neighbor ((i + 1, j + 1) (mod 8)),

 

Fig. 8. Channel congestion map for transpose traffic.

uniform random (random(), random()), bit complement (ī, j̄),
shuffle ((2i+j/4, 2j+i/4) (mod 8)), and tornado ((i+3, j+3) (mod

8)). The injection slots per frame is calculated using Algorithm 3

except for uniform random traffic where 
F/64� = 32 flits per

frame are allocated to each source (not to each source–destination

pair).

6.1. Fair and differentiated services

Algorithm 3 GSF token allocation algorithm

Initialize: F =(Frame size), N =(Number of nodes)

Initialize: link_load[N][N] =(array elements initialized to 0)

1: /* Calculate load for each link */

2: for src = 0 to (N-1) do
3: dst = getDst(src)
4: increaseLinkLoadByOneAlongThePath(link_load, src, dst)
5: end for
6: /* Calculate token allocation */

7: for src = 0 to (N-1) do
8: dst = getDst(src)
9: (in, out) = getMostCongestedLink(link_load, src, dst)
10: Msrc = link_load[in][out] /* Msrc : degree of congestion */

11: Rsrc = F/Msrc /* Ri for Flow i sourced at Node i */

12: end for

We first evaluate the quality of guaranteed services in terms

of bandwidth distribution. Fig. 9 shows examples of fair and

differentiated bandwidth allocation in accessing hotspot nodes

using two different topologies. Fig. 9(a) and (b) illustrate QoS

guarantees on an 8 × 8 mesh network and Fig. 9(c) on a 16 × 16

torus network. In both cases, GSF provides guaranteedQoS for each

flow. Topology does not affect QoS guarantees as long as no link is

oversubscribed.

Fig. 10 shows how bandwidth is distributed across concurrent

flows for other traffic patterns and we confirm QoS guarantees are

enforced in all cases. Note that the throughput of two flowsmay be

different (e.g. transpose) because they may have different degrees

of congestion on their paths.

6.2. Cost of guaranteed QoS and tradeoffs in parameter choice

The cost of guaranteed QoS with GSF is additional hardware

including an on-chip barrier network and potential degradation

of average latency and/or throughput. Unless a router has a priori

knowledge of future packet arrivals, it must reserve a certain

number of buffers for future high-priority packets even if there

arewaiting packetswith lower priorities. This resource reservation

is essential for guaranteed QoS but potentially causes resource

underutilization, degrading average-case performance. Therefore,

it is our primary design goal to provide robust average-case
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(a) Fair allocation: 8 × 8. (b) Differentiated allocation: 8 × 8. (c) Differentiated allocation: 16 × 16 torus.

Fig. 9. Fair and differentiated bandwidth allocation for hotspot traffic.

(a) Transpose. (b) Nearest neighbor. (c) Uniform random.

(d) Bit complement. (e) Shuffle. (f) Tornado.

Fig. 10. Fair bandwidth allocation for various traffic patterns.

performance over a wide range of network configurations and

workloads.

Fig. 11 shows the average latency versus offered load over

six traffic patterns. For each traffic pattern, we consider a

best-effort allocation scheme (iSlip [21]) and GSF with various

synchronization costs: 1 (GSF/1), 8 (GSF/8) and 16 cycles (GSF/16).

We first observe that the GSF network does not increase the

average latency in the uncongested region. The network saturation

throughput is degraded negligibly except for bit complement

traffic with 9.5% degradation. This is caused by underutilization of

the head frame VC (VC0) and source throttling effect of finite frame

window.

Fig. 12 explains the impact of these two factors on average ac-

cepted throughput. With a small number of VCs (e.g., V = 2),

reserving VC0 only for the head frame severely degrades through-

put in GSF. As the number of VCs increases, the gap narrows. In

this network configuration, 4 or more VCs are desirable to achieve

comparable throughput to the baseline VC router. IncreasingW to

be larger than 2V gives only marginal throughput gain.

7. Conclusion

This paper introduces Globally-Synchronized Frames (GSF)
to provide guaranteed QoS from on-chip networks in terms
of minimum bandwidth and maximum delay bound. The GSF
algorithm can be easily implemented in a conventional VC router
without significantly increasing its complexity. This is possible
because the complex task of assigning priorities to packets is
pushed out to the source injection process at the end-points. The
global orchestration of the end-points and intermediate nodes is
made possible by a fast on-chip barrier network. Our evaluation
of the GSF network shows promising results. We believe that this
kind of flexible, low-cost QoS support will be a necessary addition
to highly-distributed future multicore processors.

Appendix A. Sketch of proof for minimum bandwidth guaran-
tees and maximum delay bound

The proof sketch for the guaranteed bandwidth in Section 3.2 is
simple. Flow i can inject Ri flits into each frame, and the network
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(a) Transpose. (b) Nearest neighbor. (c) Uniform random.

(d) Bit complement. (e) Shuffle. (f) Tornado.

Fig. 11. Average packet latency versus offered load with various traffic patterns.

Fig. 12. Tradeoff in buffer organization with hotspot and uniform random traffic.

opens a new frame every eMAX cycles. Because the network does

not drop any packets and has a finite buffer size, the guaranteed

bandwidth holds. In addition, the worst-case network delay is

bounded by WeMAX because a packet injected in k-th epoch must

be ejected from the network by the beginning of (k+W )-th epoch.

Appendix B. Admission control

Admission control is a software process that should guarantee

that no channel in the network is oversubscribed. That is, suppose

Sc = {i1, i2, . . . , in} is a set of flows that pass through Channel

c . Then ∀ Channel c in the network,
∑

i∈Sc
Ri ≤ F must hold in

GSF. This inequality condition states that the sum of requested

bandwidth from all the flows sharing a channel must not exceed

the service capacity of the channel.

A request for a new flow is accepted only if all the channels

along the path of the flow have enough extra bandwidth to

accommodate the request. If a new flow enters into a previously

reserved channel, the OS may need to redistribute the excess

injection slots according to its excess bandwidth sharing policy.

Tessellation OS describes a similar admission control mechanism

in [4]. Alternatively, greedy allocation to maximize network

utilization is also possible, where each flow can be granted more

than the minimum number of slots required whenever possible.

Since the maximum number of flits in flight from Flow i at any

given time is upper bounded byWRi, reservingmore slots generally

leads to higher sustainable throughput for the flow. In an extreme

case, the first flow can greedily reserve the maximum number of

available injection slots on its path. When a second flow arrives,

the OS renegotiate bandwidth distribution among the two flows

according to its resource management policy.

Note that this kind of bandwidth redistribution/renegotiation

can be easily done in a GSF network since GSF does not require

any explicit channel setup, and so only the Ri control register

at each source must be changed. If there are multiple clock

domains, possiblywith dynamic voltage–frequency scaling (DVFS),

any channel c should provide at least the sum of guaranteed

bandwidths on the channel to preserve QoS guarantees.

Appendix C. Sensitivity analysis on frame size

In Fig. C.13, we explore the choice of frame size (F ). A long

frame (whose size is ≥1000 in this configuration) amortizes the

overhead of barrier synchronization and effectively increases the

size of injection window to support more bursty traffic, which

is likely to improve the network throughput. The downside is
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Fig. C.13. Throughput of GSF network normalized to that of the baseline VC router

with variable F (frame size). Two traffic patterns (hotspot and uniform random) and

three synchronization costs (1, 8 and 16 cycles) are considered.

larger source buffers and potential discrimination of remote nodes

within a frame. The choice depends onworkloads, synchronization

overhead and system size.

Appendix D. Related work

We briefly survey proposals for QoS in the context of on-chip

and off-chip networks. We classify each proposal to one of the four

quadrants according to the two criteria discussed in Section 2.2.

(Weighted) fair queueing [7]/Virtual Clock [33] (priority-based,

component-wise). They are developed for QoS in long-haul IP

networks where large buffers are available. These achieve fairness

and high network utilization, but each router is required to

maintain per-flow state and queues which would be impractical

in an on-chip network.

Preemptive Virtual Clock (PVC) [12] (priority-based, component-

wise). It is similar to Virtual Clock but is implemented on an

on-chip network. To reduce the buffer overhead, routers do not

have per-flow queues. Instead, a router simply removes the lowest

priority packet from the network when it is blocking a higher

priority packet because of lack of buffer. In this case, an NACK

will be sent to the source through a special network so that it can

resend the killed packet in the future. PVC achieves comparable

fairness but lower network utilization comparing to Virtual Clock.

It is because some bandwidth is used to resend killed packets.

While PVC requires less buffer overhead than Virtual Clock, each

PVC router is still required to maintain per-flow state such as

bandwidth counters and reserved rate registers.

Multi-rate channel switching [30] (frame-based, component-

wise). The source rate of a flow is fixed at an integer multiple

of a basic rate before the source starts transmission and remains

unchanged for the duration of the flow. Because of the fixed rate,

it cannot claim unused bandwidth efficiently, which leads to low

network utilization.

Source throttling [28] (N/A, end-to-end). It dynamically adjusts

the traffic injection rate at a source node primarily for congestion

control. This keeps the network from suffering overall throughput

degradation beyond the saturation point, but does not provide QoS

to individual flows.

Age-based arbitration [1,5,6,26] (priority-based, end-to-end). It

is known to provide strong global fairness in bandwidth usage

in steady state and reduce standard deviation of network delay.

Each packet (or flit) carries information to indicate its age, either

a counter updated at every hop [26], or a timestamp issued

when the packet first enters the network from which age can be

calculated by subtracting from the current time [6]. The oldest

packet wins in any arbitration step. This approach lacks flexibility

in bandwidth allocation because it does not allow for asymmetric
resource allocation, and requires sophisticated logic to handle
aging, arbitration and counter rollover.

Rotating Combined Queueing (RCQ) [17] (priority-based,
component-wise). It is designed for a multiprocessor and provides
predictable delay bounds and bandwidth guarantees without per-
flow queues at intermediate nodes (though it still maintains per-
flow statistics).

Each packet in a RCQ network is assigned a local frame number
using per-flow statistics upon arrival at every node on the path. The
idea of rotating priorities in a set of queues is similar toGSF, butGSF
further simplifies the router using global information,which is only
feasible in an on-chip environment. Unlike RCQ, the frame number
in theGSF is global,which eliminates expensive book-keeping logic
and storage at each node.

MetaNet [25] (frame-based, component-wise). MetaNet imple-
ments a frame-based end-to-end QoS mechanism in an ATM net-
work. Two independent networks servicing constant bit rate (CBR)
and variable bit rate (VBR) traffic respectively, share physical links
to improve the link utilization. Each source is allowed to inject up
to a certain number of packets per frame into the CBR network and
the rest of packets are injected into the VBR network. Packets carry
a frame number, which is used at a destination to reorder packets
taking different paths. The CBR network provides QoS guarantees
in terms of minimum bandwidth and maximum delay.

The core idea of MetaNet is to create a distributed global
clock (DGC) across the entire network using a distributed clocking
protocol. They claim that a DGC running at 1 MHz is feasible
for a 100-node system with realistic network parameters, which
gives enough resolution for their frame-based QoS. However, the
proposal has drawbacks. First, each router should detect malicious
changes of the global clock values to police network traffic. Second,
the DGCs are only frequency locked, and not phase locked and the
link propagation delay on the link is not an integer number of time
frames. Therefore, partitioning of the incoming stream of packets
into frames should be done carefully to achieve deterministic QoS
guarantees. Third, the destination requires a large reorder buffer
because traffic is decomposed into the two networks and merged
at the destination.

MediaWorm Router [32] (priority-based, component-wise). The
MediaWorm router aims to support multimedia traffic in a
multiprocessor cluster, including constant bitrate (CBR), variable
bitrate (VBR), as well as best-effort traffic. It uses Fair Queueing [7]
and Virtual Clock [33] for packet scheduling, which require to
maintain expensive per-flow state and queues.

Æthereal [11] (frame-based, component-wise). It uses pipelined
time-division-multiplexed (TDM) circuit switching to implement
guaranteed performance services. Each QoS flow is required to
explicitly set up a channel on the routing path before transmitting
the first payload packet, and a flow cannot use more than its
guaranteed bandwidth share even if the network is underutilized.
To mitigate this problem, Æthereal adds a best-effort network
using separate queues, but this introduces ordering issues between
the QoS and best-effort flows.

SonicsMX [31] (frame-based, component-wise). It supports
guaranteed bandwidth QoS without explicit channel setup.
However, each node has to maintain per-thread queues, which
make it only suitable for a small number of threads (or having
multiple sources share a single queue).

Nostrum NoC [22] (frame-based, component-wise). It employs
a variant of TDM using virtual circuits for allocating bandwidth.
The virtual circuits are set up semi-statically across routes fixed at
design time, and only the bandwidth is variable at runtime, which
is only suitable for application-specific SoCs.

MANGO clockless NoC [2] (frame-based, component-wise). It
partitions virtual channels (VCs) into two classes: Guaranteed
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Fig. E.14. Minimum accepted throughput with various buffer organizations and frame window sizes. VC buffer configuration is given by V × B. Frame window size (W ) is

assumed to be V or 2V .

Service (GS) and Best-Effort (BE). A flow reserves a sequence of
GS VCs along its path for its lifetime. Therefore, the number of
concurrent GS flows sharing a physical channel is limited by the
number of GS VCs (e.g., 8 in [2]).

Clockless NoC by Felicijan and Furber [8] (priority-based,
component-wise). It provides differentiated services by prioritiz-
ing VCs. Though this approach delivers improved latency for cer-
tain flows, no hard guarantees are provided.

QNoC [3] (N/A, end-to-end). Its goal is to provide ‘‘fair’’ services
in accessing a hotspot resource, and it takes a source regulation
approach. The QNoC approach requires each source to fetch credit
tokens from the destination (hotspot) node before sending out
payload packets. It requires onlyminimalmodifications to network
routers because most of the intelligence is at end nodes.

However, there are several issues with their approach. First,
it does not provide guaranteed QoS. In their approach, the credit
recharge is basically asynchronous across all the sources and it is
not clearwhat type of QoS is guaranteed. Second, it requires amore
sophisticated secondary network (either logical or physical) for
credit token request/reply not to slow down the source injection
process. Finally, it is more suitable for application-specific SoCs
than general-purpose platforms. To set up (and tear down) a
QoS flow, the source needs to explicitly request it to the hotspot
destination before sending out the first payload packet. It is
acceptable in application-specific SoCs where communication
patterns are known a priori and do not change over time, but not in
general-purpose platforms because it penalizes short-lived bursty
flows.

Probabilistic Distance-Based Arbitration (PDBA) [19] (priority-
based, component-wise). Recently, PDBA has been proposed to
provide equality-of-service (EoS) while reducing the complexity
of managing packet age by approximating age-based arbitration.
PDBA does not require many VCs to achieve high throughput and
simplifies hardware. However, PDBA does not provide guaranteed
QoS; it only provides fairness among flows in the network.

Appendix E. Impact of buffer organization on QoS

Fig. E.14 shows minimum accepted throughput from the least
served flow with various buffer organizations and frame window
sizes. This figure is in parallel with Fig. 12 but measures minimum
accepted throughput, instead of average accepted throughput, to
demonstrate performance isolation provided by GSF. In the best-
effort network (labeled ‘‘Baseline VC/iSlip’’), starvation is observed
for hotspot traffic where accepted throughput is close to zero.
However, in the GSF network, the difference between minimum
and average throughput is <0.4% for the same traffic pattern. The
difference between the best-effort and GSF networks for uniform
random traffic is not as much pronounced because the traffic
pattern is well-balanced across the network, hence resulting in
balanced network utilization even without QoS support.
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