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Abstract
GPUs have become part of most commodity systems. Nonethe-
less, they are often underutilized when not executing graphics-
intensive or special-purpose numerical computations, which are
rare in consumer workloads. Emerging architectures, such as inte-
grated CPU/GPU combinations, may create an opportunity to uti-
lize these otherwise unused cycles for offloading traditional sys-
tems tasks. Garbage collection appears to be a particularly promis-
ing candidate for offloading, due to the popularity of managed lan-
guages on consumer devices.

We investigate the challenges for offloading garbage collection
to a GPU, by examining the performance trade-offs for the mark
phase of a mark & sweep garbage collector. We present a theo-
retical analysis and an algorithm that demonstrates the feasibility
of this approach. We also discuss a number of algorithmic design
trade-offs required to leverage the strengths and capabilities of the
GPU hardware. Our algorithm has been integrated into the Jikes
RVM and we present promising performance results.

Categories and Subject Descriptors D.3.4 [Processors]: Mem-
ory management (garbage collection); I.3.1 [Hardware Architec-
ture]: Parallel processing

General Terms Design, Experimentation, Languages, Perfor-
mance, Algorithms

Keywords parallel garbage collection, mark and sweep, SIMT,
GPU, APU

1. Introduction
Graphics Processing Units (GPUs) have been part of commodity
systems for more than a decade. While frameworks such as CUDA
and OpenCL have enabled GPUs to run general-purpose work-
loads, their additional compute power is rarely utilized other than
by graphics-intensive applications (e.g. games), special-purpose
computations (e.g. image processing) or scientific simulations (e.g.
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fluid dynamics). In the absence of such workloads, the GPU is un-
derutilized on most systems.

Today, we are seeing the first chips that integrate CPUs and
GPUs into a single device. These changes open up a whole new set
of application scenarios since they eliminate the copying overhead
that is traditionally associated with moving data between the CPU
and a dedicated GPU. We expect future hardware to move even
further in this direction by providing a shared address space and
possibly cache-coherence between CPU and GPU.

This development entails an opportunity to move traditional
systems workloads to the GPU. Garbage collection appears to be
a particularly good candidate for this, since garbage-collected lan-
guages such as C# and Java account for a significant portion of code
running on consumer devices. Offloading their GC workloads to the
GPU allows us to harvest the GPU’s unused compute power, leav-
ing the CPU free to perform other tasks such as JIT compilation,
garbage collection for other memory spaces, or running mutator
threads (if the GPU is used by a concurrent garbage collector).

Garbage collection is a workload that is arguably well-suited
for running on the GPU, especially once the copy overhead be-
tween CPU and GPU disappears. Graph traversals (a key com-
ponent of many garbage collectors) have already been efficiently
demonstrated on GPUs [12].

Recent work by Veldema and Philippsen [21] has shown that
garbage collection for GPU programs can be efficiently performed
on the GPU itself. We take the next step and ask whether it is feasi-
ble to offload garbage collection workloads from conventional pro-
grams running on the CPU, and what it takes to achieve this goal.
In this, we explore a different direction in choice of algorithm, as
well as design trade-offs that are specific to our scenario. Garbage
collection on the GPU is a challenging problem due to the GPU’s
SIMD-style programming model, and the need to design algorithms
that make explicit use of available parallelism and memory band-
width, while avoiding serialization of execution. The contributions
of our work are as follows:

• We present an analysis of the heap graphs of several Java bench-
marks, to evaluate the theoretic feasibility of using the GPU for
garbage collection (Section 3).

• We prototype a GPU-based garbage collector integrated into
the Jikes Research Virtual Machine [1] (Section 4), a Java VM
maintained by the research community.

• We show a new algorithm, and variations thereof, for perform-
ing the mark phase of a mark & sweep garbage collector on
the GPU. Our algorithm differs from previous work by using
a frontier queue approach instead of a data-parallel algorithm.
We also discuss trade-offs and optimizations to make it efficient
on a GPU.

The objective of this work is not to present a single tuned imple-
mentation. The implementation presented in Section 4 is mainly for
the purpose of illustrating a particular point in the design space. Our
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Figure 1. Scheduling of work-items for a fictional compute unit
with 4 stream processors and a wavefront size of 16.

main goal is to assess whether using the GPU to offload garbage
collection is feasible and to identify obstacles that need to be over-
come. The GPU space is evolving rapidly and a compelling ap-
plication workload such as garbage collection might influence the
direction of that evolution.

After giving a brief introduction to the GPU hardware and pro-
gramming model, the first part of our work (Section 3) consists
of analyzing a selection of program heap graphs from the DaCapo
benchmark suite [6] to determine whether heaps of real-world ap-
plications exhibit sufficient regular parallelism to take advantage of
the GPU. We then present the implementation of our GPU-based
collector (Section 4). This is followed by a discussion of design
choices for our mark algorithm (Section 5), and experimental re-
sults (Section 6). We close with a discussion of the implications of
our work, on current and future hardware (Section 7).

2. GPU Programming Model
This section provides a general introduction to the hardware and
programming model of a GPU. Note that throughout this paper, we
use the terminology from OpenCL; the terminology used by CUDA
(the other major framework) is synonymous.1

GPUs provide a SIMT (Single Instruction Multiple Thread) pro-
gramming model. SIMT is an extension of SIMD (Single Instruc-
tion Multiple Data) with support for hardware execution masking to
handle divergent control paths within an instruction block. Compu-
tation is described in terms of a program kernel which is executed
by a number of work-items (a.k.a. threads).

The basic building block of a GPU is a streaming multiproces-
sor (SM), or compute unit, which contains a single instruction de-
coder and a number – typically between 8 and 64 – of stream pro-
cessors (SP). The stream processors execute the same instruction
in lockstep, but with different register contexts (each of them stores
the registers and a small amount of memory for each of its work-
items). Within the compute unit, stream processors share access to
a Local Data Store, a small fast block of dedicated memory.

Work-items are grouped into wavefronts (Figure 1); each wave-
front typically contains four times the number of stream processors.
The work-items of the wavefront are interwoven such that each
stream processor executes the same instruction four times – once
for each quarter of the wavefront. To handle divergence of control
flow within a wavefront (e.g. one work-item takes a branch while
another work-item does not), the hardware will perform masked ex-
ecution. Both sides of the branch will be executed, but only some
of the work-items will be enabled. For good performance, it is crit-
ically important to minimize the amount of divergence.

Wavefronts are in turn grouped into workgroups; 256 to 1,024
work-items per workgroup are common. When a given wavefront
stalls because of memory access, another ready wavefront begins
executing. Context switches between wavefronts are extremely fast

1 For further reading, the AMD OpenCL Programming Guide [3] and the
OpenCL v1.2 Specification [15] provide all the detail one might require.

(usually a single cycle) since each work-item in the entire work-
group retains its dedicated registers at all times. To maximize mem-
ory bandwidth, a kernel should maximize the number of wavefronts
that are able to perform independent memory accesses.

GPUs have a number of compute units which share access to
a memory region known as global memory. On today’s devices,
the number of compute units varies from 2-4 on a low-end de-
vice to as many as 12-40 in high-end devices. For discrete GPUs
(such as graphics cards), global memory is dedicated hardware on
the device; for integrated GPUs (where CPU and GPU share the
same package), it will often be a reserved area of the main system
memory. The discrete approach has the advantage of much faster
access times, but requires slow (on the order of 8GB/s) explicit
copies between CPU and GPU, using DMA over the PCIe bus. In
current-generation parts, neither approach participates in the cache-
coherency protocol of the CPU; this means that communication be-
tween CPU and GPU must be done explicitly through the OpenCL
interface.

3. Preliminary Analysis
Garbage collection in general – and the mark phase of a mark &
sweep garbage collector specifically – is a memory-bound prob-
lem. As such, the main challenge of any implementation is to pro-
cess and issue memory requests at a sufficiently high rate to fully
utilize the available memory bandwidth. As we will discuss more
in Section 5, being able to process a large number (i.e. hundreds)
of objects in parallel is essential for meeting this goal on a GPU.

The core of our mark algorithm is a highly parallel queue-
based breadth-first search. Objects to be processed are added to
a frontier queue. For each item in the queue, we take it off, mark
the object, and then add each outbound reference to the queue. This
processes objects in order of increasing distance from the root set
(i.e. increasing depth). At each depth, there is a fixed width (or
beam) of nodes available for processing. If this available width
is greater than the number of work-items, we can keep the entire
device busy and make efficient progress through the traversal.

Any practical collector can do no better than an ideal collector
which examines every object at a given depth in a single iteration.
To understand this theoretical best case garbage collector on real
programs, we examined the heap structure of benchmarks from the
DaCapo 9.12 [6] benchmark suite. We examine two attributes of
heap graphs: their general shape (i.e. depth, width per iteration,
etc.) and the distribution of outbound references across objects.
The latter has a significant performance impact on GPUs due to
the divergence problem described previously (Section 2).

The data collection for this section was performed using an
instrumented Jikes garbage collection plan. (We also repeated the
analysis using a plugin for the Oracle HotSpot VM, but do not
report the results since they were similar). All collection was done
using the optimizing compiler; optimization affects the frequency
of collection and thus the heap graphs’ shapes. We ran the small
and default configurations of a subset of the benchmarks.2

For further details about the structure of common Java heaps, we
recommend Barabash and Petrank’s paper [5]. They analyze heap
depth and approximate shape for a previous release of the DaCapo
benchmarks, as well as several Java SPEC benchmarks.

3.1 Structural Limits on Parallelism
We first examined the general shape of the heap graphs as traversed
by the ideal collector. We were interested in determining whether

2 We are only reporting a subset of the benchmark suite since several
benchmarks did not work on a vanilla Jikes RVM running on our evaluation
system. This is a known problem and unrelated to our garbage collector.
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Figure 2. Number of objects at each depth during an idealized
breadth-first traversal starting from the root set. The figures were
chosen to exemplify classification by degree of parallelism.

there were structural limits that would prevent the degree of parallel
processing that the GPU requires for efficiency.

A selection of the graphs generated from the DaCapo bench-
marks is shown in Figure 2; these graphs were picked to be rep-
resentative of the three categories of graph shape we identified.
The figures show the number of objects reachable – marked or un-
marked – from a given step of the ideal breadth-first traversal start-
ing at the root set. For presentation purposes, we picked the deepest
traversal found within a couple of runs of each benchmark, as these
are likely to be the least advantageous for the GPU.

All of the benchmarks begin with a short section of extreme
parallelism. The first step is limited to the size of the root set
(typically 600-1,000 objects), but the next few steps expand rapidly.
Once this startup section is completed, our benchmarks fell into
three categories. Some of the benchmarks – such as luindex – then
complete within a small number of additional steps. A few – such
as avrora – had moderate length sections of structurally limited
parallelism. Unfortunately, there were also a few benchmarks –
such as lusearch – which had long narrow sections (“tails”)
following the parallel beginning. A width of 30 to 80 represents
at most 1/3 of the available parallelism on the GPU. As the number
of available work-items per workgroup increases with time, this
fraction may drop precipitously.

Since no hardware can execute an infinite number of threads,
we repeated the analysis above with maximum step widths of 128,
256, 1,024, and 32,768. As expected, decreasing the number of
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Figure 3. Distribution of the number of references within objects
on the heap. The majority of objects have few outbound references,
but some rare objects have hundreds or thousands.

items processed in each iteration increased the effective depth of
the graph, but did not change the overall shape or categorization of
any of the benchmarks.

Despite the limited parallelism towards the end of some collec-
tions, we conclude that heap graphs are sufficiently parallel for the
purposes of garbage collection on a GPU. However, if one wants to
minimize collection latency, having a mechanism to deal efficiently
with long narrow tails in the heap graph is critical; we discuss our
solution in Section 5.4. An alternative approach would be to insert
artificial shortcut edges into the heap graph. Barabash and Petrank
describe this strategy in detail [5].

3.2 Distribution of Outbound References
Prompted by Veldema and Philippsen’s [21] findings, the second
issue we examined was the distribution of the number of outbound
references within each object. When processing one object per
thread in a SIMT environment where each thread loops over the
outbound references within its object, this distribution is critical to
understanding and controlling divergence.

Our findings show that while the vast majority of objects have
a small out-degree – 26% of objects have no outbound references
(other than their class pointer), 76% have four or fewer, and 98%
have 12 or fewer – the distribution has a very long and noisy tail. A
small fraction of objects (less than 0.01%) have hundreds to thou-
sands of outbound references. It is worth noting that our analysis
does not distinguish between objects and arrays of references; we
have manually confirmed that some of the high double-digit out-
degree nodes are, in fact, objects.

The distribution of the number of references within objects can
be seen in Figure 3. Given that the results across benchmarks are
fairly uniform, we chose to present the distribution across all the
collections of all the benchmarks for which we collected results.

Even leaving aside the extreme tail of the distribution, the dis-
tribution of references between objects means that blindly looping
over the number of references will result in unacceptable diver-
gence of threads. We discuss one solution for distributing refer-
ences between work-items in Section 5.2.

4. Offloading Garbage Collection
In this section, we present challenges for offloading garbage col-
lection to the GPU and discuss as well as measure different per-
formance trade-offs. To substantiate our claims, we implemented
a proof-of-concept GPU-based garbage collector for the Jikes Re-
search Virtual Machine [1] (a Java Virtual Machine maintained by
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the research community). This allows us to investigate performance
trade-offs for full executions of real Java programs, by performing
a series of macro and micro benchmarks.

4.1 High-level Overview
We modified Jikes’ MarkSweep garbage collector to offload its
mark phase to the GPU. The steps performed by the collector are
shown in Figure 4. Our mark phase is performed on a reference
graph data structure, a self-contained version of the heap that only
contains references but no other fields (an implementation detail
which we discuss in the next sections). This structure is kept up-
to-date during program execution or filled in on each collection.
We then invoke our collector in a native call which sets up our
mark kernel and runs it on the GPU. The CPU is idle until the
mark completes (a production-grade implementation would per-
form other tasks during this time). Upon completion, execution re-
turns to Jikes and the markings are transferred back into the heap.
The sweep phase is then performed by Jikes. Note that the inter-
mediary copying steps are merely an implementation detail of our
prototype, and not inherent in our approach.

While a real-world collector will have to offload the sweep
phase as well, we think that Veldema et al. have sufficiently covered
this aspect in their work, so we focus on the mark phase for brevity.
A complete collector would perform the sweep phase on the GPU
(immediately after the mark algorithm) and only copy the resulting
free lists back to the Jikes RVM.

4.2 Object Layout
The difficulty of integrating our collector into Jikes was exacer-
bated by the VM’s object layout. To identify the reference fields
within each object, it is necessary to look up their offsets in an ar-
ray that is stored with the type information of the current class. This
adds up to three levels of indirection (type information block, type
info, offset array), and incurs a significant performance penalty on
the GPU, due to the lack of caching. We therefore require a different
object layout, which lays out the references of an object consecu-
tively and contains the object’s number of references in the object
header. The layout introduced by the Sable VM [8] achieves this re-
quirement with minimal overhead [9] by laying out reference fields
to the right of the object header, and non-reference fields to the left.

4.3 Reference Graph
While high-end GPUs may provide up to 3 GB of global mem-
ory, today’s consumer GPUs often only have 256-512 MB. Even
though our test platform (see Section 6.1) can access the system’s
main memory, it can only map 128 MB at a time.3 This became
problematic, as this size was too small to hold the heaps of several
DaCapo benchmarks (when including Jikes’ memory spaces).

For the purposes of evaluation, we solved this problem by build-
ing a condensed version of the heap which we call a reference
graph. The reference graph is stored in a separate space and con-
tains an entry for each object on the main heap, consisting of a

3 This value was determined experimentally.
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Figure 5. The reference graph structure.

pointer to the original object, the number of references, and a con-
secutive list of all outbound references as pointers into the reference
graph (Figure 5). Arrays are represented in the same way. This em-
ulates the object layout presented in Section 4.2, but reduces the
size of the heap such that it fits on the GPU. Due to the lack of
caching on the GPU, this approach does not give a performance ad-
vantage, while it allows us to evaluate our collector on real-world
heaps that otherwise would have been too large to fit on the GPU.

We found that the reference graph approach gave us a sufficient
reduction in size to evaluate the DaCapo benchmarks on our col-
lector. The following table shows the cumulative sum of heap sizes
across all collections within a run, as well as the equivalent num-
bers for the reference graph.4 This allows us to estimate that the
reference graph approach reduces the size of our graph by about
75% on average:

# GCs Cum. Heap Cum. Graph Ratio
avrora 9 256 MB 80 MB 31.2%
jython 114 10499 MB 3301 MB 31.4%
luindex 7 178 MB 35 MB 19.8%
lusearch 77 7078 MB 515 MB 7.3%
pmd 14 809 MB 233 MB 28.9%
sunflow 39 2935 MB 658 MB 22.4%
xalan 23 1686 MB 456 MB 27.1%

We experimented with two different approaches to building and
maintaining the reference graph. Both of them allocate a node in
the reference graph whenever a new object is allocated.

• The most basic approach fills in the reference graph immedi-
ately before performing a collection. It performs a linear scan
through the distilled objects in the reference graph, follows the
references of each corresponding original object, and copies the
pointers for the corresponding distilled objects to the reference
graph (Figure 5).

• The reference graph can also be built while running the mutator
threads: this turns every reference write into a double-write
to two locations, which can be implemented as either a write
barrier or issuing a second write instruction in the compiler. We
prototyped the simpler write barrier approach.

While these approaches obviously differ in performance, we refrain
from performing a deeper analysis, as this problem is somewhat or-
thogonal to our approach and current hardware trends are indicating
that the memory available to the GPU will soon be large enough to
store the entire heap.

4.4 Launch Overhead
Equipped with the reference graph, our collector calls into a C
function which initializes OpenCL, copies (or maps) the reference
graph to the GPU and launches the mark kernel. Launching a ker-
nel execution incurs both a fixed startup cost, and a variable cost

4 We used a heap size of 100 MB for all of these runs.
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related to the kernel itself and the size of memory being mapped
to the GPU. We incur these costs once per garbage collection. To
analyze their impact, we measured the launch latencies of two mi-
crobenchmarks: an empty kernel, and our mark algorithm (Section
5) when run on a single object. Each experiment was repeated 20
times and we present the average latencies.

• The results from the first microbenchmark show that the first in-
vocation of a kernel incurs an overhead (around 1 ms) which is
not repeated for successive runs. We believe this to be the time
to copy the kernel itself. For the remaining runs, the overhead
hovers between 0.33 ms and 0.62 ms. The execution time of the
empty kernel was always below 0.01 ms (i.e. negligible).

• The results from the second benchmark show that overhead
scales roughly linearly with mapped memory for sizes above 2
MB (Figure 6). Below that threshold, the overhead is dominated
by the fixed cost. We want to note that there is substantial
variation in results, particularly for larger sizes. The range of
times for 128 MB was from 181 ms to 292 ms.

While our test platform supports zero-copy mapping between CPU
and GPU, the device drivers available for Linux do not currently
support this feature. The Windows drivers do, but we chose to
run our experiments on Linux for consistency with the rest of our
results. We therefore incur a copy-overhead, which can be seen
in the linear scaling for large memory sizes; this resembles the
behavior on traditional (discrete) GPU architectures. We argue that
the majority of this overhead will go away once zero-copy mapping
is supported (except for some cache write-back costs).

The remaining launch time can be largely discounted for pur-
poses of assessing validity, as long as the number of kernel launches
is small. Launch times have been trending downward at a steep rate
and we expect them to decrease further, since this is clearly a gen-
eral problem for many GPU workloads. For this reason, we exclude
launch overheads from the execution times of our kernels.

4.5 Copy-back Overhead
After performing the mark phase on the GPU, our collector incurs
an additional overhead from copying the marked reference graph
back into main memory and transcribing the mark bits into the
original heap structure. This is necessary for the integration with
Jikes, but would not occur in a real-world collector that integrates
both mark and sweep phase: after finishing the sweep phase on
the GPU, the collector would simply move the resulting free-list to
the CPU, ideally in a low-overhead, zero-copy operation. For this
reason, we ignore this overhead for the purpose of our evaluation.
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Figure 7. Structure of the baseline algorithm.

5. Algorithm and Optimizations
The core part of our collector consists of an algorithm that performs
a parallel mark phase on the GPU, using n work-items (on our
platform, n = 256). Our approach is based on maintaining a
frontier queue that contains pointers to objects to be processed;
we do not differentiate between arrays and objects. The kernel
processes these elements in a loop: at each iteration, it removes
up to n pointers from the queue, marks them, and adds the address
of any referenced objects to the end.

Veldema and Philippsen [21] identified synchronization as a
core problem of such an approach: in an implementation where
each work-item accesses the queue in an atomic operation, exe-
cution would be serialized and therefore very inefficient. Based on
this observation, they discard the queue-based approach and instead
show a data-parallel implementation that flips to the CPU after ev-
ery iteration, to spawn a new set of work-items.

We avoid the problem of serialization by calculating in on-chip
memory the total number of elements to remove and add to the
queue, as well as their offsets. This avoids the need for per work-
item atomic operations on the critical regions of the queue. At the
same time, it avoids flipping between CPU and GPU, since we
found the associated launch overhead to be too significant for this
approach (Section 4.4).

Our algorithm is implemented as an OpenCL kernel which
executes the code in Algorithm 1 (discussed below) in a loop until
the frontier queue is empty. For the purposes of this explanation,
assume that in queue and out queue are pointers to the parts of
the queue where we are extracting elements from and where we
store new elements, respectively. On each iteration, we remove
up to n pointers from in queue and examine the corresponding
objects in parallel. We then mark all objects that have not been
marked before and copy their references to the end of out queue.
This is done in three steps (Figure 7):

1. For all objects, read the number of references and whether the
object has been marked. Objects that have already been marked
are treated like an object with zero references.



2. Compute the offsets that the references of each object will have
in out queue, using either a prefix sum or histogram (discussed
in Section 5.1). For the ease of exposition, assume the prefix
sum approach for now, which lays out the references of an
object consecutively, one object after another.

3. Copy all references within the objects to their new location in
the frontier, using the previously calculated offsets to determine
where to store the first reference of each object.

Only between iterations do we update the queue’s start- and end-
offsets. This can be done by a single work-item per workgroup,
since all work-items know the number of elements that are removed
from the queue (l below) and the number of elements that are added
to the queue (which is given by the offset calculation – e.g. the
right-most entry of the prefix-sum).

The following paragraphs give a more detailed description of
the algorithm that is executed by each work-item. Note that id is
the offset of each individual work-item within the workgroup.

Algorithm 1 One step of the GPU mark phase.

function MARK PHASE (id, in queue, out queue)
1: x [work group size] ← (0, . . . , 0)
2: l ← min(length(in queue),work group size)
3: if id ≥ l then return
4:

5: header ← mark(in queue [id] ,mark bit)
6: if ¬marked(header) then
7: refcount ← ref count(header)
8: else
9: refcount ← 0

10: end if
11: x [id] ← refcount
12:

13: offset ← compute offsets(id, x, l)
14:

15: for i = 0 to refcount − 1 do
16: refptr ← in queue [id] + i+ HEADER SIZE
17: out queue [offset + i] ← ∗refptr
18: end for

Lines 1-3 set up the necessary data structures and drop out of
the function if there is no work to do for the work-item. Notably, x
is allocated in the local scratchpad memory and used to efficiently
calculate the offsets into the output queue.

Lines 5-11 implement the first part of the algorithm. It retrieves
the object’s header, in order to extract the marking and the reference
count. It then stores the reference count in x.

Line 13 calculates the offsets for writing into the output queue.
We implemented several options, which are discussed in Section
5.1. The presented algorithm uses a simple prefix-sum to determine
the offset for each object in the output queue, and stores the object’s
references in consecutive slots after this offset. The next section
discusses this aspect in detail.

Lines 15-18 describe the last part of the algorithm. The refer-
ences are copied one-by-one into their dedicated locations in the
output queue. The output calculation in the previous step ensures
that no two references are written into the same slot, avoiding the
requirement for synchronization or locking. In the given code, the
fixed constant HEADER SIZE represents the offset of the first ref-
erence from the beginning of the object header.

It is important to note that the mark operation does not need
to use an atomic operation. Setting the mark bit is an idempotent
operation and there is no correctness concern if a single object
is processed multiple times. The slight performance loss due to
redundant work – if an unmarked object gets added to the frontier

multiple times and processed within the same iteration – is vastly
outweighed by the cost of atomic operations.5.

The described version of the algorithm performs no coordina-
tion between workgroups and can thus only exploit one compute
unit per device. In Section 7.4 we expand on it and discuss load bal-
ancing and synchronization concerns in detail. We present a naı̈ve
proof-of-concept solution in Section 5.5.

5.1 Offset Calculation
Our first strategy for calculating the offsets for the output queue
used Blelloch’s prefix-sum algorithm from [11]. With this ap-
proach, all references of an object are stored in consecutive slots
in the queue, and the offset of an object’s first reference is the total
number of references from work-items with a lower id than the one
processing that object (Figure 8). When performed in local mem-
ory, the complexity of this approach is O(log n) parallel addition
and local memory operations.

However, we discovered that this approach often takes up 40-
50% of the kernel’s total execution time, arguably due to the large
number of accesses to local memory. We therefore implemented a
different approach, based on a histogram. In this layout, the first
references from all work-items with at least one reference appear
first, followed by the second references, third references, etc.

Offsets for this layout are calculated by generating a histogram
that counts the number of work-items that have at least one refer-
ence, at least two references, etc. The histogram is generated us-
ing atomic operations in local memory, by atomically counting the
number of work-items with an object having i = 1, 2, . . . refer-
ences or more. The sum of the first i − 1 entries of the histogram
gives the global offset of the part of the output array where the i’th
references begin (Figure 8). The atomic counting operation also
gives each work-item a unique local offset into the i’th part, where
it will write its reference. The following code replaces the last part
of Algorithm 1, starting from line 13.

Algorithm 2 Histogram approach for the offset calculation.

1: hist ← (0, . . . , 0)
2: global offset ← 0
3: atomic max(&max refcount, refcount)
4: for i = 0 to max refcount − 1 do
5: if i < refcount then
6: local offset ← atomic increment(&hist [i] , 1)
7: refptr ← in queue [id] + i+ HEADER SIZE
8: out queue [global offset + local offset] ← ∗refptr
9: end if

10: (memory barrier)
11: global offset+=hist [i]
12: end for

This uses O(max refcount) parallel atomic operations, where
max refcount is the maximum number of references among the
objects currently processed by any of the work-items. Since the
atomics are executed in local memory, they do not slow down
global memory access and are comparatively fast. An additional
advantage of this approach is that we are writing to consecutive
items in the queue, which is efficient on our hardware.

5 At least on AMD hardware, atomic operations are up to 5x slower than
normal accesses, because they use the complete path vs the fast path for
memory access [3] In the compiler available with the current version of the
SDK (AMD APP SDK v2.6), using any atomic operation on global memory
causes all global memory accesses to use the complete path. In practice, this
has led us to avoid atomic operations wherever possible.
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Figure 8. Different approaches for calculating offsets. m.n de-
scribes the n’th reference of the m’th object (i.e. work-item).

5.2 Reducing Divergence
As discussed in Section 3, the majority of objects have a small out-
degree (i.e. few references), while a few objects have a large num-
bers of references. In the algorithm above, each work-item loops
over all references within the object it handles. This behavior is
problematic for SIMT execution: when one work-item encounters
a high-degree node, the remainder of the workgroup will stall until
that work-item has completed its task. This results in low utilization
of available parallelism and wastes available memory bandwidth.

To avoid this case, we extended our algorithm to let each work-
item process at most a fixed number of references for each object
(currently 16). This minimizes the worst case divergence in the
loop. Objects that are longer than this are then stored on a non-
blocking stack and (in the same iteration of the algorithm) pro-
cessed in parallel. This is done by letting all work-items process one
reference each in parallel, a very efficient way to perform a large
copy operation. Like Veldema and Philippsen, we consider this an
essential optimization. Our approach bears resemblance to theirs,
but processes large arrays (and objects) immediately and does not
require a new kernel launch.

5.3 Vectorized Memory Accesses
We explored the possibility of using vector reads to decrease the
number of individual memory requests. OpenCL supports 4-wide
vector types, which allow reading 128 bits at a time. We rewrote our
algorithm to use vector loads to access the header and the first three
references at the same time (and then read references in groups of
four). This made it necessary to lay out the objects in such a way
that headers are aligned to 128 bit boundaries, which we achieved
by introducing additional padding to our reference graph.

Vector reads can lead to extra work, as the algorithm may read
more references than necessary. Overall, however, we expected a
speed-up due to the reduced number of memory requests.

5.4 Cut-off for Long, Narrow Heaps
As we show in our heap analysis (Section 3), some workloads
exhibit very long narrow tails (stemming from e.g. linked lists).
From a performance perspective, it is beneficial to detect such cases
and return execution to the CPU. We believe that without the ability
to saturate the memory pipe with many requests, the GPU loses out
to the CPU due to the CPU’s much lower average memory latency
as a result of caching. The CPU benefits from any spatial locality of
the memory graph that may exist, whereas the GPU does not. The
CPU also benefits from the fact that the (very small) active section
of the queue ends up in L1 cache.

We therefore implemented a mechanism that returns execution
to the CPU once the size of the queue drops below a certain thresh-
old. As a safeguard, we require a minimum number of iterations on
the GPU to complete before returning.

Veldama and Philippsen identified a similar optimization, but
in a different context: their discussion focuses on avoiding context

switches to and from the GPU. To handle linked lists, their algo-
rithm runs multiple iterations on the GPU without switching to the
CPU. This optimization does not apply to our approach.

5.5 Multiple Compute Units
In order to achieve high throughput, it is desirable to leverage all of
the GPU’s compute units. For the purposes of our evaluation, we
chose a naı̈ve proof-of-concept approach to run the algorithm on
the two compute units that our platform provides: we first divide
the root set into two halves and hand one of them to each compute
unit. Each compute unit then runs the algorithm independently,
without any load balancing or synchronization. This approach has
two drawbacks:

• If the initial partitioning results in an uneven distribution of
work, one compute unit may be idle for most of the execution.

• We may perform redundant work in cases where the two com-
pute units race to mark an object.

While this results in a negative performance impact, our approach
is nonetheless correct: marking a node is an idempotent operation
and can be performed multiple times without harm. Better results
can be achieved by using dynamic load balancing between compute
units – we discuss this aspect in Section 7.4.

6. Evaluation
In this section, we present the results of experiments we ran to
evaluate the performance of our mark algorithm. We first describe
our evaluation platform and then use microbenchmarks to highlight
strengths and weaknesses of our algorithm and collector implemen-
tation. We then examine the performance of our implementation on
real-world application benchmarks from the DaCapo 9.12 bench-
mark suite. We conclude with a brief discussion of additional over-
heads that were excluded from the previous subsections.

6.1 Test Platform
Our test platform was an AMD E-350 APU6 which is one of the
first chips that integrate a CPU and GPU into a single device (Intel’s
Sandy Bridge architecture has a similar integrated GPU, but it is not
programmable). The E-350 targets low-end laptops and tablets.

The system was configured with 3.5 GB of DDR3 1066 RAM.
The APU’s “Bobcat” CPU is a dual core running at 1.6 GHz
with a 512 KB L2 cache [2]. Its “Brazos” GPU is running at
492 MHz with 2 compute units, 16 stream processors, an 8 KB
L1 cache per compute unit, and a 64 KB L2 cache per GPU [3].
Measurements show that the caches are disabled for accesses to
local and shared memory. The CPU and GPU share memory and
a single memory controller on which they compete for bandwidth;
we experimentally determined that the GPU can only map 128 MB
in any given kernel invocation. All experiments were conducted on
Fedora Linux (kernel version 2.6.35.14-103).

6.2 Microbenchmark Results
To explain the performance of the baseline algorithm and explore
potential optimizations, we used a set of simple microbenchmarks.
These benchmarks were handwritten and do not run through the
Jikes environment. This approach was chosen to get pure forms of
the heap graphs; even a small Java program creates enough internal
objects to obscure the microbenchmark results.

Table 1 presents the execution times of the microbenchmarks
for a set of different configurations of the garbage collector.

6 Accelerated Processing Unit (APU) is a term coined by AMD to describe
their integrated CPU/GPU solution marketed as AMD Fusion.



Size CPU GPU GPU+P GPU+V GPU+F GPU+D GPU+VD GPU+2CU
Single Item 28 bytes 0.001 0.027 0.027 0.028 0.028 0.027 0.028 0.028
Long Linked List 156 KB 0.151 94.604 74.400 83.451 0.360 96.279 85.412 84.173
256 Parallel Linked Lists 39 MB 129.723 140.465 192.823 118.982 140.783 142.556 120.984 102.092
2560 Parallel Linked Lists 117 MB 1074.920 415.553 572.153 350.523 416.389 421.589 356.986 194.317
Very Wide Object 3.92 KB 0.018 1.862 1.077 1.696 1.861 0.218 0.221 0.220
VP Linked List 4 MB 0.150 77.462 60.950 68.123 0.317 78.757 69.802 68.843
VP Array of Objects 20 MB 1.347 5.361 6.308 3.516 5.378 5.843 3.095 1.693

Table 1. Average mark times for microbenchmarks. All times are in ms and do not include overheads. CPU is a baseline CPU implementa-
tion. GPU is our baseline algorithm using the histogram approach. GPU+P is the variant using prefix-sum. GPU+V is the vectorization of that
algorithm. GPU+F falls back to the CPU if a narrow tail is encountered. GPU+D has special support for large objects to prevent divergence.
GPU+VD combines vector and divergence. GPU+2CU enables both compute units for the GPU+VD configuration.

Methodology We ran our microbenchmarks on the following
configurations: CPU is our implementation of a serial single
CPU mark phase. GPU is the baseline algorithm described previ-
ously. GPU+V is the vectorization of that algorithm (Section 5.3).
GPU+D is the variant with special support for large objects to pre-
vent divergence (Section 5.2). GPU+F is a variant which falls back
to the CPU once the queue length drops below a threshold and a
minimum number of iterations have run (Section 5.4); we use 20 as
the threshold and 5 as the minimum number of iterations. We report
the sum of the GPU and CPU runtime. GPU+P uses the prefix-sum
approach instead of the histogram (Section 5.1), for comparison.
GPU+2CU contains the first two optimizations but also uses both
compute units.

Each configuration was run for 20 iterations and the average
runtime is reported; variation between runs was extremely low.

Benchmark Descriptions For each benchmark, we also provide
the overall size of the reference graph that is associated with it:

• Single Item (28 bytes) - This benchmark consists of a single
item in the heap, with a corresponding pointer in the root set.
The purpose of this benchmark is to measure the overhead (ex-
cluding copy overhead) of the algorithm. As would be expected,
the startup cost for the GPU variants are similar. The CPU is an
order of magnitude faster since the data is already in cache.

• Long Linked List (156 KB) - This benchmark consists of a
single long linked list with 10,000 elements. This case is the
worst for the GPU since it cannot exploit any parallelism in the
graph. All of the GPU implementations perform badly, but the
one with the option to fall back to the CPU fares best. It runs
the minimum number of iterations on the GPU, then returns to
the CPU for the majority of the execution. Unfortunately, the
few iterations it does run on the GPU prove quite expensive.

• 256 Parallel Linked Lists (39 MB) - This benchmark consists
of 256 parallel linked lists with 10,000 elements each. The root
set contains a pointer to each linked list. The effect of this is
that each work-item within the workgroup can operate inde-
pendently, which allows the GPU implementations to perform
relatively well, some even beating the CPU by a small amount.

• 2560 Parallel Linked Lists (117 MB) - This benchmark ex-
tends the previous by adding more linked lists. Due to our hard-
ware’s limited amount of mappable memory, we shortened each
list to 3,000 elements each. This case can arguably be seen as
the best for the GPU since there is abundant parallelism and lit-
tle locality between objects in the queue. This microbenchmark
is the only one where the GPU solidly outperforms the CPU.

• Very Wide Object (3.92 KB) - This benchmark consists of a
single array containing 1,000 individual objects. This is an ex-
treme case designed to illustrate the effects when SIMT diver-
gence is not addressed.

Discussion These benchmarks allow us to evaluate the impact of
the optimizations discussed in the previous section.

• Histogram (Section 5.1) - Comparing the GPU and GPU+P re-
sults shows the difference in performance characteristics of the
histogram and prefix styles of offset calculations. The prefix
sum implementation performs well for cases in which a small
subset of the work-items perform useful work, while the his-
togram fares better when many work-items are active. On real-
world benchmarks (not presented), the histogram is clearly bet-
ter, but it may be worth exploring a combination of both ap-
proaches (e.g. by switching dynamically between them).

• Divergence Handling (Section 5.2) - This causes a slight slow-
down for those benchmarks that do not contain objects with
large numbers of references. For benchmarks that do (such as
Very Wide Object above), the performance improvement is sub-
stantial (a 89% improvement). For real workloads, we believe
divergence handling to be a critical and necessary optimization.

• Vectorization of Loads (Section 5.3) - This optimization shows
an improvement on most of the microbenchmarks we report.
The improvements range from 12% to 40% for all benchmarks
except the Single Item case. This case is hinting at a more
general problem which is that vectorization can (and does) hurt
performance in some cases: if the vectorization causes memory
words to be read that are not used, and if memory bandwidth
is already running at the hardware limit, vectorization can slow
down the algorithm. However, from our experiences, this seems
to be a rare case.

• Falling back to the CPU for narrow tails (Section 5.4) - Our
implementation of fallback has a barely perceptible negative
impact on performance for most benchmarks. However, for
cases where the GPU would perform extremely poorly (such
as the Long Linked List microbenchmark), it recovers some,
but not all, of the performance lost. There is still a significant
amount of time spent on the GPU to handle narrow sections
before the cut-off is invoked; we believe this to be a necessary
evil to prevent temporary drops in parallelism from triggering
overly eager fall-back.

• Multiple Compute Units (Section 5.5) - Despite our naı̈ve ap-
proach, we still obtain perceptible improvements by using both
compute units. It is important to note that this improvement is
not guaranteed: using a second compute unit can hurt perfor-
mance if the first unit would otherwise get additional bandwidth
and the second unit is performing only redundant work.

Comparison with related work The last two benchmarks are
modeled closely after those presented by Veldema and Philippsen
for evaluating their GPU mark algorithm. Unfortunately, the results
are not directly comparable due to different experimental setups.
We would like to note that their results were collected on a sig-



Jikes MS Serial CPU Baseline GPU Optimized GPU Opt GPU + 2CU GPU Slowdown Opt Speedup
lusearch 1566.10 1084.18 11739.50 2404.18 1490.96 1.38 7.69
pmd 211.98 356.09 1651.66 634.24 357.49 1.69 4.55
sunflow 1422.54 401.36 3446.52 724.92 554.25 1.38 6.25
xalan 809.79 423.31 2836.33 1088.78 750.12 1.77 3.85

Table 2. Cumulative mark times for DaCapo benchmarks (default sizes). All times are in ms and do not include overheads. Optimized GPU
uses vectorization and divergence handling. Jikes MS is the unmodified MarkSweep collector. Serial CPU is a CPU implementation using
the reference graph. The last two columns show the slowdown over the best CPU implementation and the improvement from optimizations.

nificantly more powerful GPU. Nonetheless, our mark algorithm
appears to fare well in comparison.

• VP Linked List (4MB) - This benchmark consists of 16 linked
lists of 8,192 element each, of which all but one is immediately
garbage. Only one of the linked lists is traced by the mark phase.
As a result, this is structurally very similar to the Long Linked
List benchmark above.

• VP Arrays of Objects (20MB) - This benchmark consists of
1,024 arrays, each containing exactly 1,024 objects. Only the
first 64 arrays are retained. All others immediately become
garbage and are not traced.

It should be noted that we do not report launch overheads, while
Veldema and Philippsen report complete execution times. Further-
more, they perform 8 collector runs while we only measure one.

6.3 DaCapo Benchmarks
We measured the performance of our GPU-based collector for real-
world application benchmarks from the DaCapo 9.12 benchmark
suite. The results are shown in Table 2.

Methodology In these results, the Optimized GPU implemen-
tation includes the vectorization and divergence handling opti-
mizations (Opt GPU+2CU also uses both compute units). Both
the optimized and unoptimized results use the histogram method
for offset calculation. Neither version includes the long-tail cutoff
(to avoid the issue of confusing what is actually running on the
GPU). The Jikes MS column is an unmodified instance of Jikes’
MarkSweep collector. The second column is a trivial CPU imple-
mentation which operates on the reference graph. We present these
numbers to offset any minor locality advantage the reference graph
structure may give us. The final two columns present the slowdown
of the GPU over the best of the two CPU implementations and the
improvement resulting from optimization of the GPU algorithm.

The Jikes RVM was configured with a maximum heap size of
192 MB - the largest we could map on the GPU even with the
reference graph. We do not report collection times for avrora or
luindex since neither consistently triggers a collection at the heap
size we are using. All results were generated running the bench-
marks with their default configurations and using the “converge”
(-C) option provided by the suite. We report the cumulative time of
all garbage collections conducted during the final iteration.

Discussion As can be seen from the results in Table 2, our GPU
mark implementation is within a factor of two for all of the bench-
marks we report. As a reminder to the reader, we are conserva-
tively comparing against the better of Jikes’ MarkSweep and our
own CPU implementation working off the reference graph. When
comparing only against the MarkSweep collector, our implementa-
tion fares significantly better; the GPU outperforms Jikes on 3 of 4
benchmarks. We consider this to be a highly encouraging result.

We would like to note that these performance results are ex-
tremely sensitive to the heap size. As the heap size increased, the
relative performance of our GPU implementation to Jikes increased

sharply. We present the largest heap sizes supported by our evalua-
tion platform, but even those are small for real program heaps. We
suspect that relative performance would continue to improve as the
heap size increases.

6.4 Overheads of Our Implementation
In the preceeding discussion, we excluded the copy overhead and
kernel launch overhead for any of the GPU configurations; we
report kernel execution only7.

Our reference graph implementation adds some additional over-
head outside the mark phase. Allocating each object requires that
a corresponding reference graph node be allocated as well; this in-
troduced mutator overhead of approximately 40% in an allocation
stress test microbenchmark. This overhead is less pronounced in
the DaCapo results, but is still significant, varying between 7% and
25%. It should be mentioned that this overhead could presumably
be reduced by adding this functionality through the compiler, rather
than adding an extra function call.

Using the basic approach of filling in the entire reference graph
before every collection adds a major overhead to each collection,
taking several times as long as the mark phase on the CPU (ar-
guably due to a highly untuned implementation). The double-write
approach eliminates this at the cost of an additional 11% runtime
overhead in the microbenchmark (for a cumulative total of 57%).

Some collector overhead is also added in copying markings
from the reference graph back to the heap in preparation for running
an unmodified Jikes sweep phase.

Let us emphasize that all overheads discussed in this subsection
are artifacts of either the copying of data to the GPU (Section 4.4)
or our need to reduce the size of the space being collected (Section
4.3). Neither is intrinsic to the problem and both are likely to be
eliminated by hardware changes in the near future.

7. Discussion
While our numbers imply that our GPU-based garbage collector
is 40-80% slower than our CPU-based collector and therefore not
directly competitive in terms of performance, our experimental
results nonetheless answer the questions we set out to investigate.
We identified the key points for offloading garbage collection to the
GPU, some of which are surprising in hindsight. We were also able
to assess the suitability of today’s GPUs for garbage collection,
as well as making predictions on how future hardware will further
improve the situation.

7.1 Lessons from the Mark Algorithm
Somewhat counter-intuitively, the primary goal for garbage collec-
tion on the GPU is not to parallelize the computational steps of the
algorithm but to maximize the hardware’s ability to schedule mem-
ory requests. The key challenge is to ensure that each work-item
can effectively generate and handle memory requests. It is there-
fore crucially important to avoid serialization of execution (as en-

7 For Jikes, we only report the mark phase, scan in Jikes terminology.



sured by our queue approach), but also to reduce divergence be-
tween threads (Section 5.2). The numbers presented in Section 3
confirm that common heap graphs exhibit the rare but long objects
and arrays which cause this divergence.

In our algorithm, the number of outstanding requests is limited
by the maximum size of a workgroup (which depends on the hard-
ware). Notably, this is different from the number of streaming pro-
cessors in the GPU: while the number of streaming processors lim-
its the throughput in terms of instructions per cycle, the workgroup
size limits the number of work-items that can be in-flight at a given
time, and therefore the number of outstanding memory requests
that can be issued. We already see this size increasing in high-end
parts, implying that future generations will be increasingly good at
memory-bound problems such as garbage collection. The same is
true for the number of memory channels: While our APU features
only two channels, high-end parts often provide eight.

As with many GPU algorithms, it is only feasible to run the
mark algorithm on the GPU if the number of objects to mark
is sufficiently large. For small collections, the launch-overhead
dominates the entire collection time, in which case it is beneficial
to run the collection on the CPU in the first place. Predicting the
size of a collection is non-trivial, but heuristics could be applied.

7.2 Lessons from the Reference Graph
Our reference-graph approach is orthogonal to the problem of per-
forming garbage collection on the GPU: we assume that in the
near future, GPUs will be capable of mapping the entire heap, per-
haps even cache-coherent with the CPU. However, we noticed that
the reference graph gave us significantly better performance for
a CPU collector: our untuned Serial CPU collector beat the op-
timized Jikes collector on several occasions, arguably due to in-
creased cache locality. We therefore briefly discuss performance
trade-offs for using the reference graph in a conventional GC.

Our numbers from Section 6.4 indicate that keeping the refer-
ence graph up-to-date when running the mutator seems to be the
most promising approach. We believe that modifying the compiler
to issue duplicate writes whenever a reference is written will lead
to a significantly lower performance impact than we are incurring
with our naı̈ve, write-barrier based approach. An alternative ap-
proach consists of splitting each object into two parts, one only con-
taining the references, the other containing the non-references. This
avoids the need for duplicating data and substantially improves col-
lector locality, at the cost of access locality.

We did not investigate this approach further but found it worth
mentioning as we found the trade-offs intriguing.

7.3 Estimation of Performance Limits
To estimate the potential of our approach, we need to quantify how
the performance of our implementation compares to the theoretical
best case on the given hardware. To do so, we present two weak,
but independent, constructions of a lower bound on execution time
for the 2,560 Parallel Linked List benchmark from Section 6. We
then discuss performance measurements that lead us to believe that
the actual bound is even tighter.

The first bound can be constructed by examining the minimum
time required to touch every memory location in the reference
graph exactly once. As constructed, the reference graph contains
only the edges in the heap graph and some minor padding. While
there may be a more compact representation, we believe that this
is a reasonable first order approximation for a minimum-size repre-
sentation of the heap graph. Using only the size of the benchmark
(117 MB) and the peak memory bandwidth for our device (9 GB/s),
we can establish a lower bound for GPU execution of ∼12.7 ms.

For the second bound, we can consider the minimum number of
dependent loads from main memory and the stall latency implied by

each. Without the presence of caches, each step of the list traversal
requires at least one round trip to main memory. As a result, a
lower bound on the run-time of the algorithm is given by depth ×
stall penalty in cycles×1/gpu frequency. We benchmarked a stall
latency of 256 cycles under load and the benchmark requires a
minimum of 3,000 dependent loads (one per linked-list element).
Taken together, this gives us a lower bound of ∼ 1.5 ms. For this
benchmark, the bound is not particularly tight, but we present it
nonetheless since it reflects structural features of the heap graph
that cannot be avoided (Section 3).

Together, these two approaches gives us a bound that is about
15x better than our best measured performance on the GPU.

We also examined the sustained memory bandwidth achieved
by our implementation over an entire execution of the mark phase
and compare it against the peak memory bandwidth available on
the device. For our benchmark, the optimized dual compute unit
configuration achieves a sustained bandwidth of 3.016 GB/s, or
roughly one third of peak. As expected, the single compute unit
version of the same code achieves roughly 1/2 of the bandwidth
at 1.72 GB/s. It is worth noting that these are measurements of our
actual implementation and thus may not reflect an actual bound
due to errors in the implementation or missed optimizations. As
an illustrative example, disabling the vectorization and divergence
handling for the dual compute unit code gives a higher sustained
bandwidth (4.317 GB/s), but lower overall performance. (We be-
lieve this to be due to the fact that the native memory request size is
2 words. In some cases, reading the two words separately can result
in separate requests being issued and artificially inflate bandwidth).
An additional caution is that the profiler is known by the vendor to
provide unreliable results under some circumstances.8

Taking these points together, we believe our algorithm to be
within a moderate constant factor of optimal on our hardware.

7.4 Load Balancing on Multiple Compute Units
As explained in Section 5.5, our current implementation statically
distributes the load between the two compute units on the device.
We believe that static load balancing will not suffice for a real
implementation (or even our own implementation on a device with
more than two compute units). Given that we expect to see the
number of compute units grow in future-generation parts, this is an
urgent concern. With this in mind, we experimented with a number
of options for synchronization between compute units.

Today, GPUs are primarily used for regular numeric computa-
tions. The traditional approach to irregular (imbalanced) computa-
tions has been to either pre-partition data into regular components
or to defer irregular work to the CPU. Synchronization and load
balancing between compute units is an underexplored area.

Graph traversal is a highly irregular computation. The anal-
ogy of pre-partitioning (and re-partitioning) for graph traversal is
to stop the GPU kernel after regular intervals, have the CPU in-
spects all queues, load balance if necessary, and then relaunch
the kernels. This is related to the option chosen by Veldema and
Philippsen [21]. As they showed, it can be used effectively, but in-
curs significant overhead since kernel launch and termination are
expensive synchronization actions (see Section 4.4 for discussion
of launch overheads). Additionally, this solution would interfere
with our goal of leaving the CPU available for other processing.
Potential alternatives include:

• Using global atomics to synchronize through shared memory.
As discussed previously and documented by Elteir et al. [7],
global operations are prohibitively expensive on AMD hard-
ware. It may be viable on hardware from other vendors or future
generations of GPUs.

8 As noted in the Developer Release Notes for AMD APP SDK v2.6.



• Using on-device hardware counters to construct a fast software
lock. After a trial implementation, we were forced to conclude
that the counters were not appropriate for our goals.

• Having each compute unit copy content from the other compute
unit’s queue into its own if its queue length drops below its
number of work-items. This scheme does not use any form
of synchronization and thus cannot update the source queue
safely. As a result, redundant work can and will be performed.
From preliminary results, it appears that the overhead caused
by the inspection outweighs any benefit provided by the load
balancing. We did not explore this idea further.

Based on our investigation, the only dynamic load balancing
scheme that seems currently viable is to use the CPU for coor-
dination as suggested by Veldema and Philippsen [21]. This is
unsatisfactory and we see a need for future work in this area.

7.5 Assessment of Garbage Collection on Current GPUs
Our results show that it is possible, with a significant overhead,
to build a GPU-based garbage collector on current hardware. The
numbers from the microbenchmarks show that an optimized GPU
mark algorithm can, for the best case, significantly outperform
a mark algorithm running on the CPU. However, our results for
the DaCapo benchmarks show that the mark phase for real-world
workloads is 40-80% slower than on the CPU (but sometimes
outperforms Jikes’ MarkSweep collector).

We noted that the copy-overheads for the heap (or reference
graph) can quickly reach or exceed the order of magnitude of an
actual collection on the CPU, even if CPU and GPU are on a
single chip. We therefore argue that, to make GPU-based garbage
collection feasible, we have to wait for architectures (or, in our case,
drivers) that support zero-copy mapping between the two devices.
However, these devices are appearing at the moment.

At the same time, the overhead from maintaining the reference
graph will have to be reduced as well. We expect that GPUs will
soon allow mapping enough memory to store the entire heap, so
that minimal changes to Jikes’ object model should be sufficient to
run our collector without the reference graph.

Once these overheads disappear, there is no intrinsic reason why
GPUs could not be used for garbage collection in the near future.
A particularly interesting application area is the use in concurrent
garbage collectors: if it is possible to generate a snapshot of a part
of the heap (which may well have the form of our reference graph),
it could be offloaded to the GPU and collected in isolation from the
mutators running on the main CPU.

7.6 Future Directions in Hardware
During our work, we discovered a number of situations where we
were severely limited by the capabilities of the hardware. Often-
times these were “quirks” rather than fundamental limitations of
GPUs, and we believe that, as more non-numeric workloads (such
as GC) appear, vendors could quickly address them.

As discussed is Section 7.4, support for dynamic load balanc-
ing is a particular problematic area. Given the ongoing efforts by
GPU vendors to generalize their applicability, we expect that bet-
ter support will be forthcoming in future revisions of hardware and
software. We also note that the specific issues we encountered were
vendor-specific and might not apply to other vendors’ devices.

Another area of potential improvement is the provisioning of
dedicated memory-bandwidth for the individual components of
integrated GPUs; AMD Fusion APUs have the disadvantage that
the performance of an application running on the CPU is directly
tied to the memory behavior of the corresponding code on the
GPU and vice versa. While some dynamic provisioning is certainly

desirable, a priority reservation per device would help to improve
performance isolation.

A different aspect that causes problems on current-generation
hardware is the vastly different model in AMD and NVIDIA GPUs,
which requires fundamentally different mechanisms, optimizations
and trade-offs (e.g. memory coalescing is much more important on
NVIDIA GPUs than it is on AMD hardware). With a more serious
entrance from Intel into the GPGPU market, this may well leave us
with three fundamentally different GPU models. While it would be
possible to auto-tune a collector to the individual platform before
running it, a broad adaption of GPU-assisted garbage collection
would require a more unified programming model.

Somewhat orthogonally, we also believe that GPU-like support
for parallelism might become increasingly integrated into the CPU
itself. This would make it easier to implement an approach such
as ours directly on this parallel hardware on the CPU. However,
current-generation CPUs lack support for scatter and gather
instructions, which would be crucial for such an approach.

Overall, we believe that hardware is heading in a direction that is
beneficial to our approach: the number of supported work-items per
workgroup is increasing, more memory is becoming available to
the GPU, CPU/GPU integration is becoming more common (elim-
inating copy-overhead) and cache-coherence between CPUs and
GPUs is on the horizon. We therefore believe that the work we
show in this paper will be particularly relevant for the next gener-
ation of hardware and may show an appealing application of those
devices beyond graphics-intense and special-purpose workloads.

8. Related Work
The idea of performing garbage collection on the GPU is not a con-
tribution of this paper. Jiva and Frost describe the basic approach
in a patent application in 2010 [13], while Sun and Ricci [20] de-
scribe the idea as part of a larger vision of using GPUs to speed-
up a variety of traditional operating system tasks. However, to our
knowledge, none of them has published an appropriate algorithm
or publicly disclosed a working GPU-based collector.

While the recent work by Veldema and Philippsen [21] explores
the implementation of a mark & sweep garbage collector on the
GPU, their work differs from ours in a number of important points.
First and foremost, their goal was not to use the GPU to accelerate
garbage collection for programs running on the CPU, but to provide
garbage collection facilities for CUDA-like programs written in
a Java dialect and running on the GPU. Additionally, our mark
algorithm bears little resemblance to theirs.

There have been a few recent papers proposing potential non-
numeric applications for GPUs. Naghmouchi et al. [18] investi-
gated using GPUs for regular expression matching. Smith et al. [19]
evaluate GPUs as a platform for network packet inspection.

Several groups have investigated efficient algorithms for per-
forming breadth-first-search on a GPU. One of the first publica-
tions in this space was the work by Harish and Narayanan [10]
who presented the first algorithm to perform an efficient breadth-
first-search on the GPU. However, this approach was based on vis-
iting every node at every iteration, and was less efficient than the
most efficient CPU implementation at that time. Their approach
was improved by Luo et al. [16] who used an approach based on
hierarchical queues to achieve better performance. Recent work by
Hong et al. [12] improved the performance even further. Veldema
and Philippsen’s [21] approach resembles the work by Harish and
Narayanan [10], whereas ours takes the approach of Luo et al. [16]
and Hong et al. [12]

Another body of work that is related to ours describes the use of
other parallel architectures or heterogeneous platforms to perform
garbage collection. An example for this is the work by Cher and
Gschwind which demonstrates how to use the Cell processor to



accelerate garbage collection [22]. Barabash and Petrank cover the
problem of garbage collection on highly parallel platforms from
a more general perspective and perform a heap analysis similar
to ours [5]. An early paper by Appel and Bendiksen [4] covers
garbage collection on vector processors and our approach has been
influenced by some of their ideas.

There is, of course, a multitude of work in the general space
of garbage collection. A general introduction can be found in [14].
While we are focusing on mark & sweep garbage collection, the
state of the art collectors are usually parallel generational-copying
collectors. A good example for such a collector is given in [17].

9. Conclusion
GPUs are often underutilized when not executing graphics-intense
or special-purpose numerical computations. We showed that it is
possible to offload garbage collection workloads to the GPU, to
use these otherwise unused cycles.

We presented and evaluated a prototype of a GPU-based collec-
tor for real-world Java programs. We first examined heap graphs
from the DaCapo benchmark suite to show that there are no struc-
tural features that would prevent the effective parallelization that
is required by a GPU. We then implemented a queue-based mark
algorithm on the GPU, as well as a number of optimizations. We
integrated this algorithm into a collector for the Jikes RVM.

Reflecting the direction of current hardware trends, we used
an integrated GPU/CPU device as our evaluation platform. With
minor adjustments to reflect the limits of current-generation parts,
we showed that a GPU implementation of the mark phase is nearly
performance-competitive with a tuned CPU implementation.

We identified two hardware features which are essential for
garbage collection on GPUs: eliminating copy overhead (zero-
copy) and enabling the GPU to access the entire physical ad-
dress space of the CPU. We also highlight fast synchronization be-
tween compute units on the GPU and the memory subsystem as
areas where hardware changes would be profitable to better sup-
port garbage collection. Current hardware trends indicate that each
of these areas is likely to improve rapidly in the near future.
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